Convolutional Codes

Communication and Coding Laboratory

Dept. of Electrical Engineering,
National Chung Hsing University

- Chapter 7: Convolutional Codes

1. Preview of convolutional codes
2. Shift register representation
3. Scalar generator matrix in the time domain
4. Impulse response of MIMO LTI system
5. Polynomial generator matrix in the frequency domain
6. State diagram, tree, and trellis
7. Construction of minimal trellis
8. The algebraic theory of convolutional codes
9. Free distance and path enumerator
10. Termination, truncation, tailbiting, and puncturing
11. Optimal decoding: Viterbi and BCJR decoding
12. Suboptimal decoding: sequential and threshold decoding

CC Lab, EE, NCHU

Reference

1. Lin, Error control coding: chapter 11, 12, and 13
2. Johannesson, Fundamentals of convolutional coding
3. Lee, Convolutional coding
4. Dholakis, Introduction to convolutional codes

Preview of Convolutional Codes

5. Adamek, Foundation of coding: chapter 14
6. Wicker, Error control systems for digital communication: chapter 11 and 12
7. Reed, Error Control doding for data networks: chapter 8
8. Blahut, Algebraic codes for data transmission: chapter 9

- Block codes and convolutional codes are two major class of codes for error correction.
- From a viewpoint, convolutional codes differ form block codes in that the encoder contains memory.
- For convolutional codes, the encoder outputs at any given time unit depend not only on the inputs at that time unit but also on some number of previous inputs:

$$
v_{t}=f\left(u_{t-m}, \cdots, u_{t-1}, u_{t}\right)
$$

where $v_{t} \in F_{2}^{n}$ and $u_{t} \in F_{2}^{k}$.

- A rate $R=\frac{k}{n}$ convolutional encoder with memory order m can be realized as a k-input, n-output linear sequential circuit with input memory m.
- Convolutional codes were first introduced by Elias in 1955.
- The information and codewords of convolutional codes are of infinite length, and therefore they are mostly referred to as information and code sequence.
- In practice, we have to truncate the convolutional codes by zero-biting, tailbiting, or puncturing.
- There are several methods to describe a convolutional codes.

1. Sequential circuit: shift register representation.
2. MIMO LTI system: impulse response encoder
3. Algebraic description: scalar G matrix in time domain
4. Algebraic description: polynomial G matrix in Z domain,
5. Combinatorial description: state diagram and trellis

Convolutional Codes

Summary

- We emphasize differences among the terms: code, generator matrix, and encoder.

1. Code: the set of all code sequences that can be created with a linear mapping.
2. Generator matrix: a rule for mapping information to code sequences.
3. Encoder: the realization of a generator matrix as a digital LTI system.

- For example, one convolutional code can be generated by several different generator matrices and each generator matrix can be realized by different encoder, e.g., controllable and observable encoders.
- $\cdots u(i-1) u(i) \cdots \longrightarrow$ Encoding $\longrightarrow \cdots c(i-1) c(i) \cdots$ $u(i)=\left(u_{1}(i), \ldots, u_{k}(i)\right), c(i)=\left(c_{1}(i), \ldots, c_{n}(i)\right)$
- $u(D)=\sum_{i} u(i) D^{i} \longrightarrow \mathrm{G}(\mathrm{D}) \longrightarrow c(D)=\sum_{i} c(i) D^{i}$ $c(D)=u(D) G(D)$
- There are two types of codes in general
- Block codes: $G(D)=G \Longrightarrow c(i)=u(i) G$
- Convolutional codes: $G(D)=G_{0}+G_{1} D+\cdots+G_{m} D^{m}$

$$
\Longrightarrow c(i)=u(i) G_{0}+u(i-1) G_{1}+\cdots u(i-m) G_{m}
$$

Figure 1: Encoder of block codes

Figure 2: Encoder of convolutional codes

> CC Lab, EE, NCHU

CC Lab, EE, NCHU

Convolutional Codes
u(i) G
c(i)
Figure 3: Encoder of block codes

- Use combinatorial logic to implement block codes.
- A information block $u(i)$ of length k at time i is mapped to a codeword $c(i)$ of length n at time i by a $k \times n$ generator matrix for each i, i.e., no memory.

$$
c(i)=u(i) \cdot G
$$

- We denote this linear block code by $C[n, k]$, usually, n and k are large.

Convolutional Codes

Figure 4: Encoder of convolutional codes

- Use sequential logic to implement convolutional codes.
- A information sequence u of infinite length is mapped to a codeword v of infinite length. In practice, we will output the convolutional codes by termination, truncation, or tailbiting.
- Assume we use feed forward encoder with memory m, then the codeword $c(i)$ of length n at time i is dependent on the current input $u(i)$ and previous m inputs, $u(i-1), \cdots, u(i-m)$.
- We need $m+1$ matrices $G_{0}, G_{1}, \cdots, G_{m}$ of size $k \times n$:

Relation between block and convolutional codes

- A Convolutional code maps information blocks of length k to code blocks of length n. This linear mapping contains memory, because the code block depends on m previous information blocks.
- In this sense, block codes are a special case of convolutional codes, i.e., convolutional codes without memory.
- We denote this (linear) convolutional code by $C[n, k, m]$, usually, n and k are small.
- In practical application, convolutional codes have code sequences of finite length. When looking at the finite generator matrix of the created code in time domain, we find that it has a special structure.
- Because the generator matrix of a block code with corresponding

CC Lab, Ee, NCHU

Convolutional Code

- Here, we assume that the initial values in the m memories are all set to zeros.
- For example, the scalar matrix shows that
$c(0)=u(0) G_{0}+u(-1) G_{1}+u(-2) G_{2}+\cdots+u(-m) G_{m}$

$$
=u(0) G_{0}
$$

since $u(-1)=u(-2)=\cdots u(-m)=0$

- Similarly

Impulse response of MIMO LTI systems
$c(1)=u(1) G_{0}+u(0) G_{1}+u(-1) G_{2}+\cdots+u(-m+1) G_{m}$ $=u(1) G_{0}+u(0) G_{1}$.

- In general, we have
$c(i)=u(i) G_{0}+u(i-1) G_{1}+u(i-2) G_{2}+\cdots+u(i-m) G_{m}$ $=u(i) \otimes G_{i}$.

G matrix of convolutional codes

CC Lab, EE, NCHU

Convolutional Codes

- From the scalar G matrix representation, we have

$$
\begin{aligned}
c(i) & =u(i) G_{0}+u(i-1) G_{1}+u(i-2) G_{2}+\cdots+u(i-m) G_{m} \\
& =u(i) \otimes G_{i}
\end{aligned}
$$

- This is the form of discrete time convolutional sum, i.e., the output $c(i)$ is the convolutional sum of input sequence $u(i)$ and the finite impulse response (FIR) $\left(G_{0}, \cdots, G_{m}\right)$.
- In the undergraduate course of signal and system, we deal with SISO.
- Here, we have MIMO LTI systems with k inputs and n outputs and thus we need $k \times n$ impulse responses
- Correspondingly, we can associate each $g_{i}^{(j)}$ with its Fourier transform $G_{i}^{(j)}(D)$ and form a $k \times n$ matrix $G(D)$ by

$$
G(D)=\left[G_{i}^{(j)}(D)\right]=G_{0}+G_{1} D+G_{2} D^{2}+\cdots+G_{m} D^{m}
$$

- This is the polynomial matrix representation of a convolutional code.
- The $k \times n$ matrix $g(l)$ consisting of impulse responses $g_{i}^{(j)}(l)$ and the $k \times n$ matrix $G(D)$ consisting of $G_{i}^{(j)}(D)$ form a Fourier pair.

$$
g_{i}^{(j)}=g_{i}^{(j)}(l), \quad 0 \leq l \leq m, \quad 1 \leq i \leq k, \text { and } 1 \leq j \leq n
$$

which can be obtained from $m+1$ matrices $\left\{G_{0}, \cdots, G_{M}\right\}$.

> CC Lab, EE, NCHU

LTI system representation

Example

A $(3,2)$ convolutional code with impulse response $g(l)$ and transfer function $G(D)$:

$$
\begin{gathered}
g(l)=\left(\begin{array}{lll}
110 & 111 & 100 \\
010 & 101 & 111
\end{array}\right) \\
G(D)=\left(\begin{array}{ccc}
1+D & 1+D+D^{2} & 1 \\
D & 1+D^{2} & 1+D+D^{2}
\end{array}\right)
\end{gathered}
$$

Let us use u_{i}, c_{i}, (instead of $\left.u(i), c(i)\right)$ to denote the information sequence, code sequence respectively, at time i.

- I.e., the infinite information and code sequence is

$$
\left\{\begin{array}{l}
u=u_{0} u_{1} u_{2} \cdots u_{i} \cdots \\
v=v_{0} v_{1} v_{2} \cdots v_{i} \cdots
\end{array}\right.
$$

- The u_{i} consists of k bits and v_{i} consists of n bits denoted by

$$
\left\{\begin{aligned}
u_{i} & =u_{i}^{(1)} u_{i}^{(2)} u_{i}^{(3)} \cdots u_{i}^{(k)} \\
v_{i} & =v_{i}^{(1)} v_{i}^{(2)} v_{i}^{(3)} \cdots v_{i}^{(n)}
\end{aligned}\right.
$$

- Define the input sequence due to the i th stream, $1 \leq i \leq k$, as

$$
u^{(i)}=u_{0}^{(i)} u_{1}^{(i)} u_{2}^{(i)} u_{3}^{(i)} \cdots
$$

and the output sequence due to the j th stream, $1 \leq j \leq n$, as

$$
v^{(j)}=v_{0}^{(j)} v_{1}^{(j)} v_{2}^{(j)} v_{3}^{(j)} \cdots
$$

- A $[n, k, m]$ convolutional code can be represented as a MIMO LTI system with k input streams

$$
\left(u^{(1)}, u^{(2)}, \cdots, u^{(k)}\right)
$$

and n output streams

$$
\left(v^{(1)}, v^{(2)}, \cdots, v^{(n)}\right)
$$

and a $k \times n$ impulse response matrix $g(l)=\left\{g_{i}^{(j)}(l)\right\}$.

CC Lab, EE, NCHU
CC Lab, EE, NCHU

Now introduce the delay operator D in the representation of input sequence, output sequence, and impulse response, i.e.,

1. Use z transform

$$
\begin{gathered}
u^{(i)}=u_{0}^{(i)} u_{1}^{(i)} u_{2}^{(i)} u_{3}^{(i)} \cdots \longleftrightarrow U_{i}(D)=\sum_{t=0}^{\infty} u_{t}^{(i)} D^{t} \\
v^{(j)}=v_{0}^{(j)} v_{1}^{(j)} v_{2}^{(j)} v_{3}^{(j)} \cdots \longleftrightarrow V_{i}(D)=\sum_{t=0}^{\infty} v_{t}^{(j)} D^{t} \\
g_{i}^{(j)}=\left(g_{i}^{(j)}(0), \cdots, g_{i}^{(j)}(m)\right) \longleftrightarrow G_{i}^{(j)}(D)=\sum_{l=0}^{m} g_{i}^{(j)}(l) D^{l}
\end{gathered}
$$

2. $z\{u * g\}=U(D) G(D)=V(D)$
3. $V_{j}(D)=\sum_{i=1}^{k} U_{i}(D) \cdot G_{i}^{(j)}(D)$

We thus have

$$
V(D)=U(D) \cdot G(D)
$$

, where

$$
\begin{aligned}
U(D) & =\left(U_{1}(D), U_{2}(D), \ldots, U_{k}(D)\right) \\
V(D) & =\left(V_{1}(D), V_{2}(D), \ldots, V_{n}(D)\right) \\
G(D) & =\left(\begin{array}{c}
G_{i}^{(j)}(D)
\end{array}\right)
\end{aligned}
$$

Convolutional Codes

In time domain:

$$
\begin{aligned}
& v_{1}=(1,0,1,0,0,1,1) \\
& v_{2}=(1,1,0,1,0,0,1)
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}(D)=U_{1}(D) \\
& V_{2}(D)=U_{2}(D) \\
& V_{3}(D)=U_{1}(D) \bullet D+U_{2}(D) \bullet\left(D+D^{2}\right) \\
& {\left[\begin{array}{lll}
V_{1}(D) & V_{2}(D) & V_{3}(D)
\end{array}\right]=\left[\begin{array}{ll}
U_{1}(D) & U_{2}(D)
\end{array}\right] \bullet\left[\begin{array}{ccc}
1 & 0 & D \\
0 & 1 & D+D^{2}
\end{array}\right]} \\
& G_{1}(D)=\left[\begin{array}{ccc}
1 & 0 & D \\
0 & 1 & D+D^{2}
\end{array}\right] \\
& U_{1}=1 \quad U_{2}=1+D \\
& V=\left[\begin{array}{ll}
1 & 1+D
\end{array}\right] \bullet\left[\begin{array}{ccc}
1 & 0 & D \\
0 & 1 & D+D^{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1+D & D^{3}
\end{array}\right] \\
& v_{1}=(1,0,0,0) \quad v_{2}=(1,1,0,0) \quad v_{3}=(0,0,0,1)
\end{aligned}
$$

Figure 7: state diagram of $(2,1,2)$ Convolutional code

Code Tree of Convolutional code

－一個（ $\mathrm{n}, \mathrm{k}, \mathrm{m}$ ）Convolutional code 的 codeword 可視為 code tree上面的一個路徑
－輸入的長度為 h ，code tree 會有 $(h+m+1)$ 個 level，最左邊的 node（level 0）稱為 origin node
－在最先的 h levels，每個 node 存在 2^{k} 個 branch，位在 level （ $\mathrm{h}+\mathrm{m}$ ），最右邊的那 $2^{h k}$ 個 nodes，稱為 terminal nodes
－從 origin node 到 terminal 的路徑稱為 code path，可用來表示一
level 0

Figure 8：state tree of $(2,1,2)$ Convolutional code

Convolutional Codes

- terminal node 只有一點，且會回到最初的狀態
- 從 origin node 到 terminal node 的路徑，可用來表示一個 codeword

Figure 9：trellis of $(2,1,2)$ Convolutional code

For an (n,k,v) encoder
The encoder state σ_{l} at time unit l is the binary v-tuple

$$
\sigma_{l}=\left(s_{l-1}^{(1)} s_{l-2}^{(1)} \ldots s_{l-v_{1}}^{(1)} s_{l-1}^{(2)} s_{l-2}^{(2)} \ldots s_{l-v_{2}}^{(2)} \ldots s_{l-1}^{(k)} s_{l-2}^{(k)} \ldots s_{l-v_{k}}^{(k)}\right)
$$

Convolutional encoder is a linear sequential circuit, it's operation can be describe by a state diagram. The state of an encoder is defined as its shift register contents.

Each branch in the state diagram is labeled with the k inputs

$$
\left(u_{l}^{(1)}, u_{l}^{(2)}, \ldots, u_{l}^{(k)}\right)
$$

causing the transition and the n corresponding output

$$
\left(v_{l}^{(1)}, v_{l}^{(2)}, \ldots, v_{l}^{(n-1)}\right)
$$

CC Lab, EE, NCHU

Convolutional Code

State diagrams for $(2,1,3)$ encoder

CC Lab, Ee, NCHU

- The trellis module consists of 2^{m} initial state and 2^{m} final states, with each initial state being connected by a directed edge to exactly 2^{k} final state.Thus the trellis module has 2^{k+m} edge
- Each edge is label with an n-symbol binary vector,namely the

Ex: The (3, 2, 2) Convolutional code with canonical generator matrix output produced by the encoder in response to the given state transition

- Each edge has length n, so the total edge length of the Convolutional trellis module is $n \cdot 2^{k+m}$
given by

$$
G_{1}(D)=\left(\begin{array}{ccc}
1+D & 1+D & 1 \\
D & 0 & 1+D
\end{array}\right)
$$

Consider an (n, k, m, d) Convolutional code. The trellis is principle infinite, but it has a very regular structure, consisting (after a short initial transient) of repeated copies of what we shall call the trellis module associated with $G(D)$.

CC Lab, EE, NCHU

odes

- Conventional trellis complexity of the trellis module can be defined as

$$
\frac{n}{k} \cdot 2^{m+k}
$$

Figure 10: The trellis module of $(3,2,2)$ Convolutional code
We can do substantially better than this, if we use the punctured Convolutional code.

- Begin with a ($N, 1, m$) Convolutional code, and block it to depth k , i.e., group the input bit stream into blocks of k bits each, the result is an ($N k, k, m$) Convolutional code

The total number of edge symbol is

- Delete, or puncture, all but n symbols form each Nk-symbol output block, the result is an (n, k, m) Convolutional code.

$$
3 \cdot 2^{2+2}=48
$$

so that the Convolutional trellis complexity corresponding to the matrix $G_{1}(D)$ is $48 / 2=24$ symbols per bits.

