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Abstract—We present a framework for differential modulation
with multiple antennas across a continuously fading channel,
where neither the transmitter nor the receiver knows the fading
coefficients. The framework can be seen as a natural extension
of standard differential phase-shift keying commonly used in
single-antenna unknown-channel systems. We show how our
differential framework links the unknown-channel system with
a known-channel system, and we develop performance design
criteria. As a special case, we introduce a class of diagonal signals
where only one antenna is active at any time, and demonstrate
how these signals may be used to achieve full transmitter diversity
and low probability of error.

Index Terms—Fading channels, multi-element antenna arrays,
receiver diversity, transmitter diversity, wireless communications.

I. INTRODUCTION

RECENT advances in communicating across multiple-an-
tenna wireless communication links show that these links

can support very high data rates with low error probabilities,
especially when the wireless channel response is known at the
receiver [1], [2]. However, the assumption that the channel is
known is questionable in a rapidly changing mobile environ-
ment, or when multiple transmitter antennas are employed. In
[3], a new class of signals calledunitary space–timesignals is
proposed that is well tailored for Rayleigh flat-fading channels
where neither the transmitter nor the receiver knows the fading
coefficients. In [4], a systematic approach to designing unitary
space–time signals is presented. The unitary space–time signals
are suited particularly well to piecewise-constant fading models.
In this note, we show how to modify these signals to work when
the fading changes continuously. The modified signals, which
we denotedifferential unitary space–time modulation, are easily
implemented and achieve full-antenna diversity.

Differential phase-shift keying (DPSK) has long been used
in single-antenna unknown-channel links when the channel
has a phase response that is approximately constant from one
time sample to the next. Differential modulation encodes the
transmitted information into phase differences from symbol to
symbol. The receiver decodes the information in the current
symbol by comparing its phase to the phase of the previous
symbol. DPSK is widely used because many continuously
fading channels change little between successive time samples.
In fact, many continuously fading channels are approximately
constant for a time interval often much larger than two
samples.

Paper approved by R. Raheli, the Editor for Detection, Equalization, and
Coding of the IEEE Communications Society. Manuscript received July 29,
1999; revised February 29, 2000.

The authors are with Bell Laboratories, Lucent Technologies, Murray Hill,
NJ 07974 USA (e-mail: hochwald@bell-labs.com; wim@bell-labs.com).

Publisher Item Identifier S 0090-6778(00)10908-0.

Suppose that we transmit signals in blocks oftime sam-
ples. We think of standard DPSK as employing blocks of
time samples, since information is essentially transmitted by
first providing a reference symbol and then a differentially
phase-shifted symbol. Of course, after the starting symbol,
each symbol acts as a reference for the next symbol, so we
really have signals that occupy two symbols but overlap by one
symbol. We wish to employ such an overlapping differential
scheme with transmitter antennas.

As our starting point, we use constellations of uni-
tary space–time signals proposed in [3] for piecewise-constant
fading. The th column of any signal contains the signal trans-
mitted on antenna as a function of time. Intuitive and theo-
retical arguments in [5] and [3] show that unitary space–time
signals are not only simple to demodulate, but also attain ca-
pacity when used in conjunction with coding in a multiple-an-
tenna Rayleigh fading channel when either or the
signal-to-noise ratio (SNR) is reasonably large and .

As an extension of single-antenna DPSK, we show that there
is a simple and general framework to differentially overlap the
multiple-antenna unitary space–time signals that allows them to
be used for continuous fading. For transmitter antennas, we
assume that and design the matrix signals
so that they may be overlapped in time bysymbols. For ex-
ample, if the fading is constant in blocks of, for example, ten
symbols (often a reasonable assumption), this allows us to use
differential modulation for at least five transmitter antennas.

We also show how our differential framework allows us to
intimately connect signal design for unknown channels to de-
sign for channels that are known at the receiver [6], [7]. Using
a few simple assumptions, we are led naturally to constellations
of matrices that form groups, and eventually to constellations
of so-calleddiagonalsignals, where at any given time only one
antenna is active. The diagonal signals fully utilize the trans-
mitter antenna diversity and can be optimized to achieve low
error probability across a Rayleigh flat-fading channel. Several
examples and performance simulations are given.

II. M ULTIPLE ANTENNAS IN UNKNOWN RAYLEIGH

FLAT FADING

In this section, we present the channel model and summarize
some known results for a multiple-antenna communication link
in Rayleigh flat fading. We first need to set some notation.

A. Notation

is an identity matrix, is the complex-
normal zero-mean unit-variance distribution where the real and
imaginary components of each random variable are independent
and each have variance , and denotes complex conjugate
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transpose of a vector or matrix. The Frobenius norm of a
matrix is given by

(1)

where is the th singular value of .

