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Differential Unitary Space—Time Modulation

Bertrand M. HochwaldMember, IEEEand Wim Sweldendviember, IEEE

Abstract—We present a framework for differential modulation Suppose that we transmit signals in blocksiofime sam-
with multiple antennas across a continuously fading channel, ples. We think of standard DPSK as employing block#'ef 2
where neither the transmitter nor the receiver knows the fading time samples, since information is essentially transmitted by

coefficients. The framework can be seen as a natural extension first idi f bol and th diff all
of standard differential phase-shift keying commonly used in IrSt providing a reterence Symbol an én a direrentially

single-antenna unknown-channel systems. We show how our Phase-shifted symbol. Of course, after the starting symbol,
differential framework links the unknown-channel system with each symbol acts as a reference for the next symbol, so we

a known-channel system, and we develop performance designreally have signals that occupy two symbols but overlap by one

criteria. As a special case, we mtroduce acl_ass of diagonal S'gnalssymbol. We wish to employ such an overlapping differential
where only one antenna is active at any time, and demonstrate - .
scheme withM/ > 1 transmitter antennas.

how these signals may be used to achieve full transmitter diversity : ] ) .
and low probability of error. As our starting point, we use constellationsofx A uni-

tary space—time signals proposed in [3] for piecewise-constant
fading. Themth column of any signal contains the signal trans-
mitted on antenna: as a function of time. Intuitive and theo-
retical arguments in [5] and [3] show that unitary space—time
. INTRODUCTION signals are not only simple to demodulate, but also attain ca-

ECENT advances in communicating across multiple-aR&city when used in conjunction with coding in a multiple-an-

Rtenna wireless communication links show that these linkg@hna Rayleigh fading channel when eitt¥r>> M or the
can support very high data rates with low error probabilitie§ignal-to-noise ratio (SNR) is reasonably large dhd M.
especially when the wireless channel response is known at thé\S an extension of single-antenna DPSK, we show that there
receiver [1], [2]. However, the assumption that the channel i a simple and general framework to differentially overlap the
known is questionable in a rapidly changing mobile envirofnultiple-antenna unitary space—time signals that allows them to
ment, or when multiple transmitter antennas are employed. g used for continuous fading. Fof transmitter antennas, we
[3], a new class of signals callahitary space—timsignals is assume thai” = 2 and design thd" x M matrix signals
proposed that is well tailored for Rayleigh flat-fading channef® that they may be overlapped in time hf/symbols. For ex-
where neither the transmitter nor the receiver knows the fadig'Ple, if the fading is constant in blocks of, for example, ten
coefficients. In [4], a systematic approach to designing unita mbols (often a reasonable assumption), this allows us to use
space—time signals is presented. The unitary space—time sig {ferential modulation for at least five transmitter antennas.
are suited particularly well to piecewise-constant fading models.We also show how our differential framework allows us to
In this note, we show how to modify these signals to work wheRtimately connect signal design for unknown channels to de-
the fading changes continuously. The modified signals, whi§#gn for channels that are known at the receiver [6], [7]. Using
we denotalifferential unitary space—time modulaticare easily @ few simple assumptions, we are led naturally to constellations
implemented and achieve full-antenna diversity. of matrices that form groups, and eventually to constellations

Differential phase-shift keying (DPSK) has long been uséf So-calleddiagonalsignals, where at any given time only one
in single-antenna unknown-channel links when the chanridtenna is active. The diagonal signals fully utilize the trans-
has a phase response that is approximately constant from BH&er antenna diversity and can be optimized to achieve low
time sample to the next. Differential modulation encodes t/g&ror probability across a Rayleigh flat-fading channel. Several
transmitted information into phase differences from symbol g@@mples and performance simulations are given.
symbol. The receiver decodes the information in the current
symbol by comparing its phase to the phase of the previous [I. MULTIPLE ANTENNAS IN UNKNOWN RAYLEIGH
symbol. DPSK is widely used because many continuously FLAT FADING

fading channels change little between successive time sample?h this section, we present the channel model and summarize

In fact, many continuously fading channels are approximateé\éme known results for a multiple-antenna communication link
constant for a time interval’ often much larger than two ; P

in Rayleigh flat fading. We first need to set some notation.
samples.

Index Terms—Fading channels, multi-element antenna arrays,
receiver diversity, transmitter diversity, wireless communications.
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transpose of a vector or matrix. The Frobenius normBfai/
matrix A = {a,} is given by

| Al|? = tr(ATA) = tr(AAT) = Z Z |t
t=1 m=1
min(M,T)
= Z O—rn(A)Q (1)
m=1

wheres,,,(A) is themth singular value ofd.

B. Rayleigh Flat-Fading Channel Model
Consider a communication link comprising transmitter

antennas an@v receiver antennas that operates in a Rayleighe 7 x M matrices®, obey<1>$<1>0 = -
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whereX is theT” x N complex matrix of received signals,,,

S is theT x M matrix of transmitted signals;,,, H is the
M x N matrix of Rayleigh fading coefficients,,,,, (assumed
time-invariant within the block), an#’ is the7” x N matrix of
additive receiver noisey,, . In this notation, thel columns of
S represent the signals sent on thetransmitter antennas as
functions of time.

C. Unitary Space-Time Modulation

We now consider how to choose a constellatiod.cfignals
So,...,51_1, each &I’ x M matrix, to transmit data across
this multi-antenna wireless channel. We use unitary space—time
signalsSy = /T/M®o,...,Sp-1 = VT/M®_1, where
= (I)TL—I(I)L—l =

flat-fading environment. Each receiver antenna responds to eg¢h The normalization /T /M ensures that the matrix-signals
transmitter antenna through a statistically independent fadisgtisfy the energy constraint (3).

coefficient. The received signals are corrupted by additive noiseror a piecewise-constant fading channel, it is argued in [5]
that is statistically independent among tNereceiver antennas and [3] that the capacity-achieving distribution for reasonably

and the symbol periods. We use complex baseband notatiptge 7" or p is 5 =

VT/M®, where®'® = I, and® is

at time ¢ we transmit the complex symbols,,, on antennas jsotropically distributed. Becaus| &, = I, we are implic-

m = 1,..., M, and we receive,,, on receiver antennas =
.,N. The action of the channel is modeled by

M
= \/ﬁ Z htrnnstrn + Win,

m=1

t=0,1,...;

n=1 N.