CC Lab, Ee, NCHU
CC Lab, EE, NCHU

Ex:The (2, 1, 2, 5) Convolutional code defined by the canonical generator matrix

$$
G_{2}(D)=\left(\begin{array}{ll}
1+D+D^{2} & 1+D^{2}
\end{array}\right)
$$

module is built from k copies of the trellis module from the parent ($N, 1, m$) code, each of which has only 2^{m+1} symbols

The trellis module:

- The total number of symbols on the trellis module is $n \cdot 2^{m+1}$
- the trellis complexity of an (n, k, m) punctured code is

$$
\frac{n}{k} \cdot 2^{m+1}
$$

which is a factor of 2^{k-1} smaller than the complexity of the conventional trellis

CC Lab, EE, NCHU

CC Lab, EE, NCHU

If $G(D)$ is a canonical generator matrix for an (n, k, m)
Convolutional code C , then we can write $G(D)$ in the form

$$
G(D)=G_{0}+G_{1} D+\cdots+G_{L} D^{L}
$$

where $G_{0}, \ldots G_{L}$ are $k \times n$ scalar matrices, and L is the maximum degree of any entry of $G(D)$. The integer L is called the memory of the code

Convolutional Codes

If we concatenate the $L+1$ matrices $G_{0} G_{1} \cdots G_{L}$, we obtain a $k \times(L+1) n$ scalar matrix

$$
\tilde{G}=\left(G_{0} G_{1} \cdots G_{L}\right)
$$

and its shifts can built a scalar generator matrix $G_{\text {scalar }}$ for the code C

$$
G_{\text {scalar }}=\left(\begin{array}{cccccc}
G_{0} & G_{1} & G_{2} & & & \\
& G_{0} & G_{1} & G_{2} & & \\
& & G_{0} & G_{1} & G_{2} & \\
& & & G_{0} & G_{1} & G_{2} \\
& & & & \ddots &
\end{array}\right)
$$

The trellis module for the trellis associated with $G_{\text {scalar }}$ corresponds to the $(L+1) k \times n$ matrix module

It is easy to show that the number of edge symbols in this trellis

$$
\hat{G}=\left(\begin{array}{c}
G_{L} \\
G_{L-1} \\
\vdots \\
G_{0}
\end{array}\right)
$$

module is
edge symbol count $=\sum_{j=1}^{n} 2^{a_{j}}$
where a_{j} is the number of active entries in the jth column of the matrix \hat{G}
which repeatedly appears as a vertical slice in $G_{\text {scalar }}$

Convolutional Codes

The matrix module corresponding to \tilde{G}_{3} is

$$
\hat{G}_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Thus $a_{1}=3, a_{2}=3$,and $a_{3}=3$
The corresponding trellis module has $2^{3}+2^{3}+2^{3}=24$ edge symbols The resulting trellis complexity is $24 / 2=12$ symbols per bits

If we add the first row of $G_{3}(D)$ to the second row, the resulting generator matrix, which is still canonical is

$$
G_{3}^{\prime}(D)=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1+D & D
\end{array}\right)
$$

The scalar matrix $\tilde{G}_{3}{ }^{\prime}$ corresponding to $G_{3}{ }^{\prime}(D)$ is

$$
\tilde{G}_{3}^{\prime}=\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

The matrix module corresponding to $\tilde{G}_{3}{ }^{\prime}$ is

$$
\hat{G}_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Thus $a_{1}=2, a_{2}=3$,and $a_{3}=3$
The corresponding trellis module has $2^{2}+2^{3}+2^{3}=20$ edge symbols The resulting trellis complexity is $20 / 2=12$ symbols per bits

[^0]Convolutional Codes

The matrix module corresponding to $\tilde{G}_{3}{ }^{\prime \prime}$ is

$$
\hat{G}_{3}^{\prime \prime}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

The scalar matrix $\tilde{G}_{3}{ }^{\prime \prime}$ corresponding to $G_{3}^{\prime \prime}(D)$ is

$$
\tilde{G}_{3}=\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

Thus $a_{1}=2, a_{2}=3$,and $a_{3}=2$
The corresponding trellis module has $2^{2}+2^{3}+2^{2}=16$ edge symbols The resulting trellis complexity is $16 / 2=8$ symbols per bits

CC Lab, EE, NCHU

In this sample, the ratio of the Convolutional trellis complexity to the minimal trellis complexity is $12 / 8=3 / 2$.

If this code were punctured, the ratio would be at least 2

It is easy to see that there is no generator matrix for this code with spanlength less than 7 , so that the trellis module shown below yields the minimal trellis for the code.

Convolutional Codes
$G_{\text {scalar }}$ is infinite, we can define the $M t h$ truncation of the code C, denoted by $C^{[M]}$, as the $[(M+L) n, M k]$ block code.

Alternatively, we can examine the scalar generator matrix for the code corresponding to $\tilde{G_{3}^{\prime \prime}}$

$$
G_{\text {scalar }}=\left(\begin{array}{ccccccccccccc}
\underline{1} & 0 & \overline{1} & 0 & 0 & 0 & & & & & & & \\
0 & \underline{1} & 0 & 1 & \overline{1} & 0 & & & & & & & \\
& & & \underline{1} & 0 & \overline{1} & 0 & 0 & 0 & & & & \\
& & & 0 & \underline{1} & 0 & 1 & \overline{1} & 0 & & & & \\
& & & & & & \underline{1} & 0 & \overline{1} & 0 & 0 & 0 \\
& & & & & & 0 & 1 & 0 & 1 & \overline{1} & 0 \\
& & & & & & & & & & \ddots &
\end{array}\right)
$$

we see that the $G_{\text {scalar }}$ has the property that no column contains more than one underline entry, or more than one overline entry. Thus $G_{\text {scalar }}$ has the LR property

EX: $M=3$ truncation, with corresponding scalar matrix

$$
G_{\text {scalar }}^{[3]}=\left(\begin{array}{cccccccccccc}
1 & 0 & 1 & 0 & 0 & 0 & & & & & & \\
0 & 1 & 0 & 1 & 1 & 0 & & & & & & \\
& & & 1 & 0 & 1 & 0 & 0 & 0 & & & \\
& & & 0 & 1 & 0 & 1 & 1 & 0 & & & \\
& & & & & & 1 & 0 & 1 & 0 & 0 & 0 \\
& & & & & & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

This is the generator matrix for a $[12,6]$ block code.the trellis of $G_{\text {scalar }}^{[3]}$ is shown below.

This trellis consists of two copies of the minimal trellis module of $G_{3}^{\prime \prime}(D)$, glued together, plus initial and final transient sections.

Generator matrix $G(D)$ produces a minimal trellis if and only if $G(D)$ has the property that the spanlength of the corresponding G cannot be reduced by an operation of the form

Abstract

- PGM:If the entries of $G(D)$ are polynomials, then $G(D)$ is called a polynomial generator matrix.

We defined in (n, k) Convolutional code C to be a k-dimensional subspace of $F(D)^{n}$, and a generator matrix of C to be a $k \times n$ matrix over $F(D)$, whose rowspace is C. We will discuss the various kinds of generator matrices that a Convolutional code can have, and settle on the canonical polynomial generator matrices as the preferred kind.

[^1]- DEFINITION. A $k \times n$ polynomial matrix $G(D)$ is called basic if, among all polynomial matrices of the form $T(D) G(D)$,
- Let $G(D)=\left(g_{i j}(D)\right)$ be a $k \times n$ PGM for C. We now define the where $T(D)$ is a nonsingular $k \times k$ matrix over $F(D)$, it has the minimum possible internal degree.
- intdeg $G(D)=$ maximum degree of $G(D)$'s $k \times k$ minors.
- extdeg $G(D)=$ sum of the row degrees of $G(D)$.
- DEFINITION. A $k \times n$ polynomial matrix $G(D)$ is called reduced if, among all polynomial matrices of the form

The following two definitions will be essential in our discussion of $T(D) G(D)$, where $T(D)$ is unimodular, $G(D)$ has the minimum Convolutional codes. possible external degree. Since any unimodular matrix is a product of elementary matrices, an equivalent definition is that a matrix is reduced if its external degree cannot be reduced by a sequence of elementary row operations.

- THEOREM. Let $G(D)$ be a $k \times n$ polynomial matrix.

1. If $T(D)$ is any nonsingular $k \times k$ polynomial matrix, then

$$
\operatorname{intdeg} T(D) G(D)=\operatorname{intdeg} G(D)+\operatorname{deg} \operatorname{det} T(D)
$$

In particular, indeg $T(D) G(D) \geq \operatorname{indeg} G(D)$, with equality if and only if $T(D)$ is unimodular.

- THEOREM. A $k \times n$ polynomial matrix $G(D)$ is basic if and only if any one of the following six conditions is satisfied.

1. The invariant factors of $G(D)$ are all 1.
2. The gcd of the $k \times k$ minors of $G(D)$ is 1 .
3. $G(\alpha)$ has rank k for any α in the algebraic closure of F.
4. $G(D)$ has a right $F[D]$ inverse, i.e. there exists a $n \times k$ polynomial matrix $H(D)$ such that $G(D) H(D)=I_{k}$.
5. If $x(D)=u(D) G(D)$, and if $x(D) \in F[D]^{n}$, then $u(D) \in F[D]^{k}$.
6. $\operatorname{intdeg} G(D) \leq \operatorname{exteg} G(D)$.
7. $G(D)$ is a submatrix of a unimodular matrix, i.e. there a $(n-k) \times n$ matrix $L(D)$ such that the determinant of the $n \times n$ matrix $\binom{G(D)}{L(D)}$ is a nonzeros element of F.

CC Lab, EE, NCHU

Convolutional Codes

EXAMPLE. Here are eight generator matrices for a (4, 2) Convolutional code over $G F(2)$.
1.

$$
\bar{G}_{i j}=\operatorname{coeff}_{D^{e_{i}}} g_{i j}(D)
$$

where e_{i} is the degree of $G(D)$'s i-th row, then \bar{G} has rank k.

$$
\begin{gathered}
G_{1}=\left[\begin{array}{cccc}
\frac{1}{1+D+D^{2}} & 1 & \frac{1+D^{2}}{1+D+D^{2}} & \frac{1+D}{1+D+D^{2}} \\
1 & \frac{1+D+D^{2}}{D} & D & \frac{1}{D}
\end{array}\right] \\
C \times \quad \text { Reduced } \times \\
\text { intdeg } \times
\end{gathered}
$$

2. $\operatorname{extdeg} G(D)=\operatorname{intdeg} G(D)$
3. The "predictable degree property": For any k-dimensional polynomial vector, i.e. any $u(D)=\left(u_{1}(D), \ldots, u_{k}(D)\right) \in F[D]^{k}$

$$
\operatorname{deg}(u(D) G(D))=\max _{1 \leq i \leq k}\left(\operatorname{deg} u_{i}(D)+\operatorname{deg} g_{i}(D)\right)
$$

2.

3.

$$
G_{3}=\left[\begin{array}{cccc}
1 & 1+D+D^{2} & 1+D^{2} & 1+D \\
0 & 1+D & D & 1
\end{array}\right]
$$

Basic Reduced× intdeg 1 extdeg 3
Basic \times Reduced \checkmark intdeg 3 extdeg 3
4.

$$
G_{4}=\left[\begin{array}{cccc}
1 & D & 1+D & 0 \\
0 & 1+D & D & 1
\end{array}\right]
$$

Basic Reduced \times intdeg 1 extdeg 2
5.
6.

$$
G_{6}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1+D & D & 1
\end{array}\right]
$$

Basic \checkmark Reduced \checkmark intdeg 1 extdeg 1

Convolutional Codes

- DEFINITION. Among all PGM's for a given Convolutional code C, those for which the external degree is as small as possible are called canonical PGM's. This minimal external degree is called the degree of the code C, and denoted deg C.
- THEOREM. A PGM $G(D)$ for the Convolutional code C is

8.

$$
G_{7}=\left[\begin{array}{cccc}
1+D & 0 & 1 & D \\
1 & D & 1+D & 0
\end{array}\right]
$$

Basic \times Reduced \checkmark intdeg 2 extdeg 2

$$
G_{8}=\left[\begin{array}{cccc}
1 & 0 & \frac{1}{1+D} & \frac{D}{1+D} \\
0 & 1 & \frac{D}{1+D} & \frac{1}{1+D}
\end{array}\right]
$$

Basic Reduced \times intdeg \times extdeg \times
canonical if and only if it is both basic and reduced.

- COROLLARY. The minimal internal degree of any PGM for a given convolution code C is equal to the degree of C.
- COROLLARY. If G is any basic generator matrix for C then intdeg $G=\operatorname{deg} C$.
- The maximum of the Forney indices is called the memory of the code.
- An (n, k, m) code is called optimal if it has the maximum possible free distanceamong all codes with the same value of n, k and m.
- EXAMPLE

1.

- THEOREM. The set of row degrees is the same for all canonical PGM's for a given code
- Where $\left(e_{1} \leq e_{2} \leq \ldots \leq e_{k}\right)$ are called the Forney indices of the code.

$$
G_{6}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1+D & D & 1
\end{array}\right]
$$

Basic \checkmark Reduced \checkmark intdeg 1 extdeg 1
Forney indices are $(0,1)$

CC Lab, EE, NCHU

- Theorem:

Let $G(D)$ be a $b \times c, b \leq c$, binary polynomial matrix (i.e., $G(D)=\left(g_{i j}(D)\right)$, where $\left.g_{i j}(D) \in \mathbb{F}_{2}[D], 1 \leq i \leq b, 1 \leq j \leq c\right)$ of rank r. Then $G(D)$ can be written in the following manner:

$$
G(D)=A(D) \Gamma(D) B(D)
$$

where $A(D)$ and $B(D)$ are $b \times b$ and $c \times c$, respectively, binary polynomial matrices with unit determinants,
and where $\Gamma(D)$ is the $b \times c$ matrix

which is called the smith form of $G(D)$, and whose nonzero elements $\gamma_{i}(D) \in \mathbb{F}_{2}[D], 1 \leq i \leq r$, called the invariant-factors of $G(D)$, are unique polynomials that satisfy

$$
\gamma_{i}(D) \mid \gamma_{i+1}(D), \quad i=1,2, \ldots, r-1
$$

- Example: To obtain the Smith form of the polynomial encoder illustrated in Figure 1 we start with its encoding matrix
- Two types of elementary operations:
- Type I

The interchange of two rows(or two columns).
Type II
The addition to all elements in one row (or column) of the corresponding elements in another row (or column) multiplied by a fixed polynomial in D.

Figure 11: A rate $R=2 / 3$ Convolutional encoder.

$$
G(D)=\left[\begin{array}{ccc}
1+D & D & 1 \\
D^{2} & 1 & 1+D+D^{2}
\end{array}\right]
$$

and interchange columns 1 and 3 :

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1+D & D & 1 \\
D^{2} & 1 & 1+D+D^{2}
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]} \\
\quad=\left[\begin{array}{ccc}
1 & D & 1+D \\
1+D+D^{2} & 1 & D^{2}
\end{array}\right]
\end{gathered}
$$

Now the element in the upper-left corner has minimum degree.

We divide $1+D^{2}+D^{3}$ by $1+D+D^{2}+D^{3}$

$$
1+D^{2}+D^{3}=\left(1+D+D^{2}+D^{3}\right) 1+D
$$

Thus, we add column 2 to column 3 and obtain:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1+D+D^{2}+D^{3} & 1+D^{2}+D^{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]} \\
=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1+D+D^{2}+D^{3} & D
\end{array}\right]
\end{gathered}
$$

Now we interchange column 2 and 3:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1+D+D^{2}+D^{3} & D
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]} \\
\quad=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & D & 1+D+D^{2}+D^{3}
\end{array}\right]
\end{gathered}
$$

Repeating the previous step gives

$$
1+D+D^{2}+D^{3}=D\left(1+D+D^{2}\right)+1
$$

and, hence, we multiply column 2 by $1+D+D^{2}$,
add the product to column 3, and obtain

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & D & 1+D+D^{2}+D^{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1+D+D^{2} \\
0 & 0 & 1
\end{array}\right]} \\
=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & D & 1
\end{array}\right]
\end{gathered}
$$

Again we should interchange column 2 and 3: obtain the Smith form

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & D
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & D \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=\Gamma(D)
$$

All invariant factors for this encoding matrix are equal to 1. By tracing these steps backward and multiplying $\Gamma(D)$ with the inverses of the elementary matrices (which are the matrices themselves), we obtain the matrix:

$$
G(D)=A(D) \Gamma(D) B(D)
$$

$$
=\left[\begin{array}{cc}
1 & 0 \\
1+D+D^{2} & 1
\end{array}\right] \Gamma(D)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & D \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Thus, we have the following decomposition of the encoding matrix $G(D)$:

$$
\begin{aligned}
& G(D)=\left[\begin{array}{cc}
1 & 0 \\
1+D+D^{2} & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& \times\left[\begin{array}{ccc}
1+D & D & 1 \\
1+D^{2}+D^{3} & 1+D+D^{2}+D^{3} & 0 \\
D+D^{2} & 1+D+D^{2} & 0
\end{array}\right]
\end{aligned}
$$

and

$$
B(D)=\left[\begin{array}{ccc}
1+D & D & 1 \\
1+D^{2}+D^{3} & 1+D+D^{2}+D^{3} & 0 \\
D+D^{2} & 1+D+D^{2} & 0
\end{array}\right]
$$

The extension of the Smith form

- Let $G(D)$ be a $b \times c$ rational function matrix, and let $q(D) \in \mathbb{F}_{2}[D]$ be the least common multiple (lcm) of all denominators in $G(D)$. Then $q(D) G(D)$ is a polynomial matrix with Smith form decomposition

$$
q(D) G(D)=A(D) \Gamma_{q}(D) B(D)
$$

Dividing through by $q(D)$, we obtain the so-called invariant-factor decomposition of the rational matrix $G(D)$:

$$
G(D)=A(D) \Gamma(D) B(D)
$$

where

$$
\Gamma(D)=\Gamma_{q}(D) / q(D)
$$

with entries in $\mathbb{F}_{2}(D)$

- Example:

The rate $R=\frac{2}{3}$ rational encoding matrix

$$
G(D)=\left[\begin{array}{ccc}
\frac{1}{1+D+D^{2}} & \frac{D}{1+D^{3}} & \frac{1}{1+D^{3}} \\
\frac{D^{2}}{1+D^{3}} & \frac{1}{1+D^{3}} & \frac{1}{1+D}
\end{array}\right]
$$

has

$$
q(d)=\operatorname{lcm}\left(1+D+D^{2}, 1+D^{3}, 1+D\right)=1+D^{3}
$$

we have

$$
\alpha_{i}(D) \beta_{i+1}(D) \mid \alpha_{i+1}(D) \beta_{i}(D)
$$

$$
\Rightarrow \alpha_{i}(D) \mid \alpha_{i+1}(D) \text { and } \beta_{i+1}(D) \mid \beta_{i}(D), i=1,2, \ldots, r-1
$$

$$
q(D) G(D)=\left[\begin{array}{ccc}
1+D & D & 1 \\
D^{2} & 1 & 1+D+D^{2}
\end{array}\right]
$$

Hence

Another version of extended Smith form

$$
\begin{aligned}
& G(D)=\left[\begin{array}{cc}
1 & 0 \\
1+D+D^{2} & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{1+D^{3}} & 0 & 0 \\
0 & \frac{1}{1+D^{3}} & 0
\end{array}\right] \\
& \quad \times\left[\begin{array}{ccc}
1+D & D & 1 \\
1+D^{2}+D^{3} & 1+D+D^{2}+D^{3} & 0 \\
D+D^{2} & 1+D+D^{2} & 0
\end{array}\right]
\end{aligned}
$$

- The right-inverse of the generator matrix becomes

$$
G^{-1}(D)=B^{-1}(D) \cdot \Gamma^{-1}(D) \cdot A^{-1}(D)
$$

The inverted quadratic scrambler matrices $A^{-1}(D)$ and $B^{-1}(D)$ exist, since $A(D)$ and $B(D)$ have determinant 1 .