B. Rayleigh Flat-Fading Channel Model

Consider a communication link comprising transmitter
antennas and receiver antennas that operates in a Rayleigh
flat-fading environment. Each receiver antenna responds to each
transmitter antenna through a statistically independent fading
coefficient. The received signals are corrupted by additive noise
that is statistically independent among thereceiver antennas
and the symbol periods. We use complex baseband notation:
at time we transmit the complex symbols on antennas

, and we receive on receiver antennas
. The action of the channel is modeled by

(2)

Here is the complex-valued fading coefficient between the
th transmitter antenna and theth receiver antenna at time

. The fading coefficients are assumed to be independent with
respect to and (but not ), and are -distributed
(Rayleigh amplitude, uniform phase). The additive noise at time

and receiver antenna is denoted , and is independently,
identically distributed , with respect to both and .
The realizations of are
known neither to the transmitter nor the receiver. The trans-
mitted symbols are normalized to obey

(3)

where denotes expectation. Equations (2) and (3) ensure that
is the expected SNR at each receiver antenna, independently

of the number of transmitter antennas. Equivalently, the total
transmitted power does not depend on.

We assume that the fading coefficients change continuously
according to a model such as Jakes’ [8]. While the exact model
for the continuous fading is unimportant, we require the fading
coefficients to be approximately constant for overlapping blocks
of symbol periods. We have some freedom to choose,
but it generally can be no larger than the approximate coherence
time (in symbols) of the fading process.

In one block of successive symbols the time index of the
fading coefficients can be dropped, and sent and received sig-
nals can be combined into-vectors. Equation (2) can then be
written compactly as

(4)

where is the complex matrix of received signals ,
is the matrix of transmitted signals , is the

matrix of Rayleigh fading coefficients (assumed
time-invariant within the block), and is the matrix of
additive receiver noise . In this notation, the columns of

represent the signals sent on thetransmitter antennas as
functions of time.

C. Unitary Space–Time Modulation

We now consider how to choose a constellation ofsignals
, each a matrix, to transmit data across

this multi-antenna wireless channel. We use unitary space–time
signals , where
the matrices obey

. The normalization ensures that the matrix-signals
satisfy the energy constraint (3).

For a piecewise-constant fading channel, it is argued in [5]
and [3] that the capacity-achieving distribution for reasonably
large or is , where and is
isotropically distributed. Because , we are implic-
itly assuming that ; as shown in [5], this assumption is
not restrictive because there is no gain in capacity by making

.
It is also shown in [3] that the maximum-likelihood demodu-

lator for a constellation of unitary space–time signals is a matrix
noncoherent correlation receiver

(5)

and that the two-signal probability of mistaking for or
vice versa is (see [3, Appendix B])

(6)

where are the singular values of
the correlation matrix .
The pairwise probability of error decreases as any de-
creases, and has Chernoff upper bound

(7)

For the noncoherent receiver, the pairwise probability of error
is lowest when the two matrix-valued signals are as orthogonal
as possible, and is highest when the signals are as parallel as
possible. Hence, the probability of error is lowest when

and highest when .
We obtain when the columns of are
all orthogonal to all the columns of . The ideal constellation

therefore has all the columns of orthogonal to
all the columns of for . However, be-
cause the columns of each are within themselves orthogonal
to one another, all the pairwise cannot all be
made zero if .
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In general, we strive to build constellations which make the
pairwise probability of error between any two signals and

as small as possible. Optimizing the exact probability of
error (6) or its Chernoff upper bound (7) is awkward because
they depend on the SNR. Rather than picking a particular,
we design constellations that work well for all sufficiently large
, where the Chernoff upper bound onand depends dom-

inantly on the product

As shown in [9, Sec. 12.4.3], one can think of as the cosine
of the principal angle between the subspaces spanned by
the columns of and . The above expression can therefore
be interpreted as the product of the squares of the sines of the
principal angles. To obtain a quantity that can be compared for
different , we define as the geometric mean of the sines
of the principal angles1

(8)
Because , we have , and in par-
ticular, if is small the pairwise probability of error is large,
and if is large the probability of error is small. Define now
thediversity product as

(9)

In this paper, we choose constellations that maximize the di-
versity product . In particular, any constellation with nonzero
diversity product is said to have full transmitter diversity.

In [4], constellations are chosen that minimizewhere

(10)

We have , and by (7), small implies small proba-
bility of error. For small

Thus, and small in general implies large. We find
that maximizing the diversity productto be more useful than
minimizing because minimizing does not guarantee full di-
versity. Note that maximizing is fundamentally different from
maximizing Euclidean distance; two signals that have large Eu-
clidean distance can have small diversity product. In fact, di-
ametrically opposite signals have .

In constructing a constellation of signals, we note that the
probability of error of the entire constellation (not just the pair-

1The original March 1999 version of this paper defined� as the square
of its current definition. However, the current definition is more amenable to
interpretation, especially when the channel is known.

wise error) is invariant to the following two types of signal trans-
formations: 1) left-multiplication by a common unitary
matrix, , , and 2) right-multiplica-
tion by individual unitary matrices, ,

. We can intuitively understand these transforma-
tions by viewing the left-multiplication as a simultaneous per-
mutation in time of all the signals, and the individual right-mul-
tiplications as permutations of the antennas. The ordering of the
antennas is immaterial because all of the antennas are statisti-
cally equivalent (see [3, Sec. 6.2]).