)

PR

Hereh,,.., is the complex-valued fading coefficient between the
mth transmitter antenna and thgh receiver antenna at time

itly assuming that\/ < T7; as shown in [5], this assumption is
not restrictive because there is no gain in capacity by making
M >T.

Itis also shown in [3] that the maximum-likelihood demodu-
lator for a constellation of unitary space—time signals is a matrix
noncoherent correlation receiver
| X 2|

(I)ml = arg (5)

P=%o,..., -1

t. The fading coefficients are assumed to be independent withd that the two-signal probability of mistakirty for S, or

respect tom andn (but not¢), and areCA(0, 1)-distributed

(Rayleigh amplitude, uniform phase). The additive noise at time
t and receiver antennais denotedw,,,, and is independently,

identically distributed” A/(0, 1), with respect to both and .
The realizations ofiyy, m = 1,..., M, n = 1,..., N, are

known neither to the transmitter nor the receiver. The trans-

mitted symbols are normalized to obey

M
E Z |3trn|2 =1

m=1

®)

vice versa is (see [3, Appendix B])

- _/ w2+1/4 nH
(pT/M) (1 - d?@’nl) (w2 + 1/4)

1+ pT'/M

1+ (6)

wherel > dgp1 > -+ > dgeny > 0 are the singular values of
the M x M correlation matrix®| @, (degrm = 0 (P 0p)).
The pairwise probability of erraP. decreases as awy,,, de-

whereE denotes expectation. Equations (2) and (3) ensure ti§§¢ases, and has Chernoff upper bound

p is the expected SNR at each receiver antenna, independently
of the number of transmitter antenns Equivalently, the total

transmitted power does not dependih

S

wl»—‘

T/MP (1= )]
p — “m
414 pT /M) ] -

We assume that the fading coefficients change continuously

according to a model such as Jakes’ [8]. While the exact modar the noncoherent receiver, the pairwise probability of error
for the continuous fading is unimportant, we require the fadirig /owest when the two matrix-valued signals are as orthogonal
coefficients to be approximately constant for overlapping blocis Possible, and is highest when the signals are as parallel as
of T > 2 symbol periods. We have some freedom to chabse Possible. Hence, the probability of error is lowest widgn, =
but it generally can be no larger than the approximate coherence= de'ar = 0 and highest whed,yy = -+ = deys = 1.
time (in symbols) of the fading process. We obtaindyy = -+ - = deerar = 0 when the columns of, are

In one block of7” successive symbols the time index of thall orthogonal to all the columns &f,.. The ideal constellation
fading coefficients can be dropped, and sent and received sfg- - - - » 51 therefore has all the columns 8f orthogonal to

nals can be combined intB-vectors. Equation (2) can then bedll the columns of5y for / # £ =0,..., L — 1. However, be-
written compactly as cause the columns of eadh are within themselves orthogonal
to one another, all the pairwisg, 1, ..., dg s cannot all be
made zero ifL. > T/M.

X=pSH+W @)
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In general, we strive to build constellations which make th&ise error) is invariant to the following two types of signal trans-
pairwise probability of erroP. between any two signal and formations: 1) left-multiplication by a commdh x 7" unitary
Ser as small as possible. Optimizing the exact probability ehatrix, ®, — ¥®,, £ = 0,..., L — 1, and 2) right-multiplica-
error (6) or its Chernoff upper bound (7) is awkward becausien by individualA/ x M unitary matrices®, — &, Ty, £ =
they depend on the SNR Rather than picking a particular 0, ..., L — 1. We can intuitively understand these transforma-
we design constellations that work well for all sufficiently largeéions by viewing the left-multiplication as a simultaneous per-
o, Where the Chernoff upper bound SnpandsS,: depends dom- mutation in time of all the signals, and the individual right-mul-

inantly on the product tiplications as permutations of the antennas. The ordering of the
antennas is immaterial because all of the antennas are statisti-
M .
2 cally equivalent (see [3, Sec. 6.2]).
H (1 - d[[/,rn) .
m=1

[Il. STANDARD SINGLE-ANTENNA DIFFERENTIAL
As shownin[9, Sec. 12.4.3], one can thinkd#®f ,,, as the cosine MODULATION
of the principal angl®,,,, between the subspaces spanned by . , ) . .
the columns ofb; and®,.. The above expression can therefore " thiS Section, we give a short review of standard single-an-
be interpreted as the product of the squares of the sines of th enna DPSK [10], [11]. While we do not offer any new material

principal angles. To obtain a quantity that can be compared f&"€: We present DPSK in an unusual framework that ultimately

different M, we define(,,s as the geometric mean of the sine§nakes our trans_it_ion to multiple antennas easier.
of them principal angles DPSK is traditionally used when the channel changes the

phase of the symbol in an unknown, but consistent or slowly

M M (1/2M) varying way. The data information is sent in the difference of
Coor = H sin(fgpr )M = [H (1- dgé,m)] the phases of two consecutive symbols. For a data rate of
m=1 m=1 bits/channel use, we nedd= 2% symbols; the most common