[^2]CC Lab, EE, NCHU

Convolutional Codes

- The following simple lemma is the key to the extended Smith algorithm.
Lemma:

$$
X_{i} G Y_{i}=G_{i} \text { for } i=0,1, \ldots, N
$$

- If we specialize above equation with $i=N$, we get

$$
X_{N} G Y_{N}=\Gamma
$$

which is the desired "extended Smith diagonalization" of G.

- A convenient way to implement the extended Smith algorithm is
- Example:

$$
G^{\prime}=\left[\begin{array}{cc}
G & I_{k} \\
I_{n} & 0_{n \times k}
\end{array}\right]
$$

Then if the sequence of elementary row and column operations generated by the Smith algorithm applied to G are performed on the extended matrix G^{\prime}, after i iterations, the resulting matrix G_{i}^{\prime} has the form

$$
G_{i}^{\prime}=\left[\begin{array}{cc}
G_{i} & X_{i} \\
Y_{i} & 0_{n \times k}
\end{array}\right]
$$

$$
G=G_{0}=\left[\begin{array}{cccc}
1 & 1+D+D^{2} & 1+D^{2} & 1+D \\
D & 1+D+D^{2} & D^{2} & 1
\end{array}\right]
$$

Then the corresponding matrix G^{\prime} is

$$
G^{\prime}=G_{0}^{\prime}=\left[\begin{array}{cccccc}
1 & 1+D+D^{2} & 1+D^{2} & 1+D & 1 & 0 \\
D & 1+D+D^{2} & D^{2} & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Convolutional Codes

$$
G_{2}^{\prime}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1+D & 1 & 0 \\
D & 1+D^{3} & D+D^{2}+D^{3} & 1 & 0 & 1 \\
1 & 1+D+D^{2} & 1+D^{2} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

$$
G_{3}^{\prime}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 0 \\
D & 1+D^{3} & D+D^{2}+D^{3} & 1+D+D^{2} & 0 & 1 \\
1 & 1+D+D^{2} & 1+D^{2} & 1+D & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

we obtained $G_{1}^{\prime}, G_{2}^{\prime}$, and G_{3}^{\prime} from G_{0}^{\prime} by successively adding $\left(1+D+D^{2}\right)$ times column 1 to column $2,\left(1+D^{2}\right)$ times column 1 to column 3, and $(1+D)$ times column 1 to column 4.

$$
G_{1}^{\prime}=\left[\begin{array}{cccccc}
1 & 0 & 1+D^{2} & 1+D & 1 & 0 \\
D & 1+D^{3} & D^{2} & 1 & 0 & 1 \\
1 & 1+D+D^{2} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Next, adding D times row 1 to row 2, we obtain
Finally, adding D times column 2 to column 3 and $(1+D)$ times column 2 to column 4 , we compute successively

$$
G_{4}^{\prime}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1+D^{3} & D+D^{2}+D^{3} & 1+D+D^{2} & 0 & 1 \\
1 & 1+D+D^{2} & 1+D^{2} & 1+D & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Interchanging columns 2 and 4, we obtain

$$
G_{5}^{\prime}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1+D+D^{2} & D+D^{2}+D^{3} & 1+D^{3} & 0 & 1 \\
1 & 1+D & 1+D^{2} & 1+D+D^{2} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
G_{6}^{\prime}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1+D+D^{2} & 0 & 1+D^{3} & D & 1 \\
1 & 1+D & 1+D & 1+D+D^{2} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & D & 0 & 0 & 0
\end{array}\right]
$$

$$
G_{7}^{\prime}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1+D+D^{2} & 0 & 0 & D & 1 \\
1 & 1+D & 1+D & D & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & D & 1+D & 0 & 0
\end{array}\right]
$$

- The matrices X, Y, and Γ, contain much valuable information about the code C and the generator matrix G. To extract this
Thus the extended Smith decomposition of the original matrix G information, however, we need to define several useful "pieces" of is given by
these matrices, which we call $\Gamma_{k}, \tilde{\Gamma}_{k}, K$, and H :

$$
\left[\begin{array}{ll}
1 & 0 \\
D & 1
\end{array}\right] \cdot G \cdot\left[\begin{array}{cccc}
1 & 1+D & 1+D & D \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & D & 1+D
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1+D+D^{2} & 0 & 0
\end{array}\right]
$$

$\Gamma_{k}=$ leftmost k columns of Γ
$=\operatorname{diag}\left(\Gamma_{1}, \ldots, \Gamma_{k}\right)$ (dimensions: $k \times k$).
$\tilde{\Gamma}_{k}=\gamma_{k} \cdot \Gamma_{k}^{-1}=\operatorname{diag}\left(\gamma_{k} / \gamma_{1}, \ldots, \gamma_{k} / \gamma_{k}\right)$ (dimensions: $k \times k$).
$K=$ leftmost k columns of Y. (dimensions: $n \times k$).
$H=$ rightmost r columns of Y. (dimensions: $n \times r$).

- Example: To illustrate the results of this appendix, we consider the following generator matrix G for a $(4,2)$ binary Convolutional
- Theorem: With the matrices $\Gamma_{r}, \tilde{\Gamma}_{r}, K$, and H define as in above equations, we have the following:

1. A basic encoder for $C: G_{b a s i c}=\Gamma_{k}^{-1} X G$. (That is, $G_{b a s i c}$ is

$$
G=\left[\begin{array}{cccc}
1 & 1+D+D^{2} & 1+D^{2} & 1+D \\
D & 1+D+D^{2} & D^{2} & 1
\end{array}\right]
$$ obtained by dividing the i-th row of $X G$ by the invariant

e found the extended invariant-factor decomposition of G to factor γ_{i}, for $i=1, \ldots, k$.)

$$
\text { be } X G Y=\Gamma \text {, where }
$$

$$
\begin{gathered}
\Gamma=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1+D+D^{2} & 0 & 0
\end{array}\right], X=\left[\begin{array}{ll}
1 & 0 \\
D & 1
\end{array}\right], \\
Y=\left[\begin{array}{cccc}
1 & 1+D & 1+D & D \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & D & 1+D
\end{array}\right]
\end{gathered}
$$

- A polynomial pseudo-inverse for G, with factor $\gamma_{2}=1+D+D^{2}$:

$$
K \tilde{\Gamma}_{k} X=\left[\begin{array}{cccc}
1 & 0 & 0 & D \\
1+D & 0 & 0 & 1
\end{array}\right]
$$

- A (basic) encoder for C^{\perp} :

$$
H^{T}=\left[\begin{array}{cccc}
1+D & 0 & 1 & D \\
D & 1 & 0 & 1+D
\end{array}\right]
$$

$$
K=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1+D & 0 & 0 & 1
\end{array}\right]
$$

Outline

Free distance and path enumerator

CC Lab, EE, NCHU
CC Lab, EE, NCHU

Convolutional Codes

Column distance

- Definition(Column distance):

The column distance d_{j}^{c} of order j of a generator matrix $G(D)$ is the minimum Hamming distance of the first $\mathrm{j}+1$ code blocks of two codewords $v_{[j+1]}=\left(v_{0}, v_{1}, \ldots, v_{j}\right)$ and $v_{[j+1]}^{\prime}=\left(v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{j}^{\prime}\right)$, where the information sequences used for encoding
$u_{[j+1]}=\left(u_{0}, u_{1}, \ldots, u_{j}\right)$ and $u_{[j+1]}^{\prime}=\left(u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{j}^{\prime}\right)$ differ in the first information block, i.e. $u_{0} \neq u_{0}^{\prime}$.

Convolutional Codes

- Because of the linearity of Convolutional codes, the column distance is equal to the minimum Hamming weight of all sequences $v_{[j+1]}$:

$$
d_{j}^{c}=\min _{u_{0} \neq 0} w t\left(v_{[j+1]}\right)
$$

where $v_{[j+1]}=\left(v_{0}, v_{1}, \ldots, v_{j}\right)$ are the first $\mathrm{j}+1$ code blocks of all possible code sequences with $u_{0} \neq 0$.

- When we considering the semi-infinite generator matrix G of the code, we obtain

$$
d_{j}^{c}=\min _{u_{0} \neq 0} w t\left(u_{[j+1]} \cdot G_{[j+1]}^{c}\right)
$$

with the $k(j+1) \times n(j+1)$ generator matrix

- Definition(Distance profile of the generator matrix):

The first $m+1$ values of the column distance $d=\left(d_{0}^{c}, d_{1}^{c}, \ldots, d_{m}^{c}\right)$ of a given generator matrix $G(D)$ with memory m are referred to as the distance profile of the generator matrix.

- Definition(Minimum distance):

The column distance d_{m}^{c} of order m of a given generator matrix $G(D)$ with memory m is called the minimum distance d_{m}.

Row distance

- Consider the state diagram of the generator matrix $G(D)$. The paths of length $j+1$ that are used for the calculation of d_{j}^{c} leave the zero state σ_{0} at time $t=0$ and are in an arbitrary state $\sigma_{j+1} \in\left(0,1, \ldots, 2^{v}-1\right)$ after $j+1$ state transition. Consequently, the path relevant for $\mathrm{j}=0$ are a part of the paths relevant for $\mathrm{j}=1$, and so on. Therefore the column distance is a monotonically increasing function in j ,

$$
d_{0}^{c} \leq d_{1}^{c} \leq \ldots \leq d_{j}^{c} \leq \ldots \leq d_{\infty}^{c}
$$

where a finite limit d_{∞}^{c} for $j \rightarrow \infty$ exist.

- Definition(Row distance):

The row distance d_{j}^{r} of order j of a generator matrix $\mathrm{G}(\mathrm{D})$ with memory m is the minimum Hamming distance of the $j+m+1$ code blocks of two codewords $v_{[j+m+1]}=\left(v_{0}, v_{1}, \ldots, v_{j+m}\right)$ and $v_{[j+m+1]}^{\prime}=\left(v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{j+m}^{\prime}\right)$, where the two information sequences used for encoding $u_{[j+m+1]}=\left(u_{0}, u_{1}, \ldots, u_{j+m}\right)$ and $u_{[j+m+1]}^{\prime}=\left(u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{j+m}^{\prime}\right)$ with $\left(u_{j+1}, \ldots, u_{j+m}\right)=$ $\left(u_{j+1}^{\prime}, \ldots, u_{j+m}^{\prime}\right)$ are different in at least the first coordinate of the $\mathrm{j}+1$ information blocks.

- The row distance can also be calculated as the minimum of the Hamming weights of all sequences $v_{[j+m+1]}$, in analogy with the column distance:

$$
d_{j}^{r}=\min _{u_{0} \neq 0} w t\left(v_{[j+m+1]}\right)
$$

where $v_{[j+m+1]}=\left(v_{0}, \ldots, v_{j}, \ldots, v_{j+m}\right)$ are terminated code sequences of length $\mathrm{j}+\mathrm{m}+1$.

- We obtain

$$
d_{j}^{r}=\min _{u_{0} \neq 0} w t\left(u_{[j+m+1]} G_{[j+m+1]}^{r}\right)
$$

with the information sequence
$u_{[j+m+1]}=\left(u_{0}, \ldots, u_{j}, u_{j+1}, \ldots, u_{j+m}\right)$, where $\left(u_{j+1}, \ldots, u_{j+m}\right)$ is equal to the termination sequence.

- The $k(j+m+1) \times n(j+m+1)$ generator matrix $G_{[j+m+1]}^{r}$ is given by

If the generator matrix $G(D)$ of the code is polynomial then $G_{j}=0$ for $j>m$ and $\left(u_{j+1}, \ldots, u_{j+m}\right)=0$ is the termination sequence.

- There is one sequence that diverges from zero state at time $t=0$ and returns to the zero state at time $t=m$ and that has a specific weight d_{0}^{r}.
- Increasing the sequence length to $j=1$ corresponds to increasing the number of valid code sequences that must be considered in finding the minimum-weight sequence. If a code sequence is found for $j=1$ that has a hamming weight less than d_{0}^{r} then it is selected. Otherwise, we choose the original code sequence, and remain in the zero loop of zero state for the required number of j transitions without increasing the Hamming weight d_{0}^{r}.
- Therefore the row distance is a monotonically decreasing function in j, and we can write

$$
d_{0}^{r} \geq d_{1}^{r} \geq \ldots \geq d_{j}^{r} \geq \ldots \geq d_{\infty}^{r}
$$

where the limit $j \rightarrow \infty$ gives $d_{\infty}^{r}>0$.

- The paths in the state diagram that were used for calculating the column distance d_{∞}^{c} go from the zero state to the zero loop, which is, according to the Hamming weight of the necessary state transitions, the 'closest'. On the other hand, the row distance d_{∞}^{r} is the minimum Hamming weight of all paths in the state diagram from zero state to the zero state and therefore in the zero loop.

$$
d_{0}^{c} \leq d_{1}^{c} \leq \ldots \leq d_{j}^{c} \leq \ldots \leq d_{\infty}^{c} \leq d_{\infty}^{r} \leq \ldots \leq d_{j}^{r} \leq \ldots \leq d_{0}^{r}
$$

- Theorem(Limit of row and column distance): If $G(D)$ is a non-catastrophic generator matrix then the following relation holds true for the limits of the row and column distances:

$$
d_{\infty}^{c}=d_{\infty}^{r}
$$

\because In the derivation of equation

$$
d_{0}^{c} \leq d_{1}^{c} \leq \ldots \leq d_{j}^{c} \leq \ldots \leq d_{\infty}^{c}
$$

, it was shown that the path d_{∞}^{c} returns to the zero loop of the state diagram and remains there. Only one zero loop, namely from zero directly to zero, exists for noncatastrophic generator matrices. Therefore d_{∞}^{c} is the minimum Hamming weight of a path leaving from and returning to zero. It is equal to the row distance d_{∞}^{r}, as shown in the derivation of equation

$$
d_{0}^{r} \geq d_{1}^{r} \geq \ldots \geq d_{j}^{r} \geq \ldots \geq d_{\infty}^{r}
$$

Free distance

- Definition(Free distance):

The free distance d_{f} of a Convolutional code C with rate $R=\frac{k}{n}$ is defined as the minimum distance between two arbitrary codewords of C :

$$
d_{f}=\min _{v \neq v^{\prime}} \operatorname{dist}\left(v, v^{\prime}\right)
$$

Due to linearity, the problem of calculating distances can be interpreted as the problem of calculating Hamming weight.

- Theorem(Row, column and free distance):

If $G(D)$ is a non-catastrophic generator matrix then the following equation holds for the limits of the row and column distances:

$$
d_{\infty}^{c}=d_{\infty}^{r}=d_{f}
$$

CC Lab, EE, NCHU
CC Lab, EE, NCHU

- Example(Row and column distance):

Figure 1 shows the column and row distances of the generator matrix $G(D)=\left(1+D+D^{2}+D^{3} 1+D^{2}+D^{3}\right)$ of a

$$
\begin{aligned}
G(D) & =(11)+(10) D+(11) D^{2}+(11) D^{3} \\
& =G_{0}+G_{1} D+G_{2} D^{2}+G_{3} D^{3}
\end{aligned}
$$

Column distance $(j=0,1,2, .$.
$j=0$:

$$
G_{[1]}^{c}=[11] \Rightarrow d_{0}^{c}=\min _{u_{0} \neq 0} w t\left(u_{[j+1]} \cdot G_{[j+1]}^{c}\right)=2
$$

$j=1:$

$$
G_{[2]}^{c}=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \Rightarrow d_{1}^{c}=3
$$

Figure 12: Row and column distance

Row distance $(j=0,1,2, \ldots)$
$j=0$:

$$
\begin{gathered}
G_{[j+m+1=0+3+1=4]}^{r}=\left[\begin{array}{cccccccc}
1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] \\
\Rightarrow d_{0}^{r}=\min _{u_{0} \neq 0} w t\left(u_{[j+m+1]} \cdot G_{[j+m+1]}^{r}\right)=7 \\
\because\left(u_{j+1}, \ldots, u_{j+m}\right)=\left(u_{1}, u_{2}, u_{3}\right)=(000)
\end{gathered}
$$

Extended distance measures

- Definition(Extended column distance):

Let the generator matrix G of a Convolutional code C with rate $R=\frac{k}{n}$ be given. Then the extended column distance of order j is

$$
d_{j}^{e c}=\min _{\sigma_{0}=0, \sigma_{t} \neq 0,0<t \leq j}\left\{w t\left(\left(u_{0}, u_{1}, \ldots, u_{j}\right) G_{[j+1]}^{c}\right)\right\}
$$

where

is the $k(j+1) \times n(j+1)$ truncated generator matrix.