III. STANDARD SINGLE-ANTENNA DIFFERENTIAL

MODULATION

In this section, we give a short review of standard single-an-
tenna DPSK [10], [11]. While we do not offer any new material
here, we present DPSK in an unusual framework that ultimately
makes our transition to multiple antennas easier.

DPSK is traditionally used when the channel changes the
phase of the symbol in an unknown, but consistent or slowly
varying way. The data information is sent in the difference of
the phases of two consecutive symbols. For a data rate of
bits/channel use, we need symbols; the most common
techniques use symbols that areth roots of unity

(11)

Suppose we want to send a data sequence of integers
with . The transmitter sends the

symbol stream

...

where

(In the matrices and sequences shown in this paper, we always
represent the time axis vertically.) The initial symbol
does not carry any information and can be thought of as a
training symbol. The received data are processed by
computing the differential phases

which are quantized to form an estimate of the integer sequence

(12)

The received and transmitted symbols are related by the equa-
tion

This is the single-antenna version of the model (2), whereis
the complex valued fading coefficient which is either constant
or varies slowly with . There are two sources of possible errors

the additive noise and time-variations in the phase
of the fading coefficient. The demodulation rule (12) does not
depend on earlier demodulation decisions, but only on the re-
ceived symbols and ; demodulation errors therefore do
not propagate.
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There is a slightly different way to look at DPSK modulation
and demodulation that fits into our multiple-antenna model (4)
with . Since DPSK demodulation requires two
successive symbols, we consider the transmitted signals as oc-
cupying overlapping intervals of length and consider
modulation and demodulation using the maximum-likelihood
receiver given in Section II. One can view the signal constel-
lation as containing two-dimensional vectors of the type

(13)

(Recall in Section II-C that the transmitted signalis mul-
tiplied by .) The signals form an equivalence
class invariant under phase shifts; i.e.,and are indis-
tinguishable to the receiver for all. A phase shift can be seen
as a right-multiplication by the 1 1 unitary matrix , which
does not change the constellation (see the last paragraph of Sec-
tion II-C). Therefore, one has a canonical representation

(14)

where is given in (11).
Effectively, to generate a DPSK signal, the transmitter prepro-

cesses the signal vector by rotating until its first symbol
equals the symbol previously sent. The transmitter then sends
only the (normalized) second symbol of the rotated, thus rep-
resenting by only one sent symbol. The receiver is aware of
this preprocessing and demodulates the current received symbol
by combining it with the previous received symbol to form a
two-symbol vector again. More formally, the transmitter com-
putes the cumulative sum

with

The very first signal sent is , and we
now wish to send the signal . Instead of sending both
components of this signal, we rotate this signal to another el-
ement of its equivalence class, obtained by multiplying by the
scalar , namely . The
transmitter then sends only . Fig. 1 schematically displays
differential modulation.

The receiver now groups received symbols in (overlapping)
vectors of length two

and computes the noncoherent maximum-likelihood demodula-
tion according to (5)

This corresponds to DPSK demodulation given in (12) because

Fig. 1. Schematic representation of differential phase modulation. Along the
top, from left to right, are the symbols[1 ' ] one wants to send. These are
multiplied by' so that they can overlap, as shown diagonally downward.
The overlapped signals are then transmitted(s = ' ) on the channel.

The term computes the phase difference between suc-
cessive received symbols, and maximizing finds
the whose phase matches this difference most closely.

IV. M ULTIPLE-ANTENNA DIFFERENTIAL MODULATION

The previous section shows that standard differential mod-
ulation effectively uses a block of length 2 that overlaps by
one symbol, where one symbol acts as a reference for the next.
Information is delivered in the phase difference between sym-
bols. When we have transmitter antennas, we need a block
of space–time symbols to act as a reference for the
next block. Hence, we consider signals of size that
we overlap by samples, and effectively deliver information
in the matrix quotient of the two blocks.

A. Signal Requirements for Differential Modulation

With multiple antennas, we accomplish differential modula-
tion by overlapping the matrix signals by sym-
bols. We therefore choose . We now explore the struc-
ture that must have to permit overlapping. Using
a notation similar to (13), we let each signal have the form

where and are, for the moment, arbitrary com-
plex matrices.2 Because , it follows that

(15)

In Section II-C, it is shown that and
are indistinguishable for arbitrary unitary matrices .
To help overlap the signals in a fashion similar to Section III,
we therefore have the freedom to “preprocess” each signal
to be sent by right-multiplying by a unitary matrix so that its
first matrix block equals the second matrix block of
the previously (also possibly preprocessed) sent symbol, for ex-
ample, (see the rules for signal manipulation at the end of
Section II-C). After is preprocessed, because its first block