. (8) techniques use symbols that drth roots of unity
Because) < dyy, < 1, we haved < (4 < 1, and in par-

ticular, if ;¢ is small the pairwise probability of error is large, p = 2L £=0,...,L—1. (11)
and if  is large the probability of error is small. Define now
the diversity product’ as Suppose we want to send a data sequence of integers
21, 22,... With z; € {0,..., L — 1}. The transmitter sends the
(= oce L Ceer (9) symbol streansy, s», ...
S0

In this paper, we choose constellations that maximize the di-
versity product. In particular, any constellation with nonzero zl , Wheres; = ¢, 515t =1,2,... (s9=1).
diversity product is said to have full transmitter diversity. 2

In [4], constellations are chosen that minimizehere

M (In the matrices and sequences shown in this paper, we always
Z d?, . (10) represent the time axis vertically.) The initial symbgl = 1
1 does not carry any information and can be thought of as a

] _ training symbol. The received data, =2, . . . are processed by
We have0 < 6 < 1, and by (7), smalb implies small proba- computing the differential phases

bility of error. For smalldg,,,

6

—  max 1 1
T 7 = —_—
0<teb2r—1 \/—M”‘szbé | i

LM 6, = argxy_{ x4, t=1,2,...
2 2 4
Cr =1— M Z igrm + O (dim) which are quantized to form an estimate of the integer sequence
m=1
1 5 —
=1— MH@Z,@éHQ_'_O(dZLé,nl) . Zy = |_9tL/(27r)+1/2J InOdL, t—172, . (12)

The received and transmitted symbols are related by the equa-

Thus,¢? ~ 1—6% and smalb in general implies largé. We find tion

that maximizing the diversity produgtto be more useful than

minimizing 6 because.min.imiz.ing does not guarantee full di- 2y = /physi +wy, t=0,1,....

versity. Note that maximizing is fundamentally different from

maximizing Euclidean distance; two signals that have large EThis is the single-antenna version of the model (2), witgris

clidean distance can have small diversity prodiudh fact, di- the complex valued fading coefficient which is either constant

ametrically opposite signalsy, = —S, have(, = 0. or varies slowly witht. There are two sources of possible errors
In constructing a constellation of signals, we note that tHé; # z;): the additive noise and time-variations in the phase

probability of error of the entire constellation (not just the paimf the fading coefficient. The demodulation rule (12) does not
N . _ _ _ depend on earlier demodulation decisions, but only on the re-
The original March 1999 version of this paper defingd: as the square . . .

of its current definition. However, the current definition is more amenable E)e'ved Symb‘)l&t—l andz,; demodulation errors therefore do

interpretation, especially when the channel is known. not propagate.
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There is a slightly different way to look at DPSK modulation [ 1 ] [ 1 J [ 1 }
and demodulation that fits into our multiple-antenna model (4) Pz Py P23

with A/ = N = 1. Since DPSK demodulation requires two

successive symbols, we consider the transmitted signals as oc- I

cupying overlapping intervals of length = 2 and consider -

modulation and demodulation using the maximum-likelihood o | — [ Pyo ]

receiver given in Section Il. One can view the signal constel- 51 O

lation as containing two-dimensional vectors of the type
82

1 [ } 1 |:62m‘é(1)/L:|
¢, = — (€9) = — . , 83
4 \/5 |:(P[(2) \/5 eQﬂ'zé(Q)/L

=0, ... L—1. (13)

Pys

P :l
Py2 [ Py2 :l

(Recall in Section II-C that the transmitted sigiwalis ®, mul-  Fig. 1. Schematic representation of differential phase modulation. Along the
inli / _ i i op, from left to right, are the symbol$ .,]? one wants to send. These are
t||p||ed. by v T/Md \/hi) Thﬁ'fsgr']als fo;mif‘n eqUIYaé?ncetmultiplied byy,, , sothatthey can overlép, as shown diagonally downward.
(?aSS. Invariant under p 'ase shifts; 1®¢,ande _CI)Z aré INdIS- - Tne gverlapped signals are then transmitied= ¢,,_) on the channel.
tinguishable to the receiver for &l A phase shift can be seen

as a right-multiplication by the ¥ 1 unitary matrixe??, which
does not change the constellation (see the last paragraph of

%éle termz;_, 2, computes the phase difference between suc-
tion 1I-C). Therefore, one has a canonical representation

Ssive received symbols, and maximizjpg + =;_, x| finds
the ¢, whose phase matches this difference most closely.

o, — [ 1 } (14)
¢= V2 | e IV. MULTIPLE-ANTENNA DIFFERENTIAL MODULATION

The previous section shows that standard differential mod-
ulation effectively uses a block of length 2 that overlaps by
8ne symbol, where one symbol acts as a reference for the next.

cesses the signal vectdg by rotating®, untl its first symbol Information is delivered in the phase difference between sym-

equals the sympol previously sent. The transmitter then S€Gs. When we hava/ transmitter antennas, we need a block
only the (normalized) second symbol of the rotatedthus rep- f M x M spacetime symbols to act as a reference for the

resenting®, by only one sent symbol. The receiver is aware C{%

whereyy, is given in (11).
Effectively, to generate a DPSK signal, the transmitter prepr

; ) . e>1t block. Hence, we consider signals of st2d x M that
this preprocessing and demodulates the current received sym Q overlap byM samples, and effectively deliver information
by combining it with the previous received symbol to form the matrix quotient of tr,le two blocks
two-symbol vector again. More formally, the transmitter com- '

putes the cumulative sum A. Signal Requirements for Differential Modulation

v = (1—1 + z) mod L, t=1,2,...; withyy =0. With multiple antennas, we accomplish differential modula-
tion by overlapping th& x M matrix signalsb, by T'/2 sym-

The very first signal sent il ¢.,]" = [py, ¢u]*, and we bols. We therefore choose = 2M/. We now explore the struc-
now wish to send the signél ¢.,]7". Instead of sending both ture thatd,, ..., ®_; must have to permit overlapping. Using
components of this signal, we rotate this signal to another @-otation similar to (13), we let each sigrdal have the form
ement of its equivalence class, obtained by multiplying by the