Just like the column distance d_{j}^{c}, the extended column distance $d_{j}^{e c}$ is also a monotonically increasing function in j .

- For non-catastrophic generator matrices, the zero state and the

Convolutional Codes

Extended row distance

The state sequence $S=\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{t}, \ldots, \sigma_{j}, \sigma_{j+1}, \ldots, \sigma_{j+m+1}\right)$ used to define the code segments starts and ends in the zero state, i.e. $\sigma_{0}=0$ and $\sigma_{j+m+1}=0$.

- Definition(Extended row distance):

Let the generator matrix G of a Convolutional code C with rate $R=\frac{k}{n}$ be given. Then the extended row distance of order j is

$$
d_{j}^{e r}=\min _{u_{j} \neq 0, \sigma_{0}=0, \sigma_{t} \neq 0,0<t \leq j}\left\{w t\left(\left(u_{0}, u_{1}, \ldots, u_{j}\right) G_{[j+m+1]}^{r}\right)\right\}
$$

where

$$
G_{[j+m+1]}^{r}=\left[\begin{array}{ccccccc}
G_{0} & G_{1} & \ldots & G_{m} & & & \\
& G_{0} & G_{1} & \ldots & G_{m} & & \\
& & \ddots & \ddots & & \ddots & \\
& & & G_{0} & G_{1} & \ldots & G_{m}
\end{array}\right]
$$

is a $k(j+m+1) \times n(j+1)$ truncated generator matrix.

The extended segment distance is defined by the state sequences
where

is a $k(j+1+m) \times n(j+1)$ truncated generator matrix.

Let the generator matrix G of a Convolutional code C with rate $R=\frac{k}{n}$ be given. The extended segment distance of order j is

$$
d_{j}^{e s}=\min _{\sigma_{t} \neq 0, m<t \leq j+m}\left\{w t\left(\left(u_{0}, u_{1}, \ldots, u_{j+m}\right) G_{[j+1]}^{s}\right)\right\}
$$

Convolutional Codes

Figure 13: Graphical representation of the generator matrices corresponding to the extended distance properties of $G_{[j+1]}^{e c}, G_{[j+1]}^{r}$ and $G_{[j+1]}^{s}($ from left to right $)$

Convolutional Codes

Figure 14: Diagrams showing the calculation of the extended distance measurements in trellis form:column, row and segment distances(from top to bottom $) \cdot j=5, G(D)=\left(1+D+D^{2} \quad 1+D\right), m=2$.

Weight Enumerating Function (WEF)

The state diagram can be modified to provide a complete description of the Hamming weights of all nonzero codewords, that is a codeword Weight Enumerating Function

- Zero weight branch around state S_{0} is deleted
- Each branch is labeled with a branch gain X^{d}, where d is the weight of the n encoded bits on the branch
- The path gain is the product of the branch gains along a path, and the weight of the associated codeword is the power of X in the path gain

CC Lab, EE, NCHU
CC Lab, EE, NCHU

Convolutional Codes

- In a signal flow graph, a path connecting the initial state to the final state that does not go through any state twice is called a
To determine the codeword WEF of a code by considering the modified state diagram of the encoder as a signal flow graph and (Let F_{i} be the gain of the i th forward path)

$$
A(X)=\sum_{d} A_{d} X^{d}
$$

- A closed path starting at any state and returning to that state without going through any other state twice is called a cycle
A_{d} is the number of codewords of weight d.

Define
let C_{i} be the gain of i th cycle, A set of cycles is nontouching if no state belongs to more than one cycle in the set.

- $\{i\}$ be the set of all cycles
- $\left\{i^{\prime}, j^{\prime}\right\}$ be the set of all pairs of nontouching cycles
- $\left\{i^{\prime \prime \prime}, j^{\prime \prime \prime}, k^{\prime \prime}\right\}$ be the set of all triple of nontouching cycles, and so on

$$
\Delta=1-\sum_{i} C_{i}+\sum_{i^{\prime}, j^{\prime}} C_{i^{\prime}} C_{j^{\prime}}-\sum_{i^{\prime \prime}, j^{\prime \prime}, k^{\prime \prime}} C_{i^{\prime \prime}} C_{j^{\prime \prime}} C_{k^{\prime \prime}}+\cdots
$$

Δ_{i} is defined exactly like Δ butonly for that portion of the graph not touching the i th forward path

$$
A(X)=\frac{\sum_{i} F_{i} \Delta_{i}}{\Delta}
$$

Convolutional Codes

Cycle Pair 1:	(Cycle 2,Cycle 8)	$\left(c_{2} c_{8}=X^{4}\right)$
Cycle Pair 2:	(Cycle 3,Cycle 11)	$\left(c_{3} c_{11}=X^{8}\right)$
Cycle Pair 3:	(Cycle 4,Cycle 8)	$\left(c_{4} c_{8}=X^{3}\right)$
Cycle Pair 4:	(Cycle 4,Cycle 11)	$\left(c_{4} c_{11}=X^{3}\right)$
Cycle Pair 5:	(Cycle 6,Cycle 11)	$\left(c_{6} c_{11}=X^{4}\right)$
Cycle Pair 6:	(Cycle 7,Cycle 9)	$\left(c_{7} c_{9}=X^{8}\right)$
Cycle Pair 7:	(Cycle 7,Cycle 10)	$\left(c_{7} c_{10}=X^{7}\right)$
Cycle Pair 8:	(Cycle 7,Cycle 11)	$\left(c_{7} c_{1} 1=X^{4}\right)$
Cycle Pair 9:	(Cycle 8,Cycle 11)	$\left(c_{8} c_{11}=X^{2}\right)$
Cycle Pair 10:	(Cycle 10,Cycle 11)	$\left(c_{10} c_{11}=X^{5}\right)$

There are 10 pairs of nontouching cycles

There are 11 cycles

Cycle Triple 1: (Cycle 4, Cycle 8, Cycle 11) $\quad\left(C_{4}, C_{8}, C_{1} 1=X^{4}\right)$
Cycle Triple 2: (Cycle 7, Cycle 10, Cycle 11) $\quad\left(C_{7}, C_{1} 0, C_{1} 1=X^{8}\right)$
There are 2 triples of nontouching cycles

There are no other sets of nontouching cycles. Therefore
$\Delta=1-\left(x^{8}+x^{3}+x^{7}+x^{2}+x^{4}+x^{3}+x^{3}+x+x^{5}+x^{4}+x\right)+\left(x^{4}+\right.$ $\left.x^{8}+x^{3}+x^{3}+x^{4}+x^{8}+x^{7}+x^{4}+x^{2}+x^{5}\right)-\left(x^{4}+x^{8}\right)=1-2 x-x^{3}$

Forward Path 1:	$s_{0} s_{1} s_{3} s_{7} s_{6} s_{5} s_{2} s_{4} s_{0}$	$\left(F_{1}=X^{12}\right)$
Forward Path 2:	$s_{0} s_{1} s_{3} s_{7} s_{6} s_{4} s_{0}$	$\left(F_{2}=X^{7}\right)$
Forward Path 3:	$s_{0} s_{1} s_{3} s_{6} s_{5} s_{2} s_{4} s_{0}$	$\left(F_{3}=X^{11}\right)$
Forward Path 4:	$s_{0} s_{1} s_{3} s_{6} s_{4} s_{0}$	$\left(F_{4}=X^{6}\right)$
Forward Path 5:	$s_{0} s_{1} s_{2} s_{3} s_{5} s_{7} s_{6} s_{4} s_{0}$	$\left(F_{5}=X^{8}\right)$
Forward Path 6:	$s_{0} s_{1} s_{2} s_{5} s_{3} s_{6} s_{4} s_{0}$	$\left(F_{6}=X^{7}\right)$
Forward Path 7:	$s_{0} s_{1} s_{2} s_{4} s_{0}$	$\left(F_{7}=X^{7}\right)$

There are 7 forward path

Forward path 1 and 5 touch all states

$$
\Delta_{1}=\Delta_{5}=1
$$

The subgraph not touching forward path 3 and 6 shown in (a)

$$
\Delta_{3}=\Delta_{6}=1-X
$$

The subgraph not touching forward path 2 shown in (b)

$$
\Delta_{2}=1-X
$$

The subgraph not touching forward path 4 shown in (c)

$$
\Delta_{4}=1-(X+X)+\left(X^{2}\right)=1-2 X+X^{2}
$$

The subgraph not touching forward path 7 shown in (d)

$$
\Delta_{7}=1-\left(X+X^{4}+X^{5}\right)+\left(X^{5}\right)=1-X-X^{4}
$$

$$
\begin{aligned}
A(X) & =\frac{\sum_{i} F_{i} \Delta_{i}}{\Delta} \\
& =\frac{X^{6}+X^{7}-X^{8}}{1-2 X-X^{3}} \\
& =X^{6}+3 X^{7}+5 X^{8}+11 X^{9}+25 X^{10}+\ldots
\end{aligned}
$$

The codeword WEF A(X) provides a complete description of the weight distribution of all nonzero codewords

In this case there is one such codeword of weight 6 , three of weight 7 , five of weight 8 , and so on

Input-Output Weight Enumerating Function (IOWEF

If the modified state diagram is augmented by labeling each branch corresponding to a nonzero information block with W^{w}, where w is the weight of k information bits on that branch, and labeling each branch with L, then the codeword (IOWEF) is

$$
A(W, X, L)=\sum_{w, d, l} A_{w, d, l} W^{w} X^{d} L^{l}
$$

Convolutional Codes

Convolutional Codes
$A(W, X, L)=\frac{x^{6} W^{2} L^{5}+x^{7} W L^{4}-x^{8} W^{2} L^{5}}{1-X W\left(L+L^{2}\right)}$
$=x^{6} W^{2} L^{5}+x^{7}\left(W L^{4}+W^{3} L^{6}+W^{3} L^{7}\right)+x^{8}\left(W^{2} L^{6}+W^{4} L^{7}+W^{4} L^{8}+2 W^{4} L^{9}\right.$
This implies that the codeword of weight 6 has length- 5 branches and an information weight of 2 ,one codeword of weight 7 has length- 4 branches and information weight 1, another has length- 6 branches and information weight 3 , the third has length- 7 branches and information weight 3 , and so on

Punctured Convolutional Codes

1. Punctured convolutional codes are derived from the mother code by periodically deleting certain code bits in the code sequence of the mother code:

$$
\left(n_{m}, k_{m}, m_{m}\right) \underset{\rightarrow}{p}\left(n_{p}, k_{p}, m_{p}\right)
$$

where P is an $n_{m} \times k_{p} / k_{m}$ puncturing matrix with elements $p_{i j} \in\{0,1\}$
2. A 0 in P means the deletion of a bit and a 1 means that this position is remained the same in the puncture sequence
3. Let $p=n_{m} k_{p} / k_{m}$ be the puncture period (the number of all element in P)and $w \leq p$ be the number of 1 elements in P

CC Lab, EE, NCHU

Convolutional Codes

It is clear that $w=n_{p}$. The rate of the puncture code is now

$$
R_{p}=\frac{k_{p}}{n_{p}}=\frac{k_{m} p}{n_{m}} \frac{1}{w}=\frac{p}{w} R_{m}
$$

4. Since $w \leq p$, we have $R_{m} \leq R_{p}$
5. w can not be too small in order to assure that $R_{p} \leq 1$

Convolutional Codes

Example of the Punctured Convolutional Code

1. Consider the $(2,1,2)$ code with the generator matrix

$$
G=\left(\begin{array}{lllll}
11 & 10 & 11 & & \\
& 11 & 10 & 11 & \\
& & \ddots & & \ddots
\end{array}\right)
$$

2. Let

$$
P=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 \\
& & & & &
\end{array}\right)
$$

be the punctured matrix
3. The code rate of the punctured code is $\frac{k_{p}}{n_{p}}=\frac{6}{7}$
4. If l th code bit is removed then the respective
column of the generator matrix of the mother code must be deleted

CC Lab, EE, NCHU

Convolutional Codes

Optimal decoding: Viterbi and BCJR decoding

- We will discuss three decoding algorithms:

The Viterbi algorithm

1. Viterbi decoding: 1967 by Viterbi
2. SOVA decoding: 1989 by Hagenauer
3. BCJR decoding: 1974 by Bahl etc.

- These algorithms are operated on the trellis of the codes and the complexity depends on the number of states in the trellis.
- We can apply these algorithms on block and convolutional codes since the former has the regular trellis and the latter has the irregular trellis.
- Viterbi and SOVA decoding minimize the codeword error probability and BCJR minimize the information bit error probability.
- Assume that an information sequence $u=\left(u_{0}, u_{1}, \ldots, u_{h-1}\right)$ of the length $K^{*}=k h$ is encoded.
- Then a codeword $v=\left(v_{0}, v_{1}, \ldots, v_{h+m-1}\right)$ of length $N=n(h+m)$ is generated after the convolutional encoder.
- Thus, with zero-biting of $m k$ zero bits, we have a $[n(h+m), k h]$ linear block code.
- After the discrete memoryless channel (DMC), a sequence $r=\left(r_{0}, r_{1}, \ldots, r_{h+m-1}\right)$ is received. We will focus on a BSC, a binary-input/Q-ary output, and AWGN channels.
- A (ML) decoder for a DMC chooses \hat{v} as the codeword v that maximizes the \log-likelihood function $\log p(r \mid v)$.

CC Lab, Ee, NCHU
CC Lab, EE, NCHU

Convolutional Codes

- Then we can write the path metric $M(\mathbf{r} \mid \mathbf{v})$ as the sum of the branch metrics

$$
M(\mathbf{r} \mid \mathbf{v})=\sum_{l=0}^{h+m-1} M\left(\mathbf{r}_{l} \mid \mathbf{v}_{l}\right)=\sum_{l=0}^{h+m-1} \log p\left(\mathbf{r}_{l} \mid \mathbf{v}_{l}\right)
$$

or the sum of the bit metrics

$$
M(\mathbf{r} \mid \mathbf{v})=\sum_{l=0}^{N-1} M\left(r_{l} \mid v_{l}\right)=\sum_{l=0}^{N-1} \log p\left(r_{l} \mid v_{l}\right)
$$

- We define the bit metric, branch metric, and path metric as the log-likelihood function of the corresponding conditional probability functions as follows:

$$
\begin{aligned}
M\left(r_{l} \mid v_{l}\right) & =\log p\left(r_{l} \mid v_{l}\right), \\
M\left(\mathbf{r}_{l} \mid \mathbf{v}_{l}\right) & =\log p\left(\mathbf{r}_{l} \mid \mathbf{v}_{l}\right), \\
M(\mathbf{r} \mid \mathbf{v}) & =\log p(\mathbf{r} \mid \mathbf{v})
\end{aligned}
$$

- Similarly, a partial metric for the first t branch of a path can be written as

$$
M\left([\mathbf{r} \mid \mathbf{v}]_{t}\right)=\sum_{l=0}^{t-1} M\left(\mathbf{r}_{l} \mid \mathbf{v}_{l}\right)=\sum_{l=0}^{n t-1} M\left(r_{l} \mid v_{l}\right)
$$

- The basic operations of the Viterbi algorithm is the addition, comparison, and selection (ACS).
- At each time unit t, considering each state s_{t} and 2^{k} previous
- The above algorithm, when applied to the received sequence r from a DMC, find the path through the trellis with the largest metric, that is the maximum likelihood path (codeword). metric of s_{t} by adding the branch metric connecting between s_{t} and s_{t-1} to the partial metric of s_{t-1} and selecting the largest
- The final survivor $\hat{\mathbf{v}}$ in the Viterbi algorithm is the maximum likelihood path; that is

$$
M(\mathbf{r} \mid \hat{\mathbf{v}}) \geq M(\mathbf{r} \mid \mathbf{v}), \text { all } \mathbf{v} \neq \hat{\mathbf{v}}
$$

- We store the optimum path (survivor) with the partial metric for each state s_{t} at time t.
- In other words, we have to store 2^{ν} survivor pathes along with its optimal partial metric from time m to time h.

Convolutional Codes

Figure 15: Elimination of the maximum likelihood path contradicts to the definition of optimal metric

- Consider a $(3,1,2)$ convolutional code with

$$
G(D)=\left[1+D, 1+D^{2}, 1+D+D^{2}\right]
$$

with $m=2$ and $h=5$.

- With zero-biting, we have a $[3(5+2), 5]=[21,5]$ linear block code.
- The first $m=2$ unit and the last $m=2$ unit of the trellis correspond to the departure of the initial state s_{0} and the return of the final state s_{0}.
- The central units correspond to the replica of the state diagram with $2^{k}=2$ branches leaving and entering each state.
- Each branch is labelled with u_{i} / v_{i} of k-bit input u_{i} and n-bit output v_{i}.

CC Lab, EE, NCHU

Convolutional Codes

Convolutional Codes

The quaternary received sequence is

$$
r=\left(1_{1} 1_{2} 0_{1}, 1_{1} 1_{1} 0_{2}, 1_{1} 1_{1} 0_{1}, 1_{1} 1_{1} 1_{1}, 0_{1} 1_{2} 0_{1}, 1_{2} 0_{2} 1_{1}, 1_{2} 0_{1} 1_{1}\right)
$$

The final survivor is

$$
\hat{v}=(111,010,110,011,000,000,000)
$$

The decoded information sequence is

$$
\hat{u}=(1,1,0,0,0)
$$

Viterbi Algorithm for a BSC

- In BSC with transition probability $p<1 / 2$, the received sequence r is binary and the log-likelihood function becomes

$$
\log p(\mathbf{r} \mid \mathbf{v})=d(\mathbf{r}, \mathbf{v}) \log \frac{p}{1-p}+N \log (1-p)
$$

where $d(r, v)$ is the Hamming distance between r and v.