2The
p
2 normalization may seem odd, but it ultimately allows us to choose

theV matrices to be unitary while� � = I .
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equals the second block of the signal already sent, we then need
to send only its (normalized) second block. For this overlapping
to succeed, we therefore require that a unitary transformation
exist between the first block of and the second block of ;
i.e., for any and , the equation

(16)

should have a solution for some unitary .
The most general set of and matrices that satisfy (15)

and (16) is described by Oswald in [12], where he shows that the
best diversity product is, in general, obtained by choosing
and to be unitary. We therefore restrict ourselves to this case.
If and are unitary for all , then (15) holds trivially, and
(16) has the unitary solution . With this choice,
because and are indistinguishable at the receiver, we
have a canonical representation

(17)

where is unitary. Without loss of generality, we
can thus assume the following.

Assumption 1:The signals are of the form (17) where
is a unitary matrix.

Observe the formal similarity with (14).

B. Differential Transmission

In standard single-antenna DPSK, Section III shows that the
equivalent signals can be thought of as two-dimensional vec-
tors whose first components are 1, and whose second compo-
nents are used to form the transmitted signal. Similarly, in (17),
the signals are matrices whose first halves
are , and whose second halves are used to form the transmis-
sion matrix in our -antenna differential modulation scheme.
Therefore, the channel is used in blocks of symbols.
Let us use to index blocks of consecutive symbols; the run-
ning time index of channel uses is then with

. A transmission data rate of bits/channel use
requires a constellation with signals; thus distinct

matrices are needed. We again have an integer data sequence
with .

Fig. 2 schematically displays multiple-antenna differential
modulation. Here, the columns of each (which are

matrices) represent what is transmitted on theantennas
as functions of time for symbols. The first transmission is

; that is, an identity matrix is
sent, followed by . Next, we wish to send . To
make the identity block of overlap with the last sent block

, we postmultiply by . The second block of then
becomes and, hence, . In general,
the differential transmission scheme sends the matrices

(18)

This is the fundamental differential transmission equation.
Clearly, all the transmitted matrices will be unitary.

Fig. 2. Schematic representation ofM -antenna differential modulation. Along
the top, from left to right, are the symbols� one wants to send. These are
right-multiplied by the previously transmitted block so that they can overlap,
as shown diagonally downward. The overlapped signals, which obeyS =

V S , are then transmitted on the channel. Compare Fig. 1, which shows the
overlapping scheme for standard single-antenna differential phase modulation.

C. Differential Reception

With receiver antennas, the demodulator receives a stream

...

where is an matrix. Demodulation requires looking
at two successive matrices to form a matrix with rows

We assume that the fading coefficients are constant across the
time samples represented in the rows of. Then the

relationship with the sent stream is

(19)

(20)

where is an matrix of additive independent
receiver noise. The maximum-likelihood demodulator (5) is

(21)

where the norm is as defined in (1).
Substituting the fundamental differential transmitter equation

into (20) and applying (19) yield

Because the noise matrices are independent and statistically in-
variant to multiplication by unitary matrices, we may write this
as

(22)

where is an matrix of additive independent
noise. This is thefundamental differential receiver equation.
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Remarkably, the matrix of fading coefficients does not
appear in the fundamental differential receiver equation (22).
In fact, formally, this equation shows that the signal ap-
pears to be transmitted through a channel with fading response

, which isknownto the receiver, and corrupted by noise
with twice the variance. This corresponds to the well-known re-
sult that standard single-antenna differential modulation suffers
from approximately a 3-dB performance loss in effective SNR
when the channel is unknown versus when it is known.

V. CONNECTIONBETWEENUNKNOWN AND KNOWN CHANNEL

Equation (22) demonstrates that our multiple-antenna differ-
ential setting appears to turn the original unknown-channel com-
munication problem into a known channel problem. In this sec-
tion, we explore this connection further. We first review some
facts about the known channel.

A. Known Channel

We consider signals that are matrices. The action of
the channel is

(23)

where is known to the receiver. We assume that the constel-
lation consists of signals that are unitary. The
transmission matrix is then

Because is known at the receiver, the maximum-likelihood
demodulator is the coherent receiver

(24)

and has pairwise probability of error Chernoff upper bound
given by [6], [3]

(25)

Hence, good constellations have singular values

that are as large as possible for . For large SNR, the
probability of error depends dominantly on the product

(26)

In particular, a larger product equates to a smaller error proba-
bility.