_ T _ T 1 |V
SC&'aﬂpyl = Pz namely[‘)@zl Pz <Pz2] - [‘Pyl 90y2] . The (I)é = = |: :| 3 £ = 07 ey L-1
transmitter then sends ony,,. Fig. 1 schematically displays V2 [ Ve

differential modulation. _ . ~ whereV,; andV;, are, for the moment, arbitrad/ x M com-
The receiver now groups received symbols in (overlapplng)ex matrices. Becauseb}lu — I, it follows that
vectors of length two

ViV + ViVie = 21y (15)

X — [‘/Etl:|
Tt In Section II-C, itis shown thab, and®,Y,, £ =0,...,L—1,
re indistinguishable for arbitrary unitafy x A/ matricesY.
help overlap the signals in a fashion similar to Section IlI,
we therefore have the freedom to “preprocess” each sigpal
N ) X to be sent by right-multiplying by a unitary matrix so that its
<t Jml — d d (b X . . . .
(Z)m = arg z=53}§—1| el first M x M matrix block equals the second matrix block of
. . . . the previously (also possibly preprocessed) sent symbol, for ex-
This corresponds to DPSK demodulation given in (12) becau&ﬁple@é, (see the rules for signal manipulation at the end of

Section II-C). After®, is preprocessed, because its first block

and computes the noncoherent maximum-likelihood demodu
tion according to (5)

arg max |®;X| = arg max |Ti—1 + @) 4]

2The /2 normalization may seem odd, but it ultimately allows us to choose

_ N *
= argmax le + z3_1 4] the V' matrices to be unitary whil® &, = T,,.
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equals the second block of the signal already sent, we then need @ 22, Pz
to send only its (normalized) second block. For this overlapping N I I
to succeed, we therefore require that a unitary transformation Vi [ Vi } [ Vi ]
exist between the first block @, and the second block df,; ) i
i.e., for any? and#’, the equation |
Vo Yoo = Vi (16) So ] — | Im
St | — [ V| Va
should have a solution for some unltaTyf_é. _ S [ Vi,Var ] Vi, Vi, ]
The most general set &f; andV,» matrices that satisfy (15)
and (16) is described by Oswald in [12], where he shows that the S3 Vaa Vr Vi
best diversity produdf is, in general, obtained by choosihg '

andV;, to be unitary. We therefore restrict ourselves to this case. L

If Vi1 andV,» are unitary for all, then (15) holds trivially, and Fig.2. schematic representationdf-antenna differential modulation. Along
(16) has the unitary solutioif,, = Vé,QVé]L With this choice, the top, from left to right, are the symbofs._ one wants to send. These are

+ ight-multiplied by the previously transmitted block so that they can overlap,
becauseb, andq)[vél are |nd|st|ngU|shabIe at the receiver, Wés shown diagonally downward. The overlapped signals, which 6hey=

have a canonical representation V., S._1, are then transmitted on the channel. Compare Fig. 1, which shows the
overlapping scheme for standard single-antenna differential phase modulation.

&, = V2 [ v, } (A7) c. Differential Reception

With N receiver antennas, the demodulator receives a stream
whereV; = V@VJ]L is unitary. Without loss of generality, we

; Xo
can thus assume the following. e
Assumption 1:The signalgb, are of the form (17) wher¥&, !

is a unitary matrix.
Observe the formal similarity with (14).

%

whered’; is and x N matrix. Demodulation requires looking

at two successive matrices to form a matrix With= 2M rows

In standard single-antenna DPSK, Section Il shows that the ,
=%

B. Differential Transmission

equivalent®, signals can be thought of as two-dimensional vec- /{,‘1

tors whose first components are 1, and whose second compo- i

nents are used to form the transmitted signal. Similarly, in (1%\e assume that the fading coefficients are constant across the
the signalsd, ..., ®;_; are?’x M matrices whose first halves 7" = 2\ time samples represented in the rows¥afThen the
arel,s, and whose second halves are used to form the transmislationship with the sent stream is

sion matrix in ourM -antenna differential modulation scheme.

Therefore, the channel is used in blocksiéf= 7/2 symbols. X1 =/pSr1H+ Wiy (19)
Let us use to index blocks of\f consecutive symbols; the run- Xy =/pS:H + W, (20)
mng time index of channel uses is thee- 7M + m — 1 with

= 1,..., M. A transmission data rate @ bits/channel use WhereW: is anM x N matrix of additive independedt\'(0, 1)

requires a consteIIann with = 28M signals; thug. distinct receiver noise. The maximum-likelihood demodulator (5) is

V, matrices are needed. We again have an integer data sequence
21722,...With 2 € {0,...,L— 1}

Fig. 2 schematically displays multiple-antenna differential =arg max ||X_; +VJXT|| (21)
modulation. Here, thé4 columns of eaclks, (which areM x £=0,...,.L—1
M matrices) represent what is transmitted on ddeantennas | here the norm is as defined in ).

as functions of time fO'M symbols. The first transmission is  gpstituting the fundamental differential transmitter equation
VIT/M®, = \/§<I>Z1 ; that is, an |dent_|ty matrixSy = Iy is S. = V._S,_, into (20) and applying (19) yield
sent, followed byS; = V.,. Next, we wish to send/2®..,. To
make the identity block ob., overlap with the last sent block A=V, A +W, =V, W

V.., we postmultiply®.., by V., . The second block ab_, then ) ) ) o )
becomed’., V., and, henceS, = V., V., = V.,S;. Ingeneral, Because the noise matrices are independent and statistically in-

the differential transmission scheme sends the matrices ~ Variant to multiplication by unitary matrices, we may write this
as

(3)m1 =arg _max o] x|

.....