- Because $\log \frac{p}{1-p}<0$ and $N \log (1-p)$ is a constant for all v, an MLD for a BSC chooses v as the codeword \hat{v} that minimizes the Hamming distance

$$
d(\mathbf{r}, \mathbf{v})=\sum_{l=0}^{h+m-1} d\left(\mathbf{r}_{l}, \mathbf{v}_{l}\right)=\sum_{l=0}^{N-1} d\left(r_{l}, v_{l}\right)
$$

CC Lab, EE, NCHU
CC Lab, EE, NCHU

Convolutional Codes

- In the BSC case, maximizing the log-likelihood function is equivalent to finding the codeword v that is closest to the received sequence r in Hamming distance.
- In the AWGN case, maximizing the log-likelihood function is equivalent to finding the codeword v that is closest to the received sequence r in Euclidean distance.

That final survivor has a metric of 7 means that no other path through the trellis differs from r in fewer than seven positions.

Viterbi Algorithm for an AWGN

- Consider the AWGN channel with binary input, i.e.,

$$
v=\left(v_{0}, v_{1}, \cdots, v_{N-1}\right)
$$

where $v_{i} \in\{1,-1\}$.

- The bit metric $M\left(r_{l} \mid v_{l}\right)$ for an AWGN with binary input of unit energy and PSD $N_{0} /\left(2 E_{s}\right)$ is

$$
p\left(r_{l} \mid v_{l}\right)=\sqrt{\frac{E_{s}}{\pi N_{0}}} e^{-\frac{E_{s}}{N_{0}}\left(r_{l}-v_{l}\right)^{2}}
$$

CC Lab, EE, NCHU

- The path metric can be simplified as

$$
\begin{aligned}
M(r \mid v) & =\log p(r \mid v) \\
& =-\frac{E_{s}}{N_{0}} \sum_{l=0}^{N-1}\left(r_{l}-v_{l}\right)^{2}+\frac{N}{2} \log \frac{E_{s}}{\pi N_{0}} .
\end{aligned}
$$

- A codeword v minimize the Euclidean distance $\sum_{l=0}^{N-1}\left(r_{l}-v_{l}\right)^{2}$ also maximize the \log-likelihood function $\log p(r \mid v)$.
- We can define a new path metric of v as

$$
M(r \mid v)=\sum_{l=0}^{N-1}\left(r_{l}-v_{l}\right)^{2}
$$

and the Viterbi algorithm finds the optimal path v with minimum Euclidean distance from r.

Convolutional Codes

- The path metric can also be simplified as

$$
\begin{aligned}
M(r \mid v) & =\log p(r \mid v) \\
& =-\frac{E_{s}}{N_{0}} \sum_{l=0}^{N-1}\left(r_{l}^{2}-2 r_{l} v_{l}+v_{l}^{2}\right)+\frac{N}{2} \log \frac{E_{s}}{\pi N_{0}} \\
& =\frac{2 E_{s}}{N_{0}} \sum_{l=0}^{N-1} r_{l} \cdot v_{l}-\frac{E_{s}}{N_{0}}\left(|r|^{2}+N\right)+\frac{N}{2} \log \frac{E_{s}}{\pi N_{0}}
\end{aligned}
$$

The Soft-Output Viterbi Algorithm

- In a series or parallel concatenated decoding system, usually one decoder passes reliability information about its decoded outputs to the other decoder, which refer to the soft in/soft out decoding.
- A codeword v maximize the correlation $r \cdot v$ also maximize the \log-likelihood function $\log p(r \mid v)$.
- The combination of the hard-decision output and the reliability indicator is called a soft output.
- We can define a new path metric of v as $M(r \mid v)=\sum_{l=0}^{N-1} r_{l} \cdot v_{l}$ and the Viterbi algorithm finds the optimal path v with maximum correlation from r.

$$
\begin{aligned}
M\left([\mathbf{r} \mid \mathbf{v}]_{t+1}\right) & =\log \left\{\left[\prod_{l=0}^{t-1} p\left(\mathbf{r}_{l} \mid \mathbf{v}_{l}\right) p\left(u_{l}\right)\right] p\left(\mathbf{r}_{t} \mid \mathbf{v}_{t}\right) p\left(u_{t}\right)\right\} \\
& =\log \left\{\left[\prod_{l=0}^{t-1} p\left(\mathbf{r}_{l} \mid \mathbf{v}_{l}\right)\right\}+\left\{\sum_{j=0}^{n-1} \log \left[p\left(r_{t}^{(j)} \mid v_{t}^{(j)}\right)\right]+\log \left[p\left(u_{t}\right)\right]\right\}\right.
\end{aligned}
$$

By multiplying each term in the second sum by 2 and introducing constants $C_{r}^{(j)}$ and C_{u} as follows:

$$
\left\{\sum_{j=0}^{n-1}\left[2 \log \left[p\left(r_{t}^{(j)} \mid v_{t}^{(j)}\right)\right]-C_{r}^{(j)}\right]+\left[2 \log \left[p\left(u_{t}\right)\right]-C_{u}\right]\right\}
$$

where the constants
$C_{r}^{(j)} \equiv \log \left[p\left(r_{t}^{(j)} \mid v_{t}^{(j)}=+1\right)\right]+\log \left[p\left(r_{t}^{(j)} \mid v_{t}^{(j)}=-1\right)\right], j=0,1, \ldots, n-1$

$$
C_{u} \equiv \log \left[p\left(u_{t}=+1\right)\right]+\log \left[p\left(u_{t}=-1\right)\right]
$$

- The \log-likelihood ratio, or L-value, of a received symbol r at the output with binary inputs $v= \pm 1$ is defined as

$$
L(r)=\log \left[\frac{p(r \mid v=+1)}{p(r \mid v=-1)}\right]
$$

- The L-value of an information bit u is define as

$$
L(u)=\log \left[\frac{p(u=+1)}{p(u=-1)}\right]
$$

- A large positive $L(r)$ indicates a high reliability that $v=1$ and a large negative $L(r)$ indicates a high reliability that $v=-1$.
- Since he bit metric $M\left(r_{l} \mid v_{l}\right)$ for an AWGN with binary input of
- Assume that a comparison is being made at state unit energy and $\operatorname{PSD} N_{0} /\left(2 E_{s}\right)\left(\operatorname{SNR}=1 /\left(N_{0} / E_{s}\right)=E_{s} / N_{0}\right)$ is

$$
p\left(r_{l} \mid v_{l}\right)=\sqrt{\frac{E_{s}}{\pi N_{0}}} e^{-\frac{E_{s}}{N_{0}}\left(r_{l}-v_{l}\right)^{2}}
$$

$$
s_{i}, i=0,1, \ldots, 2^{\nu}-1
$$

between the maximum likelihood (ML) path $[v]_{t}$ and an incorrect path $\left[v^{\prime}\right]_{t}$ at time $l=t$
the L-value of r is thus

$$
L(r)=\log \left[\frac{p(r \mid v=+1)}{p(r \mid v=-1)}\right]=\left(4 E_{s} / N_{0}\right) r
$$

- Defining $L_{C} \equiv 4 E_{s} / N_{0}$ as the channel reliability factor, the modified metric for SOVA decoding can be written by
- Define the metric difference between $[v]_{t}$ and $\left[v^{\prime}\right]_{t}$ as

$$
\Delta_{t-1}\left(S_{i}\right)=\frac{1}{2}\left\{M^{*}\left([\mathbf{r} \mid \mathbf{v}]_{t}\right)-M^{*}\left(\left[\mathbf{r} \mid \mathbf{v}^{\prime}\right]_{t}\right)\right\}
$$

- The probability $P(C)$ that the ML path is correctly seleted at time t is given by

$$
P(C)=\frac{p\left([\mathbf{v} \mid \mathbf{r}]_{t}\right)}{p\left([\mathbf{v} \mid \mathbf{r}]_{t}\right)+p\left(\left[\mathbf{v}^{\prime} \mid \mathbf{r}\right]_{t}\right)}
$$

Convolutional Codes

Convolutional Codes

A reliability vector at time $l=m+1$ for state S_{i} as follows:

$$
\begin{gathered}
L_{m+1}\left(S_{i}\right)=\left[L_{0}\left(S_{i}\right), L_{1}\left(S_{i}\right), \ldots, L_{m}\left(S_{i}\right)\right] \\
L_{l}\left(S_{i}\right) \equiv \begin{cases}\Delta_{m}\left(S_{i}\right) & , u_{l} \neq u_{l}^{\prime} \\
\infty & , u_{l} \neq u_{l}^{\prime}\end{cases} \\
l=0,1, \ldots, m
\end{gathered}
$$

the reliability of a bit position is either ∞, if it is not affected by the path decision

- The above SOVA decoding is one-way version since we have to store the optimal survivor, the optimal partial metric, and reliability vector for each state s_{t} in time unit t.
- We can have two-way version for Viterbi and SOVA algorithm.
- In two-way version, we have to do forward recursion and backward recursion simultaneously and store the optimal forward metric and optimal backward metric, but we do not have to store the optimal path.
- We make the final decision on each information bit by adding the optimal forward metric, optimal backward metric, and the branch metric.

Step 2: Backward recursion

- step 2-1:
$-i=h+m ;$
- partial path metric $\mu_{h+m}\left(s_{0}^{\tau}\right)=0$;

$$
\mu_{h+m}\left(s_{1}^{\tau}\right)=\mu_{h+m}\left(s_{2}^{\tau}\right)=\mu_{h+m}\left(s_{3}^{\tau}\right)=\infty
$$

- step 2-2:
$-i=i-1$
- for $l=0,1,2,3$

$$
\begin{array}{r}
\mu_{\tau}\left(s_{l}^{i}\right)=\min \left\{\mu_{\tau}\left(s_{0}^{i+1}\right)+\operatorname{Branch}\left(s_{0}^{i+1}, s_{l}^{i}\right)\right\} \\
\mu_{\tau}\left(s_{1}^{i+1}\right)+\operatorname{Branch}\left(s_{1}^{i+1}, s_{l}^{i}\right) \\
\mu_{\tau}\left(s_{2}^{i+1}\right)+\operatorname{Branch}\left(s_{2}^{i+1}, s_{l}^{i}\right) \\
\left.\mu_{\tau}\left(s_{3}^{i+1}\right)+\operatorname{Branch}\left(s_{3}^{i+1}, s_{l}^{i}\right)\right\}
\end{array}
$$

where $\operatorname{Branch}(\cdot, \cdot)$ is the branch metric.

- step 2-3: Go to step 2 until $i=0$.

Step 3: Soft decision

- step 3-1: $i=0$
- step 3-2:
$-i=i+1$

The complexity of SOVA

-

$$
\lambda_{i}^{0}=\min _{s, \bar{s}}\left\{\mu_{f}\left(S_{s}^{i-1}\right)+\operatorname{Branch}_{0}\left(S_{s}^{i-1}, S_{\bar{s}}^{i}\right)+\mu_{\gamma}\left(S_{\bar{s}}^{i}\right)\right\}
$$

where $\operatorname{Branch}_{0}\left(S_{s}^{i-1}, S_{\bar{s}}^{i}\right)$ is the branch metric from node S_{s}^{i-1} to $S_{\bar{s}}^{i}$ which corresponds to $c_{i}=0$ (if no such branch exists, the branch metric is assigned infinity)

$$
\lambda_{i}^{1}=\min _{s, \bar{s}}\left\{\mu_{f}\left(S_{s}^{i-1}\right)+\operatorname{Branch}_{1}\left(S_{s}^{i-1}, S_{\bar{s}}^{i}\right)+\mu_{\gamma}\left(S_{\bar{s}}^{i}\right)\right\}
$$

- In fact, the computational complexity of the SOVA is about 1.5 times of the VA. where $\operatorname{Branch}_{1}\left(S_{s}^{i-1}, S_{\bar{s}}^{i}\right)$ is the branch metric from node S_{s}^{i-1} to $S_{\bar{s}}^{i}$ which corresponds to $c_{i}=1$
- $\operatorname{step} 3-3: ~ \Lambda(i)=\lambda_{i}^{0}-\lambda_{i}^{1}$

CC Lab, EE, NCHU

The BCJR Algorithm

- In 1974 Bahl, Cocke, Jelinek, and Ravi introduced a MAP

We describe the BCJR algorithm for the case of rate $R=1 / n$ decoder, called the BCJR algorithm
convolutional codes used on a binary-input, continous-output AWGN

- The computation complexity of the BCJR algorithm is greater than the Viterbi algorithm

Our presentation is based on the log-likelihood ratios, or L-values. The decoder input are the received sequence r and a priori L -value of

- Viterbi decoding is preferred in the case of equally likely the information bits $L_{a}\left(u_{l}\right), l=0,1, \ldots, h-1$.

As in the case of the SOVA, we do not assume that the information bits are equally likely. The algorithm calculates the a posteriori
L-values

$$
\left.L_{(} u_{l}\right) \equiv \log \left[\frac{P\left(u_{l}=+1 \mid \mathbf{r}\right)}{P\left(u_{l}=-1 \mid \mathbf{r}\right)}\right]
$$

called the $A P P$ L-values, of each information bits, and the decoder output is given by

$$
\hat{u}_{l}=\left\{\begin{array}{cc}
+1 & \text { if } L\left(u_{l}\right)>0 \\
-1 & \text { if } L\left(u_{l}\right)<0
\end{array} \quad, l=0,1, \ldots, h-1\right.
$$

In iterative decoding, the APP L-values can be taken as the decoder outputs, resulting in a SISO decoding algorithm.

[^3]CC Lab, EE, NCHU

First, making use of the trellis structure of the code, we can reformulate $p\left(u_{l}=+1 \mid \mathbf{r}\right)$ as follow:

$$
P\left(u_{l}=+1 \mid \mathbf{r}\right)=\frac{p\left(u_{l}=+1, \mathbf{r}\right)}{P(\mathbf{r})}=\frac{\sum_{\left(s, s^{\prime}\right) \in \Sigma_{l}^{+}} p\left(s_{l}=s^{\prime}, s_{l+1}=s, \mathbf{r}\right)}{P(\mathbf{r})}
$$

where Σ_{l}^{+}is the set of all state pairs $s_{l}=s^{\prime}$ and $s_{l+1}=s$ that correspond to the input bit $u_{l}=+1$ at time l. Reformulating the expression $p\left(u_{l}=-1 \mid \mathbf{r}\right)$ in the same way, we can now write the APP
L-value as

$$
L\left(u_{l}\right)=\ln \left\{\frac{\sum_{\left(s, s^{\prime}\right) \in \Sigma_{l}^{+}} p\left(s_{l}=s^{\prime}, s_{l+1}=s, \mathbf{r}\right)}{\sum_{\left(s, s^{\prime}\right) \in \Sigma_{l}^{-}} p\left(s_{l}=s^{\prime}, s_{l+1}=s, \mathbf{r}\right)}\right\}
$$

where Σ_{l}^{-}is the set of all state pairs $s_{l}=s^{\prime}$ and $s_{l+1}=s$ that correspond to the input bit $u_{l}=-1$ at time l.