B. Connection Between Signal Designs

Recall in Section II-C that the unknown-channel signals
are matrices obeying , and that a good con-
stellation has singular values

that are as small as possible for . If we view the identity
block of the differential unitary space–time signal construction
of as training to learn the matrix channel, we may build

as

where are unitary matrices taken from a constellation of
known-channel signals. Then

which implies that

(27)

where is the th eigenvalue of the matrix . Hence

(28)

Equation (28) says that minimizing the singular values of the
correlations of the unknown-channel signals is equivalent to
maximizing the singular values of the differences of the known-
channel signals. We can now write in (8) as

(29)

As argued in Section II-C, large equates to small pairwise-
error probability when is large and the channel is unknown. On
the other hand, (26) states that large also equates
to small pairwise-error probability when the channel is known.
Thus, a constellation of good known-channel matrix signals can
be augmented with an identity matrix block to form a constel-
lation of good unknown-channel matrix signals. Conversely, a
constellation of good unknown-channel signals of the form (17)
has matrices that form a constellation of good known-channel
signals. Intuitively, the identity block can be viewed as training
from which the channel is learned before the second block car-
rying data is sent. Differential modulation, of course, lets the
training and data blocks overlap. The diversity product for dif-
ferential modulation can now be written as

(30)

By comparing the Chernoff bounds (7) and (25), and using (26),
we see from the factor in (29) that the performance advan-
tage for knowing versus not knowing the channel is approxi-
mately 3 dB in SNR.
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C. Connection Between Demodulation Strategies

The fundamental differential receiver equation (22) is

As we have remarked, can be viewed as a known channel
through which the signal matrix is sent. We may demodulate

using (24) to obtain

This estimate is exactly the maximum-likelihood demodulator
for the unknown channel (21)

These connections imply that the differential scheme can
use existing constellations and demodulation methods from the
known channel such as, for example, the orthogonal designs
of [7].

VI. GROUPCONSTELLATIONS

Let be the set of distinct unitary matrices

We have not yet imposed any structure on the set. In this sec-
tion, we assume that forms a group. We show how this as-
sumption simplifies the transmission scheme and the constella-
tion design.

A. Group Conditions

In order for a set to form a group under matrix multiplica-
tion, we need to impose four conditions: internal composition,
associativity, existence of an identity element, and existence of
an inverse element for each element. We briefly discuss these
conditions and show that imposing internal composition essen-
tially imposes the remaining three.

Internal Composition: In standard single-antenna scalar
DPSK with (reviewed in Section III), the product of
any two symbols, and , is another symbol. In a similar
fashion, we impose an internal composition rule on. For any

, it is required that

(31)

for some . We may define an equivalent
(isomorphic) additive operation on the indices as

Associativity: Follows immediately from the associativity
of matrix multiplication.

Identity Element: In Section II-C, it is mentioned that
every signal in the constellation may be premultiplied by
the same fixed unitary matrix without changing the
error performance of the constellation. The first element of the
constellation is

We now premultiply every member of the constellation with the
unitary matrix

This gives an equivalent constellation whose first element has
two identity matrices. Thus, without loss of generality, we can
always assume a constellation with .

Inverse Element:We show that because we impose in-
ternal composition, any element, say, automatically has an
inverse in . Since comprises unitary matrices, the matrix
products are all distinct, and are all
again in ; they consequently form a permutation of the ele-
ments of . In particular, there is an indexsuch that

. Hence, .
Of the four requirements that a group must satisfy, we have

shown that imposing internal composition automatically im-
poses the remaining three.

Assumption 2:The set of unitary matrices forms a group.
Note that since is a finite group of size , its elements must

all be th roots of unity: for .

B. Advantages of Group Constellations

Differential modulation as in Section IV-B can now be
written more succinctly by letting

(32)

so that

The transmitted matrix is

Thus, unlike the general case, whenis a group each trans-
mitted matrix is an element of.

One advantage of a group constellation is that the transmitter
never has to explicitly multiply matrices, but only needs to com-
pute (32) using a lookup table. Another advantage is simplified
design. Good constellations are often found by searching over
large candidate sets. Computingfor a general candidate con-
stellation requires checking correlations of the form

(33)

However, when is a group it suffices to check only
correlations; in particular, one may check the singular values
of . Fig. 3 schematically displays
multiple-antenna differential modulation when the constellation
forms a group.
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Fig. 3. Schematic representation ofM -antenna differential modulation when
the constellation forms a group. Along the top, from left to right, are the symbols
one wants to send. These are right-multiplied by the previously transmitted
blockV so that they can overlap, as shown diagonally downward. Unlike
in Fig. 2, the transmitted signals are always members of the constellation, just
as in standard scalar DPSK.

C. Abelian Group Constellations

We now impose the requirement that the product of any two
matrices of commutes.

Assumption 3:The group is Abelian.
Imposing commutativity has some appealing consequences.

Since are unitary, they are normal matrices and
can be written as , where the matrix of eigen-
vectors obeys , and is a matrix of
eigenvalues of [13]. But because commute,
they share a common set of eigenvectors

(see [13, p. 420]). Consequently, this constellation
of matrices can be diagonalized into a new constellation com-
prising diagonal matrices of eigenvalues using one fixed-in-
dependent similarity transform . The similarity
transform does not effect the error performance of the constella-
tion because it is equivalent to postmultiplying every signal
by the unitary matrix and premultiplying by the
unitary matrix

Thus, assuming is Abelian is equivalent to assuming that all
of its elements are diagonal matrices. If all theare diagonal,
then the signals consist of two diagonal blocks (the first of
which is identity). This implies that at any given time only one
antenna is active. We call these signalsdiagonal.