S =V, S5, T=12.... (18) X, =V, X 1 +V2W. (22)

This is the fundamental differential transmission equationwhereWV. isanM x N matrix of additive independe6it\(0, 1)
Clearly, all the transmitted matriceks will be unitary. noise. This is théundamental differential receiver equation
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Remarkably, the matrix of fading coefficienfé does not that are as small as possible #r#£ £. If we view the identity
appear in the fundamental differential receiver equation (22)lock of the differential unitary space—time signal construction
In fact, formally, this equation shows that the sigial ap- of &, as training to learn the matrix chanrél, we may build
pears to be transmitted through a channel with fading resporiseas

’~—1, which isknownto the receiver, and corrupted by noise 177
with twice the variance. This corresponds to the well-known re- Dy = — [ M}
sult that standard single-antenna differential modulation suffers V2 [ Y
from approximately a 3-dB performance loss in effective SNi®here I, are unitary matrices taken from a constellation of
when the channel is unknown versus when it is known. known-channel signals. Then

f _ f
V. CONNECTION BETWEEN UNKNOWN AND KNOWN CHANNEL D, 0 = (Ip + ¥, ¥)/2,

Equation (22) demonstrates that our multiple-antenna differhich implies that
ential setting appears to turn the original unknown-channel com-

o ) ) 1
munication problem into a known channel problem. In this sec- o-fn(@;@g) = ZO’Q"(IM + \IJZ,\IJK)
tion, we explore this connection further. We first review some 1 ; ;
facts about the known channel. = Z)\m(z[]\l + W,V + W W,y) (27)
A. Known Channel where,,,(-) is themth eigenvalue of the matrik). Hence

We consider signals that afé x M matrices. The action of

1
2
the channel is 1— o5 (0] 0) = Z)‘"‘(HM SRR AT

1
X, = oS H + W, 23) = Jom{In = VL)
whereH is known to the receiver. We assume that the constel- = io—fn(\lfé/ —Wy). (28)
lation consists ofl. = 2% signals¥, that are unitary. The
transmission matrix is then Equation (28) says that minimizing the singular values of the
correlations of the unknown-channel signals is equivalent to
S;=V,_. maximizing the singular values of the differences of the known-

channel signals. We can now wrifg: in (8) as

BecauseH is known at the receiver, the maximum-likelihood "

demodulator is the coherent receiver (1/2M)
o =11 (1 - Ufn,(szf‘bé))
2 — - : _ m=1
(Z‘r)ml = arg Z:O,IH,L—I ||X‘r \/ﬁ\PZHH (24) . M
_ = L 1/M
and has pairwise probability of error Chernoff upper bound 9 1__[1 Tm(Per = Vo)
given by [6], [3] e
u N = 5 ldet(Te — p)|HM, (29)
1 T -
Pes 2 H {1 + mam(qu’ = W) : (25) as argued in Section II-C, larggé, equates to small pairwise-
m=1 error probability whem is large and the channel is unknown. On
Hence, good constellations, , . .., ¥; have singular values the other hand, (26) states that lafdes (¥, — ¥,)| also equates
to small pairwise-error probability when the channel is known.
om (Ve — ¥y), m=1,....M Thus, a constellation of good known-channel matrix signals can

h | ible i | h be augmented with an identity matrix block to form a constel-
that argI.aS farge as possibie ,r7é EI For harge SNR, the lation of good unknown-channel matrix signals. Conversely, a
probability of error depends dominantly on the product constellation of good unknown-channel signals of the form (17)

M hasV; matrices that form a constellation of good known-channel
H om(VUp — Up) = |det(V, — Uy ). (26) signals. Intuitively, the identity block can be viewed as training
m=1 from which the channel is learned before the second block car-
In particular, a larger product equates to a smaller error prok%rxl-ng. data is sent. Differential modulatl'on, C.)f course, lets the
bility ' raining and data_ blocks overlap. The diversity product for dif-
) ferential modulation can now be written as
B. Connection Between Signal Designs ¢ = 1 min_ |det(Vy — V[/)|1/M. (30)
Recall in Section 1I-C that the unknown-channel sigribls 2 0st<t'sL-1
areT x M matrices obeying®, = I, and that a good con- By comparing the Chernoff bounds (7) and (25), and using (26),
stellation®,, ..., &, has singular values we see from the factar/2 in (29) that the performance advan-

; tage for knowing versus not knowing the channel is approxi-
detrm = Om ((I)[/(I)[) ; m=1,...,M mately 3 dB in SNR.



HOCHWALD AND SWELDENS: DIFFERENTIAL UNITARY SPACE-TIME MODULATION 2047

C. Connection Between Demodulation Strategies Identity Element:In Section II-C, it is mentioned that
every signal®, in the constellation may be premultiplied by
the same fixedl” x 1" unitary matrix without changing the
X, =V, X +V2WL error performance of the constellation. The first element of the

. constellation is
As we have remarkedt-_; can be viewed as a known channel

The fundamental differential receiver equation (22) is

through which the signal matr#. _ is sent. We may demodulate oy = = ﬁy} .
2z, using (24) to obtain v2 LW
L ) PERmp We now premultiply every member of the constellation with the
Fr=atg,_gmno [ = WX | unitary matrix
—_ N : )’i‘ b )T >
=arg _ Ijrgr}l_ltr(ATAT +& A [éM (%/A]{}
— XWX - ATy M- Yo
—arg  max tr(XLl\IfZXT FATWA, ). Thls.glve.s an eq_uwalent cons_tellat|on whose first glement has
£=0,...,L—1 two identity matrices. Thus, without loss of generality, we can

@Ways assume a constellation with = I, € V.
Inverse Element:We show that because we impose in-
ternal composition, any element, sky, automatically has an