The joint pdf's $p\left(s^{\prime}, s, \mathbf{r}\right)$ can be evaluated recursively.
where the last equality follows from the fact that probability of the received branch at time l depend only on the state and input bit at time l.
Define :

$$
\begin{gathered}
\alpha_{l}\left(s^{\prime}\right) \equiv p\left(s^{\prime}, \mathbf{r}_{t<l}\right) \\
\gamma_{l}\left(s^{\prime}, s\right) \equiv p\left(s, \mathbf{r}_{l} \mid s^{\prime}\right) \\
\beta_{l+1}(s) \equiv p\left(\mathbf{r}_{t>l} \mid s\right)
\end{gathered}
$$

$$
P\left(s^{\prime}, s, \mathbf{r}\right)=\beta_{l+1}(s) \gamma_{l}\left(s^{\prime}, s\right) \alpha_{l}\left(s^{\prime}\right)
$$

CC Lab, EE, NCHU

CC Lab, EE, NCHU

Backward recursion:

$$
\begin{aligned}
\beta_{l}\left(s^{\prime}\right) & =P\left(r_{t>l-1} \mid s^{\prime}\right)=\sum_{s \in \sigma_{l+1}} P\left(r_{t>l-1}, s \mid s^{\prime}\right)=\sum_{s \in \sigma_{l+1}} \frac{P\left(r_{l}, s, s^{\prime}\right)}{P\left(s^{\prime}\right)} \\
& =\sum_{s \in \sigma_{l+1}} \frac{P\left(r_{l}, s, s^{\prime}, r_{t>l}\right)}{P\left(s^{\prime}\right)}=\sum_{s \in \sigma_{l+1}} \frac{P\left(r_{t>l} \mid s, s^{\prime}, r_{l}\right) P\left(s, s^{\prime}, r_{l}\right)}{P\left(s^{\prime}\right)} \\
& =\sum_{s \in \sigma_{l+1}} \frac{P\left(r_{t>l} \mid s\right) P\left(s, s^{\prime}, r_{l}\right)}{P\left(s^{\prime}\right)}=\sum_{s \in \sigma_{l+1}} \frac{P\left(r_{t>l} \mid s\right) P\left(s, s^{\prime}, r_{l}\right)}{P\left(s^{\prime}\right)} \\
& =\sum_{s \in \sigma_{l+1}} \frac{\beta_{l+1}(s) P\left(s, r_{l} \mid s^{\prime}\right) P\left(s^{\prime}\right)}{P\left(s^{\prime}\right)}=\sum_{s \in \sigma_{l+1}} \beta_{l+1}(s) \gamma_{l}\left(s, s^{\prime}\right)
\end{aligned}
$$

We can write the branch matric $\gamma_{l}\left(s^{\prime}, s\right)$ as

$$
\begin{aligned}
\gamma_{l}\left(s, s^{\prime}\right) & =P\left(s, \mathbf{r}_{l} \mid s^{\prime}\right)=\frac{p\left(s^{\prime}, s, \mathbf{r}_{l}\right)}{p\left(s^{\prime}\right)} \\
& =\left[\frac{p\left(s, s^{\prime}\right)}{p\left(s^{\prime}\right)}\right]\left[\frac{p\left(s^{\prime}, s, \mathbf{r}_{l}\right)}{p\left(s, s^{\prime}\right)}\right] \\
& =P\left(s \mid s^{\prime}\right) P\left(\mathbf{r}_{l} \mid s^{\prime}, s\right)=P\left(u_{l}\right) P\left(\mathbf{r}_{l} \mid \mathbf{v}_{l}\right)
\end{aligned}
$$

The constant term $\left(\sqrt{\frac{E_{s}}{\pi N_{0}}}\right)^{n}$ always appears raised to the power h in the expression for the pdf $p\left(s^{\prime}, s, \mathbf{r}\right)$. Thus, $\left(\sqrt{\frac{E_{s}}{\pi N_{0}}}\right)^{n h}$ will be a factor of every term in the numerator and denominator summations
For a continous-output AWGN channel, if $s^{\prime} \rightarrow s$ is a valid state transition,

$$
\gamma_{l}\left(s^{\prime} s\right)=P\left(u_{l}\right) p\left(\mathbf{r}_{l} \mid \mathbf{v}_{l}\right)=P\left(u_{l}\right)\left(\sqrt{\frac{E_{s}}{\pi N_{0}}}\right)^{n} e^{-\frac{E_{s}}{N_{0}}\left\|\mathbf{r}_{l}-\mathbf{v}_{l}\right\|^{2}}
$$

where $\left\|\mathbf{r}_{l}-\mathbf{v}_{l}\right\|^{2}$ is the squared Eucliden distance between the received branch \mathbf{r}_{l} and the transmitted branch \mathbf{v}_{l} at time l

[^4]CC Lab, EE, NCHU
then

$$
\begin{aligned}
\gamma_{l}\left(s, s^{\prime}\right) & =A_{l} e^{u_{l} L_{a}\left(u_{l}\right) / 2} e^{-\left(E_{s} / N_{0}\right)\left\|\mathbf{r}_{l}-\mathbf{v}_{l}\right\|^{2}} \\
& =A_{l} e^{u_{l} L_{a}\left(u_{l}\right) / 2} e^{\left(2 E_{s} / N_{0}\right)\left(\mathbf{r}_{l} \cdot \mathbf{v}_{l}\right)-\left\|\mathbf{r}_{l}\right\|^{2}-\left\|\mathbf{v}_{l}\right\|^{2}} \\
& =A_{l} e^{-\left(\left\|\mathbf{r}_{l}\right\|^{2}+n\right)} e^{u_{l} L_{a}\left(u_{l}\right) / 2} e^{\left(L_{c} / 2\right)\left(\mathbf{r}_{l} \cdot \mathbf{v}_{l}\right)} \\
& =A_{l} B_{l} e^{u_{l} L_{a}\left(u_{l}\right) / 2} e^{\left(L_{c} / 2\right)\left(\mathbf{r}_{l} \cdot \mathbf{v}_{l}\right)}, l=0,1, \ldots, h-1 \\
\gamma_{l}\left(s^{\prime}, s\right) & =P\left(u_{l}\right) e^{-\left(E_{s} / N_{0}\right)\left\|\mathbf{r}_{l}-\mathbf{v}_{l}\right\|^{2}} \\
& =e^{-\left(E_{s} / N_{0}\right)\left\|\mathbf{r}_{l}-\mathbf{v}_{l}\right\|^{2}} \\
& =B_{l} e^{\left(L_{c} / 2\right)\left(\mathbf{r}_{l} \cdot \mathbf{v}_{l}\right)}, l=h, h+1, \ldots, K-1
\end{aligned}
$$

where $B_{l} \equiv\left\|\mathbf{r}_{l}\right\|^{2}+n$ is a constant independent of the codeword \mathbf{v}_{l}, and $L_{c}=4 E_{S} / N_{0}$ is the channel reliability factor.

We define a max calculate function:
Using the log-domain metric:
$\gamma_{l}^{*}\left(s^{\prime}, s\right) \equiv \ln \gamma_{l}\left(s^{\prime}, s\right)= \begin{cases}\frac{u_{l} L_{a}\left(u_{l}\right)}{2}+\frac{L_{c}}{2} \mathbf{r}_{l} \cdot \mathbf{v}_{l} & l=0,1, \ldots, h-1 \\ \frac{L_{c}}{2} \mathbf{r}_{l} \cdot \mathbf{v}_{l} & l=h, h+1, \ldots, K-1\end{cases}$

$$
\max ^{*}(x, y)=\ln \left(e^{x}+e^{y}\right)=\max (x, y)+\ln \left(1+e^{-|x-y|}\right)
$$

Convolutional Codes

$$
\begin{aligned}
& \alpha_{l+1}^{*}(s) \equiv \ln \alpha_{l+1}(s)=\ln \sum_{s^{\prime} \in \sigma_{l}} \gamma_{l}\left(s^{\prime}, s\right) \alpha_{l}\left(s^{\prime}\right) \\
&=\ln \sum_{s^{\prime} \in \sigma_{l}} e^{\left[\gamma_{l}^{*}\left(s^{\prime}, s\right)+\alpha_{l}^{*}\left(s^{\prime}\right)\right]} \\
&=\max _{s^{\prime} \in \sigma_{l}}^{*}\left[\gamma_{l}^{*}\left(s^{\prime}, s\right)+\alpha_{l}^{*}\left(s^{\prime}\right)\right] \\
& l=0,1, \ldots, K-1
\end{aligned} \begin{aligned}
& \alpha_{0}^{*}(s) \equiv \ln \alpha_{0}(s)=\left\{\begin{array}{cc}
0, & s=0 \\
-\infty, & s \neq 0
\end{array}\right.
\end{aligned}
$$

Convolutional Codes

$$
\begin{aligned}
& \beta_{l}^{*}(s) \equiv \ln \beta_{l}\left(s^{\prime}\right)=\ln \sum_{s \in \sigma_{l+1}} \gamma_{l}\left(s^{\prime}, s\right) \beta_{l+1}(s) \\
&=\ln \sum_{s \in \sigma_{l+1}} e^{\left[\gamma_{l}^{*}\left(s^{\prime}, s\right)+\beta_{l+1}^{*}(s)\right]} \\
&=\max _{s^{\prime} \in \sigma_{l+1}}^{*}\left[\gamma_{l}^{*}\left(s^{\prime}, s\right)+\beta_{l+1}^{*}(s)\right] \\
& l=K-1, K-2, \ldots, 0 \\
& \beta_{K}^{*}(s) \equiv \ln \beta_{K}(s)=\left\{\begin{array}{cc}
0, & s=0 \\
-\infty, & s \neq 0
\end{array}\right.
\end{aligned}
$$

Termination using MAX-LOG

Log-Domain BCJR Algorithm

$$
P\left(s^{\prime}, s, \mathbf{r}\right)=e^{\beta_{l+1}^{*}(s)+\gamma_{l}^{*}\left(s^{\prime}, s\right)+\alpha_{l}^{*}\left(s^{\prime}\right)}
$$

1. Initial the forward and backward metrics $\alpha_{0}^{*}(s)$ and $\beta_{k}^{*}(s)$
2. compute the branch metrics $\gamma_{l}^{*}\left(s^{\prime}, s\right), l=0,1, \ldots, K-1$

$$
\begin{gathered}
L\left(u_{l}\right)=\ln \left\{\sum_{\left(s^{\prime}, s\right) \in \Sigma_{l}^{+}} e^{\beta_{l+1}^{*}(s)+\gamma_{l}^{*}\left(s^{\prime}, s\right)+\alpha_{l}^{*}\left(s^{\prime}\right)}\right\} \\
-\ln \left\{\sum_{\left(s^{\prime}, s\right) \in \Sigma_{l}^{-}} e^{\beta_{l+1}^{*}(s)+\gamma_{l}^{*}\left(s^{\prime}, s\right)+\alpha_{l}^{*}\left(s^{\prime}\right)}\right\}
\end{gathered}
$$

3. compute the forward metrics $\alpha_{l+1}^{*}(s), l=0,1, \ldots, K-1$
4. compute the backward metrics $\beta_{l}^{*}\left(s^{\prime}\right), l=K-1, K-2, \ldots, 0$
5. compute4 the APP L-values $L\left(u_{l}\right), l=0,1, \ldots, h-1$
6. (Optional) compute the hard decisions $\hat{u}_{l}, l=0,1, \ldots, h-1$
[^5]CC Lab, EE, NCHU

Ex: BCJR decoding of a $(2,1,1)$ systematic recursive Convolutional code on an AWGN channel

Figure 16: $(2,1,1)$ systematic feedback encoder

Convolutional Codes

Figure 17: decoding trellis for the $(2,1,1)$ encoder
$\gamma_{0}^{*}\left(S_{0}, S_{0}\right)=-\frac{1}{2} L_{a}\left(u_{0}\right)+\frac{1}{2} r_{0} \cdot v_{0}$
$=\frac{1}{2}(-0.8-0.1)=-0.45$
$\gamma_{0}^{*}\left(S_{0}, S_{1}\right)=+\frac{1}{2} L_{a}\left(u_{0}\right)+\frac{1}{2} r_{0} \cdot v_{0}$
$=\frac{1}{2}(0.8+0.1)=0.45$
$\gamma_{1}^{*}\left(S_{0}, S_{0}\right)=-\frac{1}{2} L_{a}\left(u_{0}\right)+\frac{1}{2} r_{0} \cdot v_{0}$
$=\frac{1}{2}(-1.0+0.5)=-0.25$
$\gamma_{1}^{*}\left(S_{0}, S_{1}\right)=+\frac{1}{2} L_{a}\left(u_{0}\right)+\frac{1}{2} r_{0} \cdot v_{0}$
$=\frac{1}{2}(1.0-0.5)=0.25$

$$
\begin{aligned}
\gamma_{1}^{*}\left(S_{1}, S_{1}\right) & =-\frac{1}{2} L_{a}\left(u_{1}\right)+\frac{1}{2} r_{1} \cdot v_{1} \\
& =\frac{1}{2}(-1.0-0.5)=-0.75 \\
\gamma_{1}^{*}\left(S_{1}, S_{0}\right) & =+\frac{1}{2} L_{a}\left(u_{1}\right)+\frac{1}{2} r_{1} \cdot v_{1} \\
& =\frac{1}{2}(1.0+0.5)=0.75 \\
\gamma_{2}^{*}\left(S_{0}, S_{0}\right) & =-\frac{1}{2} L_{a}\left(u_{2}\right)+\frac{1}{2} r_{2} \cdot v_{2} \\
& =\frac{1}{2}(-1.8+1.1)=0.35 \\
\gamma_{2}^{*}\left(S_{0}, S_{1}\right) & =+\frac{1}{2} L_{a}\left(u_{2}\right)+\frac{1}{2} r_{2} \cdot v_{2} \\
& =\frac{1}{2}(-1.8+1.1)=-0.35
\end{aligned}
$$

Convolutional Codes
$\gamma_{2}^{*}\left(S_{1}, S_{1}\right)=-\frac{1}{2} L_{a}\left(u_{2}\right)+\frac{1}{2} r_{2} \cdot v_{2}$
$=\frac{1}{2}(1.8+1.1)=1.45$
$\gamma_{2}^{*}\left(S_{1}, S_{0}\right)=+\frac{1}{2} L_{a}\left(u_{2}\right)+\frac{1}{2} r_{2} \cdot v_{2}$
$=\frac{1}{2}(-1.8-1.1)=-1.45$
$\gamma_{3}^{*}\left(S_{0}, S_{0}\right)=\frac{+1}{2} r_{3} \cdot v_{3}$
$=\frac{1}{2}(-1.6+1.6)=0$
$\gamma_{3}^{*}\left(S_{1}, S_{0}\right)=\frac{+1}{2} r_{3} \cdot v_{3}$

$$
=\frac{1}{2}(1.6+1.6)=1.6
$$

Convolutional Codes
compute the log-domain forward metrics

$$
\begin{aligned}
\alpha_{1}^{*}\left(S_{0}\right) & =\left[\gamma_{0}^{*}\left(S_{0}, S_{0}\right)+\alpha_{0}^{*}\left(S_{0}\right)\right]=-0.45+0=-0.45 \\
\alpha_{1}^{*}\left(S_{1}\right) & =\left[\gamma_{0}^{*}\left(S_{0}, S_{1}\right)+\alpha_{0}^{*}\left(S_{0}\right)\right]=0.45+0=0.45 \\
\alpha_{2}^{*}\left(S_{0}\right) & =\max ^{*}\left\{\left[\gamma_{1}^{*}\left(S_{0}, S_{0}\right)+\alpha_{1}^{*}\left(S_{0}\right)\right],\left[\gamma_{1}^{*}\left(S_{1}, S_{0}\right)+\alpha_{1}^{*}\left(S_{1}\right)\right]\right\} \\
& =\max ^{*}\{[(-0.25)+(-0.45)],[(0.75)+(0.45)]\} \\
& =\max ^{*}(-0.70,+1.20)=1.20+\ln \left(1+e^{-|-1.9|}\right)=1.34 \\
\alpha_{2}^{*}\left(S_{1}\right) & =\max ^{*}\left\{\left[\gamma_{1}^{*}\left(S_{0}, S_{1}\right)+\alpha_{1}^{*}\left(S_{0}\right)\right],\left[\gamma_{1}^{*}\left(S_{1}, S_{1}\right)+\alpha_{1}^{*}\left(S_{1}\right)\right]\right\} \\
& =\max ^{*}(-0.20,-0.30)=-0.20+\ln \left(1+e^{-|0.1|}\right)=0.44
\end{aligned}
$$

compute the log-domain backward metrics

$$
\begin{aligned}
\beta_{3}^{*}\left(S_{0}\right) & =\left[\gamma_{3}^{*}\left(S_{0}, S_{0}\right)+\beta_{4}^{*}\left(S_{0}\right)\right]=0+0=0 \\
\beta_{3}^{*}\left(S_{1}\right) & =\left[\gamma_{3}^{*}\left(S_{1}, S_{0}\right)+\beta_{4}^{*}\left(S_{0}\right)\right]=1.60+0=1.60 \\
\beta_{2}^{*}\left(S_{0}\right) & =\max ^{*}\left\{\left[\gamma_{2}^{*}\left(S_{0}, S_{0}\right)+\beta_{3}^{*}\left(S_{0}\right)\right],\left[\gamma_{2}^{*}\left(S_{0}, S_{1}\right)+\beta_{3}^{*}\left(S_{1}\right)\right]\right\} \\
& =\max ^{*}\{[(0.35)+(0)],[(-0.35)+(1.60)]\} \\
& =\max ^{*}(0.35,1.25)=1.25+\ln \left(1+e^{-|-0.9|}\right)=1.59 \\
\beta_{2}^{*}\left(S_{1}\right) & =\max ^{*}\left\{\left[\gamma_{2}^{*}\left(S_{1}, S_{0}\right)+\beta_{3}^{*}\left(S_{0}\right)\right],\left[\gamma_{2}^{*}\left(S_{1}, S_{1}\right)+\beta_{3}^{*}\left(S_{1}\right)\right]\right\}
\end{aligned}
$$

Finally compute the APP L-values for the three information bits
$L\left(u_{0}\right)=\left[\beta_{1}^{*}\left(S_{1}\right)+\gamma_{0}^{*}\left(S_{0}, S_{1}\right)+\alpha_{0}^{*}\left(S_{0}\right)\right]-\left[\beta_{1}^{*}\left(S_{0}\right)+\gamma_{0}^{*}\left(S_{0}, S_{0}\right)+\alpha_{0}^{*}\left(S_{0}\right)\right]$
$=(3.47)-(2.99)=+0.48$
$L\left(u_{1}\right)=\max ^{*}\left\{\left[\beta_{2}^{*}\left(S_{0}\right)+\gamma_{1}^{*}\left(S_{1}, S_{0}\right)+\alpha_{1}^{*}\left(S_{1}\right)\right],\left[\beta_{2}^{*}\left(S_{1}\right)+\gamma_{1}^{*}\left(S_{0}, S_{1}\right)+\alpha_{1}^{*}\left(S_{0}\right)\right]\right\}$ $-\max ^{*}\left\{\left[\beta_{2}^{*}\left(S_{0}\right)+\gamma_{1}^{*}\left(S_{0}, S_{0}\right)+\alpha_{1}^{*}\left(S_{0}\right)\right],\left[\beta_{2}^{*}\left(S_{1}\right)+\gamma_{1}^{*}\left(S_{1}, S_{1}\right)+\alpha_{1}^{*}\left(S_{1}\right)\right]\right\}$ $=\max ^{*}[(2.79),(2.86)]-\max ^{*}[(0.89),(2.76)]$
$=(3.52)-(2.90)=+0.6$
$=\max ^{*}\left\{\left[\beta_{3}^{*}\left(S_{0}\right)+\gamma_{2}^{*}\left(S_{1}, S_{0}\right)+\alpha_{2}^{*}\left(S_{1}\right)\right],\left[\beta_{3}^{*}\left(S_{1}\right)+\gamma_{2}^{*}\left(S_{0}, S_{1}\right)+\alpha_{2}^{*}\left(S_{0}\right)\right]\right\}$ $-\max ^{*}\left\{\left[\beta_{3}^{*}\left(S_{0}\right)+\gamma_{2}^{*}\left(S_{0}, S_{0}\right)+\alpha_{2}^{*}\left(S_{0}\right)\right],\left[\beta_{3}^{*}\left(S_{1}\right)+\gamma_{2}^{*}\left(S_{1}, S_{1}\right)+\alpha_{2}^{*}\left(S_{1}\right)\right]\right\}$
$=\max ^{*}[(-1.01),(2.59)]-\max ^{*}[(1.69),(3.49)]$
$=(2.62)-(3.64)=-1.02$