1) Cyclic Construction:A simple way to build the commu-
tative group with elements is to make it cyclic. Then, is
of the form

where the generator matrix is an th root of the unity. Addi-
tion on the indices

then becomes

Hence, the transmitter does not even need a lookup table to com-
pute the differential transmission scheme. The matrixis di-
agonal and can be written as

...

With this cyclic construction, the signals are given
by

(34)

where

and

The th signal in the constellation therefore has the form

...

...

(35)

These signals have a very simple interpretation. At any time,
only one transmitter antenna is active and transmitting either a
reference symbol (which in differential modulation is actually
the previously sent symbol) or a phase-shifted symbol. Thus,
within the th block, antenna transmits at time
a symbol that is differentially phase-shifted by rel-
ative to its previous transmission. The value ofis determined
by the data. It is important to note that the phase shifts are po-
tentially different for each antenna. When , the signals
reduce to standard DPSK.

Signal matrices with low pairwise probability of demodu-
lation error form correlations (33) with singular values that are
small for all . The singular values of are

(36)

Thus

(37)

Our maximin design requirement is to find satis-
fying
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One can see that if and share a common factor,
then are not distinct. Our maximin design require-
ment ensures that the signals are distinct.

2) Multicyclic Construction: In general, if is not prime, a
finite Abelian group of size may be written as a cross product
of cyclic groups [14, p. 109]. A corresponding signal construc-
tion that is multi-index and systematic may be defined. Consider
a factorization of given by

Using a multi-index notation with
, the group elements are given by

Here, is a diagonal matrix with diagonal elements
. The diagonal elements of are

thus with

and the singular values of the correlation matrices are
.

When the are pairwise relatively prime, the group is
cyclic, otherwise it is multi-cyclic. For a multi-cyclic group,
at least two of the share a factor; it therefore uses an
alphabet with less then elements. Thus, for any , there are
two diagonal matrices with the sameth diagonal element.
The difference between these two matrices therefore is zero
in its th column, its determinant is zero, and thus .
Multi-cyclic groups cannot have full diversity and we do not
consider them any further.

VII. D ESIGN AND PERFORMANCE OFCONSTELLATIONS

A. Constellation Design

In this section, we give the performance of constellations of
diagonal signals designed for transmitter an-
tennas. In the search for good constellations, we may employ
some simplifying rules as follows, which cause no loss of gen-
erality, regardless of the performance criterion used.

1) Because every antenna is statistically equivalent to every
other, we may impose the ordering .

2) We may assume that , because if , then
the th antenna can only transmit the symbol 1 and is
effectively rendered inoperative.

3) The constellations generated by and
are identical for all relatively

prime to . From (34), we see that multiplication by
simply reorders the signals in increasing

instead of increasing.

B. Search Method

In Section IV, we mention that constellations of differential
unitary space–time signals can be designed with a maximin pro-

cedure: find the that maximize
the diversity product

(38)

We do not know of explicit solutions to this procedure, and we
therefore resort to exhaustive computer searches. We consider
only single-index cyclic constructions . Candidates for
the best set of are generated ex-
haustively, tested for performance by computing the diversity
product, and kept if they exceed the previously best candidate.

The search space can be reduced using the following rules.

a) Equation (38) does not change if is replaced by
. We may therefore restrict our search to

(assuming is even).
b) If shares a factor with then there is an

for which ;
this implies that the diversity product is zero. Thus, we
can restrict the search to that are relatively prime to

.
c) By Rule b), we may assume that is relatively prime to

. But then there exists ansuch that .
By multiplying by this same , and using
Rule 3) above, we may assume that .

d) In (38), the product for and is the same; it is 1 for
(assuming is even). Thus, the minimum may

be taken over .
Table I shows the results of our searches for constellations

of that maximize . For comparison, we also include
the values of , but no attempt to minimizewas made. Because

is a power of 2, only odd appear. For transmitter
antenna, the search naturally produces differential binary phase-
shift keying (PSK) and differential quadrature PSK

. Also included is an upper bound on the block-error
rate obtained by summing over the Chernoff bounds (7)
with dB.

Comments:

1) We choose to maximizein (38) rather than minimize
in (10) because, for example, there are two
constellations that have the samebut very different ’s
and performances. The poorer performing constellation
has , for which , and union
bound at dB. The better performing
constellation has (see also Table I), for which

, and union bound .
2) We did not search for constellations with more than

signals from which we would employ a subset.