This estimate is exactly the maximum-likelihood demodulat
for the unknown channel (21)

(3)m1 = arg  max || X1+ ‘PZXTH inverse inV. SinceV comprises unitary matrices, the matrix
=0,....L-1 productsV; Vp, Vi Vi, ..., V1 Vi1 are all distinct, and are all
=arg max ltr(z‘t’j_ltlf}/‘\; + ATV, again inV; they consequently form a permutation of the ele-

ments ofV. In particular, there is an indexsuch thatV, V, =
These connections imply that the differential scheme cafy = 1. Hence,Vl_1 =V,
use existing constellations and demodulation methods from theDf the four requirements that a group must satisfy, we have
known channel such as, for example, the orthogonal desigt®wn that imposing internal composition automatically im-
of [7]. poses the remaining three.
Assumption 2: The set of unitary matrices forms a group.
VI. GROUP CONSTELLATIONS Note that sincé’ is a finite group of sizd., its elements must

i L — _
Let V be the set of distinct unitary matrices all be Lth roots of unity:V* = Iy for £=0,..., L — 1.

B. Advantages of Group Constellations
V:{V()?"'?VLfl}' g P

Differential modulation as in Section IV-B can now be
We have not yet imposed any structure on theseh this sec-  written more succinctly by letting
tion, we assume that forms a group. We show how this as-

sumption simplifies the transmission scheme and the constella- Yr = 20 D Yr1, T=12...5 =0 (32
tion design. <o that
A. Group Conditions V. =V V,._..

In order for a seV’ to form a group under matrix multiplica- ) o
tion, we need to impose four conditions: internal compositiod N€ transmitted matrix is
associativity, existence of an identity element, and existence of S -V —-V. & f—1.9
an inverse element for each element. We briefly discuss these T T el T
conditions and show that imposing internal composition esserhus, unlike the general case, wherns a group each trans-
tially imposes the remaining three. mitted matrix is an element of.

Internal Composition:In standard single-antenna scalar One advantage of a group constellation is that the transmitter
DPSK withT" = 2 (reviewed in Section IIl), the product of never has to explicitly multiply matrices, but only needs to com-
any two symbolsgy, and ¢, is another symbol. In a similar pute (32) using a lookup table. Another advantage is simplified
fashion, we impose an internal composition rulelarFor any design. Good constellations are often found by searching over
¢,¢ €{0,...,L — 1}, itis required that large candidate sets. Computitidor a general candidate con-

stellation requires checkind. — 1)L /2 correlations of the form
VeV = Vi (31)

1
T _ i
for someé” € {0,...,L — 1}. We may define an equivalent Ly e = §(IM + Ve Vo). (33)

(isomorphic) additive operation on the indices as However, when) is a group it suffices to check only — 1

SyrNa correlations; in particular, one may check the singular values
of ®l®, = (1/2)(In + Vi). Fig. 3 schematically displays
Associativity: Follows immediately from the associativity multiple-antenna differential modulation when the constellation
of matrix multiplication. forms a group.
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[ I ] [ I ] [ I ] Hence, the transmitter does not even need a lookup table to com-
Va Ver Vas pute the differential transmission scheme. The matgixs di-
agonal and can be written as

ot (2n /L) uy 0

_ 1 Iv .
So Yo v, = 0 . 0 7
S| — L Va Viu 0 s et@r/L)un
Ss Via [Vyzj| um €40,...,L—1} m=1,...,M.
Ss Vis With this cyclic construction, th2A x M signals®, are given
by
_af
Fig. 3. Schematic representation/af-antenna differential modulation when ¢, =00 (34)

the constellation forms a group. Along the top, from left to right, are the symbols
one wants to send. These are right-multiplied by the previously transmittaghere

blockV,__, so that they can overlap, as shown diagonally downward. Unlike
in Fig. 2, the transmitted signals are always members of the constellation, just Iy O 1 Iy
as in standard scalar DPSK. 0= [OM Vi } and ¢q = E [IM} .
C. Abelian Group Constellations The ¢th signal in the constellation therefore has the form
We now impose the requirement that the product of any two r 1 0 ... 7
matrices ofy’ commutes. 0 . 0
Assumption 3:The groupV’ is Abelian. 1 0 ) 1
Imposing commutativity has some appealing consequences. @, = —= | or/1)ue 0 ,
SinceVy, ..., Vr_; are unitary, they are normal matrices and V2 e )
can be written ad; = P[A[PZ, where the matrix of eigen- 0 -0
vectorsP; obeysP, P, = P,P| = I, andA, is a matrix of L 0 et (r/Lyuat |
eigenvalues of/; [13]. But becausé/, ..., V;_; commute, £=0,....L-1. (39

they share a common set of elgenvectBrs‘lér Py=P = . . . . .
. . These signals have a very simple interpretation. At any time,
-+ = Pr_; (see [13, p. 420]). Consequently, this constellation . . : " .
k ; . . . only one transmitter antenna is active and transmitting either a
of matrices can be diagonalized into a new constellation com-

prising diagonal matrices of eigenvalues using one filat reference symbol (which in differential modulation is actually

dependent similarity transfori¥, — PV, P. The similarity the previously sent symbol) or a phase-shifted symbol. Thus,

transform does not effect the error performance of the consteIng\IEhln therth block, antennan transmits attime = 7 + m

tion because it is equivalent to postmultiplying every sighal a symbol that is differentially phase-shifted & /L )u,, ¢ rel-

by the unitaryM x M matrix P and premultiplyingd, by the ative to its previous transmission. The value/aoé deter_mmed
. . by the data. It is important to note that the phase shifts are po-
unitary 2M x 2M matrix

tentially different for each antenna. Whét# = 1, the signals
Pl 0y reduce to standard DPSK.
[ O P71 } Signal matriced/; with low pairwise probability of demodu-
lation error form correlations (33) with singular values that are
Thus, assuming’ is Abelian is equivalent to assuming that albmall for all#’ # ¢. The singular values dfl /2)(1,; + Vi) are
of its elements are diagonal matrices. If all theare diagonal,
then the signal®, consist of two diagonal blocks (the first of doem = (1/2)[1 4 /27 umt/L)
which is identity). This implies that at any given time only one = /1/2 4 (1/2) cos(2mu,, £/ L)
antenna is active. We call these signdisgonal