The hard-decision outputs of the BCJR decoder for the three information bits:

$$
\hat{u}=(+1,+1,-1)
$$

CC Lab, EE, NCHU

Let $u=\left(u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right)$ denote the input vector of length $K=h+m=6$ and $v=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ the codeword length $N=n K=12$

$$
p\left(u_{l}=0\right)=\left\{\begin{array}{cll}
2 / 3, & l=0,1,2,3 & \text { (informationbits) } \\
1, & l=4,5 & \text { (terminationbits })
\end{array}\right.
$$

The information bits are not equally likely
The received vector is given by

$$
r=\left(1_{4} 0_{1}, 0_{4} 1_{3}, 1_{4} 0_{4}, 0_{4} 1_{4}, 0_{4} 1_{2}, 0_{1} 0_{2}\right)
$$

compute the (probability-domain) branch metrics
$\gamma_{0}\left(S_{0}, S_{0}\right)=p\left(u_{0}=0\right) p\left(1_{4} 0_{1} \mid 00\right)=(2 / 3) p\left(1_{4} \mid 0\right) p\left(0_{1} \mid 0\right)$
$=(2 / 3)(0.058)(0.434)=0.01678$
$\gamma_{0}\left(S_{0}, S_{1}\right)=p\left(u_{0}=1\right) p\left(1_{4} 0_{1} \mid 11\right)=(1 / 3) p\left(1_{4} \mid 1\right) p\left(0_{1} \mid 1\right)$
$=(1 / 3)(0.111)(0.002)=0.000074$ $=$

Figure 18: decoding trellis for the $(2,1,2)$ code with $\mathrm{K}=6$ and $\mathrm{N}=12$

[^6]CC Lab, EE, NCHU

Convolutional Codes

Figure 19: branch metric values $\gamma_{l}\left(S^{\prime}, S\right)$
compute the (probability-domain) normalized forward metrics
$\alpha_{1}\left(S_{0}\right)=\gamma_{0}\left(S_{0}, S_{0}\right) \alpha_{0}\left(S_{0}\right)=(0.01678)(1)=0.01678$
$\alpha_{1}\left(S_{1}\right)=\gamma_{0}\left(S_{0}, S_{1}\right) \alpha_{0}\left(S_{0}\right)=(0.000074)(1)=0.000074$
$a_{1}=\alpha_{0}\left(S_{0}\right)+\alpha_{1}\left(S_{1}\right)=0.01678+0.000074=0.016854$
$A_{1}\left(S_{0}\right)=\alpha_{1}\left(S_{0}\right) / a_{1}=(0.01678) /(0.016854)=0.9956$
$A_{1}\left(S_{1}\right)=1-A_{1}\left(S_{0}\right)=1-0.9956=0.0044$
$\vdots=$

Figure 20: normalized forward metric values $\alpha_{l}(S)$
compute the (probability-domain) normalized backward metrics

$$
\begin{aligned}
\beta_{5}\left(S_{0}\right) & =\gamma_{5}\left(S_{0}, S_{0}\right) \beta_{6}\left(S_{0}\right)=(0.0855)(1)=0.0855 \\
\beta_{5}\left(S_{2}\right) & =\gamma_{5}\left(S_{2}, S_{0}\right) \beta_{6}\left(S_{0}\right)=(0.000016)(1)=0.000016 \\
b_{5} & =\beta_{5}\left(S_{0}\right)+\beta_{5}\left(S_{2}\right)=0.0855+0.000016=0.085516 \\
B_{5}\left(S_{0}\right) & =\beta_{5}\left(S_{0}\right) / b_{5}=(0.0855) /(0.085516)=0.9998 \\
B_{5}\left(S_{2}\right) & =1-B_{5}\left(S_{0}\right)=1-0.9998=0.0002
\end{aligned}
$$

Convolutional Codes

Figure 21: normalized backward metric values $\beta_{l}\left(S^{\prime}\right)$

compute the APP L-value

$L\left(u_{0}\right)=\ln \left\{\frac{B_{1}\left(S_{1}\right) \gamma_{0}\left(S_{0}, S_{1}\right) A_{0}\left(S_{0}\right)}{B_{1}\left(S_{0}\right) \gamma_{0}\left(S_{0}, S_{0}\right) A_{0}\left(S_{0}\right)}\right\}$
$=\ln \left\{\frac{(0.8162)(0.000074)(1)}{(0.1838)(0.01678)(1)}\right\}=-3.933$
$L\left(u_{1}\right)=\ln \left\{\frac{B_{2}\left(S_{1}\right) \gamma_{1}\left(S_{0}, S_{1}\right) A_{1}\left(S_{0}\right)+B_{2}\left(S_{3}\right) \gamma_{1}\left(S_{1}, S_{3}\right) A_{1}\left(S_{1}\right)}{B_{2}\left(S_{0}\right) \gamma_{1}\left(S_{0} S_{0}\right) A_{1}\left(S_{0}\right)+B_{2}\left(S_{2}\right) \gamma_{1}\left(S_{1} S_{2}\right) A_{1}\left(S_{1}\right)}\right\}$
$=\ln \left\{\frac{(0.2028)(0.003229)(0.9956)+(0.5851)(0.006179)(0.0044)}{(0.1060)(0.001702)(0.9956)+(0.1060)(0.0008893)(0.0044)}\right\}$
$=+1.311$

$$
\begin{aligned}
& L\left(u_{2}\right)=-1.234 \\
& L\left(u_{3}\right)=-8.817
\end{aligned}
$$

$$
\hat{u}=\left(\hat{u}_{0}, \hat{u}_{1}, \hat{u}_{2}, \hat{u}_{3}\right)=(0,1,1,0)
$$

The Viterbi and BCJR decoding are not achievable in practice at rates close to capacity. This is because the decoding effort is fixed and grows exponentially with constraint length, and thus only short constraint length codes can be used.

Convolutional Codes

The ZJ Algorithm

1. Load the stack with the origin node in the tree,whose metric is taken to be zero
ex:
The code tree for the ($3,1,2$) feed forward encoder with

$$
G(D)=\left(\begin{array}{lll}
1+D & 1+D^{2} & 1+D+D^{2}
\end{array}\right)
$$

is shown below, and the information sequence of length $h=5$.

CC Lab, EE, NCHU

Bit Metric For BSC

For a BSC with transition probability $p, p\left(r_{l}=0\right)=p\left(r_{l}=1\right)=1 / 2$ for all l, and the bit metrics are given by

$$
M\left(r_{l} \mid v_{l}\right)= \begin{cases}\log _{2} 2 p-R & r_{l} \neq v_{l} \\ \log _{2} 2(1-p)-R & r_{l}=v_{l}\end{cases}
$$

CC Lab, EE, NCHU

Convolutional Codes
ex: For $\mathrm{R}=1 / 3$ and $\mathrm{p}=0.1$,

$$
M\left(r_{l} \mid v_{l}\right)=\left\{\begin{array}{l}
-2.65 \\
+0.52
\end{array}\right.
$$

$v_{i} \backslash r_{i}$	0	1
0	+1	-5
1	-5	+1

CC Lab, EE, NCHU

CC Lab, EE, NCHU

CC Lab, EE, NCHU

The final decoding path is
The situation is somewhat different when the received sequence r is very noisy.

From the same code, channel, matric table assume that the sequence
corresponding to the information sequence $\hat{u}=$ (11101)
Note that \hat{v} disagrees with r in only 2 positions, the fraction of error in r is $2 / 21=0.095$ which is roughly equal to the channel transition probability of $p=0.10$

$$
r=(110,110,110,111,010,101,101)
$$

is received. The contents of the stack after each step of the algorithm are shown:

CC Lab, EE, NCHU

Convolutional Codes

CC Lab, EE, NCHU

Trellises of Codes

In this example, the sequence decoder performs 20 computations, whereas the Viterbi algorithm would again require only 15 computations
This is because the number of computations performed by a sequential decoder is a random variable, the computation load of the Viterbi algorithm is fixed.

The fraction of errors in the received sequence r is $7 / 21=0.333$ which is much greater than the channel transition probability of $p=0.10$

Communication \& Coding Laboratory

Dept. of Electrical Engineering, National Chung Hsing University E-mail: g9364106@mail.nchu.edu.tw

Introduction

- Chapter 8: Trellises of Codes

1. Introduction
2. Finite-state machine model and trellis representation of a code
3. Bit-level trellises for binary linear block codes
4. State labeling
5. Structural properties of bit-level trellises
6. State labeling and trellis construction based on the parity-check matrix
7. Trellis complexity and symmetry
8. Trellis sectionalization and parallel decomposition
9. Cartesian product

- Constructing and representing codes with graphs have long been interesting problems to many coding theorist.
\Rightarrow The most commonly known graphical representation of a code is the trellis representation.
- A code trellis diagram is simply an edge-labeled directed graph in which every path represents a codeword (or a code sequence for a convolutional code).
- This representation makes it possible to implement maximum likelihood decoding (MLD) of a code with a significant reduction in decoding complexity.

The history of trellis representation

- Trellis representation was first introduced by Forney in 1973 as a means of explaining the decoding algorithm for convolutional codes devised by Viterbi.
- Trellis representation of linear block codes was first presented by Bahl, Cocke, Jelinek, and Raviv in 1974.
- In 1988, Forney showed that some block codes, such as RM codes and some lattice codes, have relatively simple trellis structures.

Trellises for Linear Block Codes

- With there definitions of a state and a state transition, the encoder can be modeled as a finite-state machine, as shown in Figure 1

Figure 1: A finite-state machine model for an encoder with finite memory.

Trellis diagram

- The dynamic behavior of the encoder can be graphically represented by a state diagram in time.
- It consists of levels of nodes and edges connecting the nodes of one level to the nodes of the next level.

Figure 2: Trellis representation of a finite-state encoder.

Department of Electrical Engineering, National Chung Hsing University

Trellis representation of a code

- This state transition, in the trellis diagram, is represented by a
- Every node in the trellis has at least one incoming branch except directed edge (commonly called a branch). Each branch has a label. for the initial node and at least one outgoing branch except for a
- The set of allowable states at a given time instant i is called the node that represents the final state of the encoder at the end of state space of the encoder at time- i, denoted by $\Sigma_{i}(C)$. the entire encoding interval.
- A state $s_{i} \in \sum_{i}(C)$ is said to be reachable if there exists an
- In this graphical representation of a code, there is a one-to-one correspondence between a codeword (or code sequence) and a path in the code trellis. information sequence that takes (drives) the encoder from the initial state s_{0} to the state s_{i} at time- i.
- Every path in the code trellis represents a codeword.
- In the trellis, every node at level- i for $i \in \Gamma$ is connected by a path (defined as a sequence of connected branches) from the initial node.
- For $i \in \Gamma$, let
I_{i} : The input information block
O_{i} : The output code block
, during the interval from time- i to time- $(i+1)$.
- A code trellis is said to be time-invariant if there exists a finite period $\{0,1, \ldots, v\} \subset \Gamma$ and a state space $\Sigma(C)$ such that

1. $\Sigma_{i}(C) \subset \Sigma(C)$ for $0<i<v$, and $\Sigma_{i}(C)=\Sigma(C)$ for $i \geq v$
2. $f_{i}=f$ and $g_{i}=g$ for all $i \in \Gamma$.

- In general:

Block code	A trellis diagram is time-varying.
convolutional code	A trellis diagram is usually time-invariant.

2. State transition function:
convolutional code \quad A trellis diagram is usually time-invariant.
where $s_{i} \in \Sigma_{i}(\mathrm{C})$ and $s_{i+1} \in \Sigma_{i+1}(\mathrm{C})$ are called the current and next states, respectively.

Figure 3: A time-varying trellis diagram for a block code.

Figure 4: A time-invariant trellis diagram for a convolutional code.

Bit-level trellis for binary block codes

- Definition:

An n-section bit-level trellis diagram for a binary linear block code C of length n, denote by T, is a directed graph consisting of $n+1$ levels of nodes (called states) and branches (also called edges) such that:
3. Except for the initial node, every node has at least one, but no more than two, incoming branches. Except for the final node, every node has at least one, but no more than two, outgoing branches. The initial

1. For $0 \leq i \leq n$, the nodes at the i th level represent the states in the state space $\sum_{i}(C)$ of the encoder $E(C)$ at time- i.

- At time-0 (or the zeroth level) there is only one node, denoted by s_{0}, called the initial node (or state).
- At time- n (or the nth level), there is only one node, denoted by s_{f} (or s_{n}), called the final node (or state)

2. For $0 \leq i<n$, a branch in the section of the trellis T between the i th level and the $(i+1)$ th level (or time- i and time $-(i+1)$) connects a state $s_{i} \in \sum_{i}(C)$ to a state $s_{i+1} \in \sum_{i+1}(C)$ and is labeled with a code bit v_{i} that represents the encoder output in the bit interval from time- i to time- $(i+1)$. A branch represents a state transition.

- To facilitate the code trellis construction, we arrange the generator matrix G in a special form.

Let $v=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ be a nonzero binary n-tuple.
which is called the "state space dimension at time-i".

- The first nonzero component of v is called the leading 1 of v, and the last nonzero component of v is called the trailing 1 of v.
- We simply use ρ_{i} for $\rho_{i}(C)$ for simplicity. The sequence
- A generator matrix G for C is said to be in trellis oriented form
- Example: (TOF) if the following two conditions hold:
From Figure 3 we find that the state space complexity profile and

1. The leading 1 of each row of G appears in a column before the leading 1 of any row below it.
$(1,2,4,8,4,8,4,2,1)$ and ($0,1,2,3,2,3,2,1,0$), respectively.
2. No two rows have their trailing 1's in the same column.

- Any generator matrix for C can be put in TOF by two steps of Gaussian elimination. ${ }^{\text {a }}$
- Example:

Consider the first-order RM code of length $8, \mathrm{RM}(1,3)$. It is an
$(8,4)$ code with the following generator matrix ${ }^{\mathrm{b}}$:

$$
G=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

${ }^{\text {a }}$ Note that a generate matrix in TOF is not necessarily in systematic form.

${ }^{\mathrm{b}}$ It is not in TOF

- We define the active time span of g, denote by $\tau_{a}(g)$, as the time interval

$$
\tau_{a}(g) \triangleq \begin{cases}{[i+1, j],} & \text { for } j>i \\ \emptyset(\text { empty set }), & \text { for } j=i\end{cases}
$$

4. We define the time span of g, denoted by $\tau(g)$, as the following time interval: $\tau(g) \triangleq(i, i+1, \ldots, j+1)$.
5. For simplicity, we write $\emptyset(g)=[i, j]$, and $\tau(g)=[i, j+1]$, we define the active time span of g, denoted by $\tau_{a}(g)$, as the time interval. $\tau_{a}(g) \triangleq[i+1, j]$, for $j>i$.

- Let $g=\left(g_{0}, g_{1}, \ldots, g_{n-1}\right)$ be a row in $G_{\text {Tocm }}$ for code C.

1. Let $\emptyset(g)=(i, i+1, \ldots, j)$ denote the smallest index interval that contains all the nonzero components of g.
2. This say that $g_{i}=1$ and $g_{j}=1$, and they are the leading and trailing 1's of g, respectively.
3. This interval $\emptyset(g)=(i, i+1, \ldots, j)$ is called the digit (or bit) span of g.

By interchanging the second and the fourth rows, we have

$$
G^{\prime}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

We add the fourth row of the matrix to the first, second, and third rows. These additions result in the following matrix in
TOF:

$$
G_{\mathrm{TOGM}}=\left[\begin{array}{l}
g_{0} \\
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

where TOGM stands for trellis oriented generator matrix.

Department of Electrical Engineering, National Chung Hsing University

- Example: To consider the TOGM of the $(8,4)$ RM code

$$
G_{\mathrm{TOGM}}=\left[\begin{array}{c}
g_{0} \\
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right]=\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- We can find that the bit spans of the rows are $\varnothing\left(g_{0}\right)=[0,3]$, $\varnothing\left(g_{1}\right)=[1,6], \varnothing\left(g_{2}\right)=[2,5], \varnothing\left(g_{3}\right)=[4,7]$.
- The time spans of the rows are $\tau\left(g_{0}\right)=[0,4], \tau\left(g_{1}\right)=[1,7]$, $\tau\left(g_{2}\right)=[2,6], \tau\left(g_{3}\right)=[4,8]$.
- The active time spans of the rows are $\tau_{a}\left(g_{0}\right)=[1,3]$, $\tau_{a}\left(g_{1}\right)=[2,6], \tau_{a}\left(g_{2}\right)=[3,5], \tau_{a}\left(g_{3}\right)=[5,7]$.
- Let A_{i}^{p}, A_{i}^{f}, and A_{i}^{s} denote the subsets of information bits, $a_{0}, a_{1}, \ldots, a_{k-1}$, that correspond to the rows of G_{i}^{p}, G_{i}^{f}, and G_{i}^{s}, respectively.
- The bits in A_{i}^{s} are the information bits stored in the encoder memory that affect the current output code bit v_{i} and the future output code bits beyond time- i. There information bits in A_{i}^{s} hence define a state of the encoder $E(C)$ for the code C at time- i.
At time-2, we find that

$$
G_{2}^{p}=\phi, G_{2}^{f}=\left\{g_{2}, g_{3}\right\}, G_{2}^{s}=\left\{g_{0}, g_{1}\right\}
$$

- Let $\rho_{i} \triangleq\left|A_{i}^{s}\right|=\left|G_{i}^{s}\right|$.