C. Constellation Performance

In our models, we assume that the channel remains approxi-
mately constant for symbols. In real communication
systems, our model is therefore accurate when the coherence
time of the fading process between the two terminals is at least
this long. In our simulations, the fading is assumed to be in-
dependent between antennas but correlated in time according
to Jakes’ model [8]. A typical physical scenario where such a
model is appropriate is a base station antenna array communi-
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TABLE I
SYSTEMATIC ANTENNA CONSTELLATIONS FORM = 1; 2; 3; 4; AND 5 TRANSMITTER ANTENNAS AND RATE R = 1; 2 THAT MAXIMIZE THE DIVERSITY PRODUCT

� IN (9). THE NUMBER OF SIGNALS IN THE CONSTELLATION ISL = 2 , AND � IS DEFINED IN (10). THE P UPPERBOUND IS A UNION BOUND ON

BLOCK-ERRORRATE OBTAINED BY SUMMING OVER ` 6= ` THE CHERNOFFBOUNDS (7) WITH � = 20 dB

Fig. 4. Performance ofM = 1; 2; 3; 4; and5 transmitter antennas andN = 1 receiver antenna as a function of SNR�. The channel has unknown Rayleigh
fading that is changing continuously according to Jakes’ model with parameterf T = 0:0025. The data rate isR = 1, and the signal constellations used are
given in Table I.

cating with a mobile. If we assume that the mobile is traveling
at approximately 25 m/s (55 mi/h) and operating at 900 MHz,
the Doppler shift is approximately Hz. The Jakes cor-
relation between two fading coefficientstime samples apart
is , where is the sampling period and is the
zeroth-order Bessel function of the first kind. We assume that

so . The Jakes correlation func-
tion has its first zero at . This means that fading samples
separated by much less than 153 symbols, say symbols,
are approximately equal, and our model is accurate for
or .

We suppose that binary data are to be transmitted, and we
therefore have to assign the bits to the constellation signals. We
do not yet know how to make an effective gray-code type of
assignment, but we observe that, in our simulations,
is always even. Therefore, are all odd [see Rule 3)],

hence and . Hence, signals offset
by are maximally separated and are given complementary
bit assignments.

Figs. 4 and 5 show the bit-error performance of
and transmitter antennas and one receiver an-

tenna for and . We see that the differential
unitary space–time signals are especially effective at high
SNR. This is not inconsistent with claims in [3] that unitary
space–time signals are best suited for high SNR. We also
note that the block-error union bounds presented in Table I
give rough indications of the bit-error performances shown
in the figures. Because the fading is continuous, the effects
of variations in the fading coefficients should be more ap-
parent with large blocklength . Since , the effects
equivalently should be apparent for large. This perhaps
explains the limited gain in performance for over
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Fig. 5. Performance ofM = 1; 2; 3; 4; and5 transmitter antennas andN = 1 receiver antenna as a function of SNR�. The channel has unknown Rayleigh
fading that is changing continuously according to Jakes’ model with parameterf T = 0:0025. The data rate isR = 2, and the signal constellations used are
given in Table I.

when , and the slight appearance of an error
floor at very high SNRs.

VIII. C ONCLUDING REMARKS

An advantage of our diagonal signals (35) is their simplicity.
Because only one antenna transmits at any given time, one
power amplifier can be switched among the antennas. But this
amplifier must deliver -times the power it would otherwise
deliver if there were an array of amplifiers simultaneously
driving the other antennas. Consequently, this amplifier needs
to have a larger linear operating range than an amplifier array
would. Amplifiers with a large linear range are often expensive
to design and build. It may therefore occasionally be desirable
to have all antennas transmitting simultaneously at lower
power. In this case, we may transform the constellation by

, where is a unitary matrix such as a discrete
Fourier transform matrix. This transformation has the effect of
smearing the transmitted symbol on any active antenna across
all of the antennas while maintaining the group property and
not affecting constellation performance.

The diagonal signals are the natural consequence of three
assumptions. The first assumption, which appears in Sec-
tion IV-A, gives the block-unitary structure of and is
essentially unrestrictive. The second assumption, which ap-
pears in Section VI-A, requires the signal matrices to form
a group, and is appealing because it simplifies signal design
and generation. We do not know how restrictive this assump-
tion is and how much constellation performance suffers by
considering only groups. The final assumption, which appears
in Section VI-C, requires the group to be Abelian. We have

experimentally found this assumption to be fairly restrictive
and the performance of diagonal signal to degrade significantly
for rates .

The general differential framework we have described is a
natural extension of standard DPSK to more than one trans-
mitter antenna. It is flexible and can accommodate all rates and
any number of antennas. The framework allows broad classes
of unitary matrix-valued signals to be chained together differen-
tially; a class of diagonal signals was given as a simple special
case. Maximum-likelihood decoding was shown to be a simple
matrix noncoherent receiver, and pairwise-error performance
was measured with a diversity product. It remains a rich open
problem to find other classes of group and nongroup high-rate
constellations with large diversity products.
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After finishing this work, we learned of a differential modu-
lation scheme proposed by Tarokh and Jafarkhani [15]. While
similar in its transmission of signal matrices that depend differ-
entially on the input data, their approach is based specifically on
orthogonal designs. We also learned of an approach by Hughes
[16] that has a differential construction similar to the construc-
tion in our paper. Hughes focuses on group codes, and two-an-
tenna codes with cyclic and quaternionic structures are explic-
itly designed.