. . . . = m L .
1) Cyclic Construction: A simple way to build the commu- | cos(wumt/L)| (36)
tative group)’ with I elements is to make it cyclic. TheW; is 115
of the form
M /M
Ve =V, {=0,...,L—1 Coe = H sin(wun /L) (37)
m=1
where the generator matrl% is anLth root of the unity. Addi- o _ _ _ _ _
tion on the indices Our maximin design requirement is to find, ..., u,, satis-
fying
g// — f@ gl
{U,l, N ,U,]w}
then becomes M /M
" =0+ ¥ (mod L). T <t =TT nglsm(wumﬁ/L)
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One can see that if;, ..., uy and L share a common factor, cedure: find theu,, ..., uy € {0,...,L — 1} that maximize
thenVy, ...,V _1 are notdistinct. Our maximin design requirethe diversity product
ment ensures that the signals are distinct. " M

2) Multicyclic Construction: In general, ifL is not prime, a . .
. . . L ! = min sin{mwu,,f/ L 38
finite Abelian group of sizd. may be written as a cross product ¢ £e{1,..,L—1} ngl (mumt/1) (38)

of cyclic groups [14, p. 109]. A corresponding signal construc- - . .
tion that is multi-index and systematic may be defined. Consid?Ne do not know of explicit solutions to this procedure, and we

r . .
a factorization ofL, given by t%erefore resort to exhaustive computer searches. We consider
only single-index cyclic constructions = 1. Candidates for

K the best set of; ,...,up € {0,...,L — 1} are generated ex-
L= H L. haustively, tested for performance by computing the diversity
k=1 product, and kept if they exceed the previously best candidate.
Using a multi-index notatio = (£1,4s,...,0x) with 0 < The search space can be reduced using the following rules.
4, < Ly, the group elements are given by a) Equation (38) does not changef,, is replaced by
K L — u,. We may therefore restrict our search to
V, = HA?' U € {0,...,L/2} (assumingL is even).
ol b) If w,, shares a factor withL then there is an

¢ e {1,...,L — 1} for which u,,f = O0(modL);
this implies that the diversity product is zero. Thus, we
can restrict the search tg,, that are relatively prime to

Here, Ay is a diagonal matrix with diagonal elements
Aem = exp(2miung,i/Li). The diagonal elements df; are
thusexp(icy,,) with

L.
K ¢) By Rule b), we may assume that is relatively prime to
Qe = 27 Z Ut/ L, m=1,....M L. But then there exists ansuch thatvu; = 1(mod L).

k=1 By multiplying us, ..., ups by this samexr, and using
and the singular values of the correlation matricesdage = Rule 3) above, we may assume that= 1.
11+ vem|/2 = |cos(am)|. d) In (38), the product fof andL — /¢ is the same; itis 1 for

When theL, are pairwise relatively prime, the group is ¢ = L/2 (assumingL is even). Thus, the minimum may

cyclic, otherwise it is multi-cyclic. For a multi-cyclic group, be taken ovef € {1,...,L/2 - 1}.

at least two of theL, share a factor; it therefore uses an Table | shows the results of our searches for constellations
alphabet with less theh elements. Thus, for any,, there are of L = 28 that maximize,. For comparison, we also include
two diagonal matrices with the sameth diagonal element. the values o8, but no attempt to minimiz&was made. Because
The difference between these two matrices therefore is zdyds a power of 2, only odé.,,, appear. Fo = 1 transmitter

in its mth column, its determinant is zero, and thfis= 0. antenna, the search naturally produces differential binary phase-
Multi-cyclic groups cannot have full diversity and we do noshift keying (PSK)(R = 1) and differential quadrature PSK

consider them any further. (R = 2). Also included is an upper bound on the block-error
rate obtained by summing ovér£ ¢ the Chernoff bounds (7)
VIl. DESIGN AND PERFORMANCE OFCONSTELLATIONS with p = 20 dB.
Comments:

A. Constellation Design o L
g 1) We choose to maximiz¢in (38) rather than minimizé

In this section, we give the performance of constellations of i (10) because, for example, there are o= 2, R = 1
diagonal signals designed fad = 1,...,5 transmitter an- constellations that have the sambut very different’s
tennas. In the search for good constellations, we may employ g performances. The poorer performing constellation
some simplifying rules as follows, which cause no loss of gen- 55, — [1 2], for which$ = 0.7071, ¢ = 0, and union

erality, regardless of the performance criterion used. boundP, < 1.1e—2 atp = 20 dB. The better performing
1) Because every antenna is statistically equivalent to every  constellation has, = [1 1] (see also Table 1), for which
other, we may impose the ordering < u> < -+ < upy. § = 0.7071, ¢ = 0.7071, and union bound, < 1.7¢—3.

2) We may assume that,, > 0, because ifs,,, = 0, then 2) We did not search for constellations with more tB&’
the mth antenna can only transmit the symbol 1 and is  signals from which we would employ a subset.
effectively rendered inoperative.