2052 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 48, NO. 12, DECEMBER 2000

REFERENCES

[1] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,”Eur. Trans.
Telecommun., vol. 10, pp. 585–595, Nov. 1999.

[2] G. J. Foschini, “Layered space–time architecture for wireless commu-
nication in a fading environment when using multi-element antennas,”
Bell Labs. Tech. J., vol. 1, no. 2, pp. 41–59, 1996.

[3] B. M. Hochwald and T. L. Marzetta, “Unitary space–time modulation for
multiple-antenna communication in Rayleigh flat-fading,”IEEE Trans.
Inform. Theory, vol. 46, pp. 543–564, Mar. 2000.

[4] B. Hochwald, T. Marzetta, T. Richardson, W. Sweldens, and R. Urbanke,
“Systematic design of unitary space–time constellations,”IEEE Trans.
Inform. Theory, vol. 46, pp. 1962–1973, Sept. 2000.

[5] T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple-an-
tenna communication link in Rayleigh flat fading,”IEEE Trans. Inform.
Theory, vol. 45, pp. 139–157, Jan. 1999.

[6] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space–time codes for
high data rate wireless communication: Performance criterion and code
construction,”IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, Mar.
1998.

[7] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block
codes from orthogonal designs,”IEEE Trans. Inform. Theory, vol. 45,
pp. 1456–1467, July 1999.

[8] W. C. Jakes,Microwave Mobile Communications. Piscataway, NJ:
IEEE Press, 1993.

[9] G. H. Golub and C. F. V. Loan,Matrix Computations, 2nd
ed. Baltimore, MD: John Hopkins Univ. Press, 1983.

[10] J. G. Lawton, “Investigation of Digital Data Communication Systems,”
Cornell Aeronautical Lab., Inc., Tech. Rep. UA-1420-S-1, 1961.

[11] J. G. Proakis,Digital Communications, 3rd ed. New York: McGraw-
Hill, 1995.

[12] P. Oswald. (1999, May) On Codes for Multiple-Antenna Differential
Modulation. Bell Labs., Lucent Technologies, Tech. Rep. [Online].
Available: http://mars.bell-labs.com

[13] P. Lancaster and M. Tismenetsky,The Theory of Matrices, 2nd ed. San
Diego, CA: Academic, 1985.

[14] I. N. Herstein,Topics in Algebra, 2nd ed. New York: Wiley, 1975.
[15] V. Tarokh and H. Jafarkhani, “A differential detection scheme for

transmit diversity,” IEEE J. Select. Areas Commun., vol. 18, pp.
1169–1174, July 2000.

[16] B. L. Hughes, “Differential space–time modulation,” IEEE Trans. In-
form. Theory, to be published.

Bertrand M. Hochwald (S’90–M’95) was born in
New York, NY. He received the undergraduate de-
greefrom Swarthmore College, Swarthmore, PA, and
the M.S. degree in electrical engineering from Duke
University, Durham, NC. In 1989, he enrolled at Yale
University, New Haven, CT, where he received the
M.A. degree in statistics and the Ph.D. degree in elec-
trical engineering.

From 1986 to 1989, he was with the Department
of Defense, Fort Meade, MD. During 1995–1996, he
was a Research Associate and Visiting Assistant Pro-

fessor at the Coordinated Science Laboratory, University of Illinois, Urbana-
Champaign. He joined the Mathematics of Communications Research Depart-
ment at Bell Laboratories, Lucent Technologies, Murray Hill, NJ, in September
1996. His interests include communications and information theory, probability
theory, and statistical signal processing.

Dr. Hochwald is the recipient of several achievement awards while employed
at the Department of Defense and the Prize Teaching Fellowship at Yale.

Wim Sweldens (M’97) received the Ph.D. degree
in applied mathematics in 1994 from the Katholieke
Universiteit Leuven, Leuven, Belgium.

From 1992 until 1995, he was a Research Fellow
with the Mathematics Department at the University
of South Carolina, Columbia. He is currently a
Researcher at the Mathematical Sciences Research
Center of Bell Laboratories, Lucent Technologies,
Murray Hill, NJ. His research is concerned with
wavelets and multiscale analysis and its application
in numerical analysis, signal processing, computer

graphics, and wireless communications. He is the inventor of the lifting
scheme, a new design and implementation technique for wavelets on which the
JPEG2000 standard is based. More recently, he has been working in Digital
Geometry Processing. He is the Founder and Editor-in-Chief of the Internet
newsletterWavelet Digest, which has over 16 000 subscribers worldwide.
Additional information can be found at http://wim.sweldens.com.

Dr. Sweldens was recently chosen by MIT’sTechnology Reviewas one of 100
Most Promising Young Innovators.