3) The constellations generated by;,...,uy; and C. Constellation Performance

aui,...,...,auy are identical for alla relatively |y our models, we assume that the channel remains approxi-
prime to L. From (34), we see that multiplication bymately constant fof” = 20/ symbols. In real communication
a simply reorders the signals in increasing(mod L)  systems, our model is therefore accurate when the coherence
instead of increasing. time of the fading process between the two terminals is at least
this long. In our simulations, the fading is assumed to be in-
B. Search Method dependent between antennas but correlated in time according
In Section IV, we mention that constellations of differentialo Jakes’ model [8]. A typical physical scenario where such a
unitary space—time signals can be designed with a maximin proedel is appropriate is a base station antenna array communi-
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TABLE |
SYSTEMATIC ANTENNA CONSTELLATIONS FORM = 1,2,3,4, AND 5 TRANSMITTER ANTENNAS AND RATE R = 1,2 THAT MAXIMIZE THE DIVERSITY PRODUCT
¢ IN (9). THE NUMBER OF SIGNALS IN THE CONSTELLATION IS L = 2% AND é IS DEFINED IN (10). THE P. UPPERBOUND IS A UNION BOUND ON
BLOCK-ERRORRATE OBTAINED BY SUMMING OVER { # ¢’ THE CHERNOFFBOUNDS (7) WITH p = 20 dB

M R L é ¢ juruz --- unm) P, union bound (p = 20 dB)
1 1 2 0 1 [1] (standard DBPSK) 9.9¢-3
2 1 4 07071 07071 ([11] 1.7e-3
3 1 8 0.7860 0.5134 [113} 4.6¢-4
4 1 16 07071 05453 [1357] 6.7¢e-5
5 1 32 0.8179 04095 [157911] 3.0e-5
1 2 4 07071 07071 [1] (standard DQPSK) 4.9e-2
2 2 16 09239 03826 [17] 3.4e-2
3 2 64 09389 0.2765 [11127) 2.6e-2
4 2 256 09335 0.2208 [12597107] 1.7e-2
5 2 1024 09389 0.1999 [1157283415487] 9.1e-3

10° . . . | . r

Bit probability of error

10-7 1 1 I I 1 ‘ -
0 5 10 15 20 25 30 35

SNR (dB)

Fig. 4. Performance o/ = 1,2.3,4, andb transmitter antennas and = 1 receiver antenna as a function of SNRThe channel has unknown Rayleigh
fading that is changing continuously according to Jakes’ model with pararfiefey = 0.0025. The data rate i$2 = 1, and the signal constellations used are
given in Table I.

cating with a mobile. If we assume that the mobile is travelinlg)encevlL/2 =—Iy and@l@HL/Q = 0. Hence, signals offset

at approximately 25 m/s (55 mi/h) and operating at 900 MHby L /2 are maximally separated and are given complementary
the Doppler shift is approximatelf, = 75 Hz. The Jakes cor- bit assignments.
relation between two fading coefficienidime samples apart Figs. 4 and 5 show the bit-error performance fof =
is Jo(27 fpTst), whereT, is the sampling period and, is the 1,2.3,4, and 5 transmitter antennas and one receiver an-
zeroth-order Bessel function of the first kind. We assume thigihna for R = 1 and R = 2. We see that the differential
T, = 1/30 000 soT; fp = 0.0025. The Jakes correlation func-unitary space-time signals are especially effective at high
tion has its first zero at~ 153. This means that fading samplesSNR. This is not inconsistent with claims in [3] that unitary
separated by much less than 153 symbols;isay 15 symbols, space-time signals are best suited for high SNR. We also
are approximately equal, and our model is accuratéfef 15 note that the block-error union bounds presented in Table |
orM < 7. give rough indications of the bit-error performances shown
We suppose that binary data are to be transmitted, and inethe figures. Because the fading is continuous, the effects
therefore have to assign the bits to the constellation signals. @levariations in the fading coefficients should be more ap-
do not yet know how to make an effective gray-code type glarent with large blocklengtli”. Since? = 2M, the effects
assignment, but we observe that, in our simulatidns; 28"  equivalently should be apparent for largé. This perhaps
is always even. Thereforey, . .., uy; are all odd [see Rule 3)], explains the limited gain in performance faf = 5 over
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Bit probability of error

-6 1 1

1 1 1 1
0 5 10 15 20 25 30 35
SNR (dB)

Fig. 5. Performance aif = 1,2, 3,4, and5 transmitter antennas ad = 1 receiver antenna as a function of SI4RThe channel has unknown Rayleigh
fading that is changing continuously according to Jakes’ model with pararfiefer = 0.0025. The data rate i® = 2, and the signal constellations used are
given in Table I.

M =4 when R = 1, and the slight appearance of an erroexperimentally found this assumption to be fairly restrictive
floor at very high SNRs. and the performance of diagonal signal to degrade significantly
for ratesk > 2.
The general differential framework we have described is a
VIIl. CONCLUDING REMARKS natural extension of standard DPSK to more than one trans-
mitter antenna. It is flexible and can accommodate all rates and
An advantage of our diagonal signals (35) is their simplicitgny number of antennas. The framework allows broad classes
Because only one antenna transmits at any given time, Q§fQinitary matrix-valued signals to be chained together differen-
power amplifier can be switched among the antennas. But thigly; a class of diagonal signals was given as a simple special
amplifier must deliverd/-times the power it would otherwise case. Maximum-likelihood decoding was shown to be a simple
deliver if there were an array d¥/ amplifiers simultaneously matrix noncoherent receiver, and pairwise-error performance
driving the other antennas. Consequently, this amplifier neegjgs measured with a diversity product. It remains a rich open
to have a larger linear operating range than an amplifier arrgypblem to find other classes of group and nongroup high-rate

would. Amplifiers with a large linear range are often expensivgnstellations with large diversity products.
to design and build. It may therefore occasionally be desirable

to have allM antennas transmitting simultaneously at lower
power. In this case, we may transform the constellation by ACKNOWLEDGMENT
Vi — UTV,U, whereU is a unitary matrix such as a discrete
Fourier transform matrix. This transformation has the effect of The authors would like to thank R. Urbanke for several
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