Then, there are $2^{\rho_{i}}$ distinct states in which the encoder $E(C)$ can reside at time $-i$; each state is defined by a specific combination of the $\rho_{i}{ }^{\text {a }}$ information bits in $A_{i}^{s \mathrm{~b}}$.

$$
G_{4}^{p}=\left\{g_{0}\right\}, G_{4}^{f}=\left\{g_{3}\right\}, G_{4}^{s}=\left\{g_{1}, g_{2}\right\}
$$

[^7]Table 1: Partition of the TOGM of the $(8,4)$ RM code

- For $0 \leq i<n$, suppose the encoder $E(C)$ is in state $s_{i} \in \Sigma_{i}(C)$. From time- i to time- $(i+1), E(C)$ generates a code bit v_{i} and moves from state s_{i} to a state $s_{i+1} \in \Sigma_{i+1}(C)$.
- Let

$$
G_{i}^{s}=g_{1}^{(i)}, g_{2}^{(i)}, \ldots, g_{\rho_{i}}^{(i)}
$$

and

$$
A_{i}^{s}=a_{1}^{(i)}, a_{2}^{(i)}, \ldots, a_{\rho_{i}}^{(i)}
$$

where $\rho_{i}=\left|A_{i}^{s}\right|=\left|G_{i}^{s}\right|$. The current state s_{i} of the encoder is defined by a specific combination of the information bits in A_{i}^{s}.

Department of Electrical Engineering, National Chung Hsing University

- Let g^{*} denote the row in G_{i}^{f} whose leading 1 is at bit position i. Let g_{i}^{*} denote the i th component of g^{*}. Then, $g_{i}^{*}=1$.
- Let a^{*} denote the information bit that corresponds to row g^{*}.
- The output code bit v_{i} can have two possible values depending on the current input information bit a^{*}.
- The output code bit v_{i} generated during the bit interval between time- i and time- $(i+1)$ is given by
- Suppose there is no such row g^{*} in G_{i}^{f}. Then, the output code bit v_{i} at time- i is given by

$$
v_{i}=\Sigma_{l=1}^{\rho_{i}} a_{l}^{(i)} \cdot g_{l, i}^{(i)}
$$

where $g_{l, i}^{(i)}$ is the i th component of $g_{l}^{(i)}$ in G_{i}^{s}.

- Note that the information bit a^{*} begins to affect the output of the encoder $E(C)$ at time- i. For this reason, bit a^{*} is regarded as the current input information bit.
- Example: To consider the TOGM of the $(8,4)$ RM code

$$
G_{\mathrm{TOGM}}=\left[\begin{array}{c}
g_{0} \\
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- From Table 1 we find that at time-2, $G_{2}^{p}=\phi, G_{2}^{f}=\left\{g_{2}, g_{3}\right\}$, and $G_{2}^{s}=\left\{g_{0}, g_{1}\right\}$. Therefore, $A_{2}^{s}=\left\{a_{0}, a_{1}\right\}$, the information bit a_{0} and a_{1} define the state of the encoder at time -2 , and there are four distinct state defined by four combinations of values of a_{0} and a_{1}, $\{00,01,10,11\}$.
- Let g^{0} denote the row in G_{i}^{s} whose trailing 1 is at bit position- i, that is, the i th component g_{i}^{0} of g^{0} is the last nonzero component of g^{0} a.
- There is no row g^{*} in G_{3}^{f} with leading 1 at bit position $i=3$. Hence, we set the current input information bit $a^{*}=0$. The output code bit v_{3} is given by $v_{i}=\sum_{l=1}^{\rho_{i}} a_{l}^{(i)} \cdot g_{l, i}^{(i)}$,
- Let a^{0} be the information bit in A_{i}^{s} that corresponds to row g^{0}. Then, at time $-(i+1)$,

$$
G_{i+1}^{s}=\left(G_{i}^{s} \backslash\left\{g^{0}\right\}\right) \cup\left\{g^{*}\right\}
$$

and

$$
A_{i+1}^{s}=\left(A_{i}^{s} \backslash\left\{a^{0}\right\}\right) \cup\left\{a^{*}\right\}
$$

The information bits in A_{i+1}^{s} define the state space $\Sigma_{i+1}(C)$ at time- $(i+1)$.
${ }^{\text {a }}$ Note that this row g^{0} may not exist.

- Now, we want to construct the $(i+1)$ th section from time- i to time- $(i+1)$. The state space $\Sigma_{i}(C)$ is known. The $(i+1)$ th section is constructed as follows:

1. Determine G_{i+1}^{s} and A_{i+1}^{s}. Form the state space $\Sigma_{i+1}(C)$ at time- $(i+1)$.
2. For each state $s_{i} \in \Sigma_{i}(C)$, determine its state transition (s) based on the change from A_{i}^{s} to A_{i+1}^{s}. Connect s_{i} to its adjacent $\operatorname{state}(s)$ in $\Sigma_{i+1}(C)$ by branches.
3. For each state transition, determine the output code bit v_{i} from the output function of $v_{i}=a^{*}+\Sigma_{l=1}^{\rho_{i}} a_{l}^{(i)} \cdot g_{l, i}^{(i)}$ or $v_{i}=\Sigma_{l=1}^{\rho_{i}} a_{l}^{(i)} \cdot g_{l, i}^{(i)}$, and label the corresponding branch in the trellis with v_{i}.

- Therefore, at time-5, we have

$$
G_{5}^{s}=\left\{g_{1}, g_{2}, g_{3}\right\}
$$

- Connecting each state at time- 4 to its two adjacent states at time -5 by branches and labeling each branch with the
and

$$
A_{5}^{s}=\left\{a_{1}, a_{2}, a_{3}\right\} .
$$ corresponding code bit v_{4} for either $a_{3}=0$ or $a_{3}=1$, we complete the trellis section from time -4 to time -5 . To construct the next

The state space $\sum_{5}(C)$ is then defined by the three bits in A_{5}^{s}.
The eight states in $\sum_{5}(C)$ are defined by the eight combinations of a_{1}, a_{2}, , and a_{3} :
$\{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}$.

- Suppose the current state s_{4} at time-4 is defined by $\left(a_{1}, a_{2}\right)$. Then the next state at time-5 is either the state s_{5} defined by
$\left(a_{1}, a_{2}, a_{3}=0\right)$ or the state s_{5}^{\prime} defined by $\left(a_{1}, a_{2}, a_{3}=1\right)$. The output code bit v_{4} is given by

$$
v_{4}=a_{3}+a_{1} \cdot 1+a_{2} \cdot 1
$$

which has two values depending on whether the current input bit a_{3} is 0 or 1 .

- Example: To consider the TOGM of the $(8,4)$ RM code

$$
G_{\mathrm{TOGM}}=\left[\begin{array}{c}
g_{0} \\
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right]=\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- Suppose the trellis for this code has been constructed up to time-4 At this point, we find from Table 1 that $G_{4}^{s}=\left\{g_{1}, g_{2}\right\}$. The state space $\sum_{4}(C)$ is defined by $A_{4}^{s}=\left\{a_{1}, a_{2}\right\}$. There are four states at time -4 , which are determined by the four combinations of a_{1} and $a_{2}:\{(0,0),(0,1),(1,0),(1,1)\}$.
- To construct the trellis section from time-4 to time-5, we find that there is no row g^{0} in $G_{4}^{s}=\left\{g_{1}, g_{2}\right\}$, but there is a row g^{*} in $G_{4}^{f}=\left\{g_{3}\right\}$, which is g_{3}.

Department of Electrical Engineering, National Chung Hsing University trellis section from time -5 to time 6 , we first find that there is a row g^{0} in $G_{5}^{s}=\left\{g_{1}, g_{2}, g_{3}\right\}$, which is g_{2}, and there is no row g^{*} in $G_{5}^{f}=\phi$. Therefore,

$$
G_{6}^{s}=G_{5}^{s}\left\{g_{2}\right\}=\left\{g_{1}, g_{3}\right\}
$$

and

$$
A_{6}^{s}=\left\{a_{1}, a_{3}\right\} .
$$

- From the change from A_{5}^{s} to A_{6}^{s}, we find that two states defined by $\left(a_{1}, a_{2}=0, a_{3}\right)$ and $\left(a_{1}, a_{2}=1, a_{3}\right)$ at time -5 move into the same state defined by $\left(a_{1}, a_{3}\right)$ at time- 6
- The two connecting branches are labeled with

$$
v_{5}=0+a_{1} \cdot 0+\left(a_{2}=0\right) \cdot 1+a_{3} \cdot 1
$$

and

$$
v_{5}=0+a_{1} \cdot 0+\left(a_{2}=1\right) \cdot 1+a_{3} \cdot 1,
$$

respectively, where 0 denotes the dummy input. This complete

State labeling

the construction of the trellis section from time -5 to time -6 .
Continue with this construction process until the trellis terminates at time-8.

- In a code trellis, each state is labeled by a fixed sequence (or a given name).
- This labeling can be accomplished by using a k-tuple $l(s)$ with components corresponding to the k information bits, a_{0}, a_{1}, \ldots, a_{k-1}, in a message.
- At time $-i$, all the components of $l(s)$ are set to zero except for the components at the positions corresponding to the information bits in $A_{l}^{s}=\left\{a_{1}^{(i)}, a_{2}^{(i)}, \ldots, a_{\rho_{i}}^{(i)}\right\}$.

Department of Electrical Engineering, National Chung Hsing University

- The trellis construction procedure:

Suppose the trellis T has been constructed up to section- i. At this point, G_{i}^{s}, A_{i}^{s}, and $\sum_{i}(C)$ are known. The $(i+1)$ th section is

- Example:

Consider the $(8,4)$ code given in before Example. At time-4, the constructed as follows:

1. Determine G_{i+1}^{s} and A_{i+1}^{s} from $G_{i+1}^{s}=\left(G_{i}^{s} \backslash\left\{g^{0}\right\}\right) \cup\left\{g^{*}\right\}$ and $A_{i+1}^{s}=\left(A_{i}^{s} \backslash\left\{a^{0}\right\}\right) \cup\left\{a^{*}\right\}$.
2. Form the state space $\sum_{i+1}(C)$ at time- $(i+1)$ and label each state in $\sum_{i+1}(C)$ based on A_{i+1}^{s}. The state in $\sum_{i+1}(C)$ form the nodes of the code trellis T at the $(i+1)$ th level.
3. For each state $s_{i} \in \sum_{i}(C)$ at time $-i$, determined its transition (s) to the state (s) in $\sum_{i+1}(C)$ based on the information bits a^{*} and a^{0}. For each transition from a state $s_{i} \in \sum_{i}(C)$ to a state $s_{i+1} \in \sum_{i+1}(C)$, connect the state s_{i} to the state s_{i+1} by a branch $\left(s_{i}, s_{i+1}\right)$.
4. For each state transition $\left(s_{i}, s_{i+1}\right)$, determine the output code bit v_{i} and label the branch $\left(s_{i}, s_{i+1}\right)$ with v_{i}.

- Example: To consider the TOGM of the $(8,4)$ RM code

$$
G_{\mathrm{TOGM}}=\left[\begin{array}{c}
g_{0} \\
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right]=\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- For $0 \leq i \leq 8$, we determined the submatrix G_{i}^{s} and the state-defining information set A_{i}^{s} as listed in Table 2.
- From A_{i}^{s} we form the label for each state in $\sum_{i}(C)$ as shown in Table 2. The state transitions from time $-i$ to time $-(i+1)$ are determined by change from A_{i}^{s} to A_{i+1}^{s}.
- Following the trellis construction procedure given described, we obtain the 8 -section trellis diagram for the (8.4) RM code as shown in Figure 5. Each state in the trellis is labeled by a 4 -tuple.

i	G_{i}^{s}	a^{*}	a^{0}	A_{i}^{s}	State label
0	ϕ	a_{0}	-	ϕ	(0000)
1	$\left\{g_{0}\right\}$	a_{1}	-	$\left\{a_{0}\right\}$	$\left(a_{0} 000\right)$
2	$\left\{g_{0}, g_{1}\right\}$	a_{2}	-	$\left\{a_{0}, a_{1}\right\}$	$\left(a_{0} a_{1} 00\right)$
3	$\left\{g_{0}, g_{1}, g_{2}\right\}$	-	a_{0}	$\left\{a_{0}, a_{1}, a_{2}\right\}$	$\left(a_{0} a_{1} a_{2} 0\right)$
4	$\left\{g_{1}, g_{2}\right\}$	a_{3}	-	$\left\{a_{1}, a_{2}\right\}$	$\left(0 a_{1} a_{2} 0\right)$
5	$\left\{g_{1}, g_{2}, g_{3}\right\}$	-	a_{2}	$\left\{a_{1}, a_{2}, a_{3}\right\}$	$\left(0 a_{1} a_{2} a_{3}\right)$
6	$\left\{g_{1}, g_{3}\right\}$	-	a_{1}	$\left\{a_{1}, a_{3}\right\}$	$\left(0 a_{1} 0 a_{3}\right)$
7	$\left\{g_{3}\right\}$	-	a_{3}	$\left\{a_{3}\right\}$	$\left(000 a_{3}\right)$
8	ϕ	-	-	ϕ	(0000)

Table 2: \quad State-defining sets and labels for the 8 -section trellis for $(8,4) \mathrm{RM}$ code.

- Let $\left(\rho_{0}, \rho_{1}, \ldots, \rho_{n}\right)$ be the state space dimension profile of the trellis. We define

$$
\rho_{\max }(C) \triangleq \max _{0 \leq i \leq n} \rho_{i}
$$

which is simply the maximum state dimension of the trellis.

- Because $\rho_{i}=\left|G_{i}^{s}\right|=\left|A_{i}^{s}\right|$ for $0 \leq i \leq n$, and G_{i}^{s} is a submatrix of the generator matrix of C, we have

$$
\rho_{\max }(C) \leq k
$$

- For each state $s_{i} \in \sum_{i}(C)$, we form a $\rho_{\max }(C)$-tuple, denote by $l\left(s_{i}\right)$, in which the first ρ_{i} components are simply $a_{1}^{(i)}, a_{2}^{(i)}, \ldots$, $a_{\rho_{i}}^{(i)}$, and the remaining $\rho_{\max }(C)-\rho_{i}$ components are set to 0 ; that is,

$$
l\left(s_{i}\right) \triangleq\left(a_{1}^{(i)}, a_{2}^{(i)}, \ldots, a_{\rho_{i}}^{(i)}, 0,0, \ldots, 0\right)
$$

Then, $l\left(s_{i}\right)$ is the label for the state s_{i}.

- Example:

For the $(8,4)$ RM code, the state space dimension profile of its 8 -section trellis is $(0,1,2,3,2,3,2,1,0)$.

- Hence, $\rho_{\max }(C)=3$. Using 3 bits for labeling the states as described previously, we give the state labels in Table 3.
- Compared with the state labeling given in before example, 1 bit is saved.

i	A_{i}^{s}	State label
0	ϕ	(000)
1	$\left\{a_{0}\right\}$	$\left(a_{0} 00\right)$
2	$\left\{a_{0}, a_{1}\right\}$	$\left(a_{0} a_{1} 0\right)$
3	$\left\{a_{0}, a_{1}, a_{2}\right\}$	$\left(a_{0} a_{1} a_{2}\right)$
4	$\left\{a_{1}, a_{2}\right\}$	$\left(a_{1} a_{2} 0\right)$
5	$\left\{a_{1}, a_{2}, a_{3}\right\}$	$\left(a_{1} a_{2} a_{3}\right)$
6	$\left\{a_{1}, a_{3}\right\}$	$\left(a_{1} a_{3} 0\right)$
7	$\left\{a_{3}\right\}$	$\left(a_{3} 00\right)$
8	ϕ	(000)

Table 3: State labeling for the $(8,4) \mathrm{RM}$ code using $\rho_{\text {max }}(C)=3$ bits.

Department of Electrical Engineering, National Chung Hsing University

- Example:

Consider the second-order RM code of length 16.
It is a $(16,11)$ code with a minimum distance of 4 . We obtain the following TOGM:

- From this TOGM, we easily find the state space dimension profile, ($0,1,2,3,3,4,4,4,3,4,4,4,3,3,2,1,0$).

- The maximum state space dimension is $\rho_{\max }(C)=4$.
- We can use 4 bits to label the trellis states.

The state-defining information sets and state labels at each time instant are given in Table 4, shown in Figure 6.

i	G_{i}^{s}	a^{*}	a^{0}	A_{i}^{s}	State label
0	¢	a_{0}	-	¢	(0000)
1	$\left\{g_{0}\right\}$	a_{1}	-	$\left\{a_{0}\right\}$	($a_{0} 000$)
2	$\left\{g_{0}, g_{1}\right\}$	a_{2}	-	$\left\{a_{0}, a_{1}\right\}$	($a_{0} a_{1} 00$)
3	$\left\{g_{0}, g_{1}, g_{2}\right\}$	a_{3}	a_{0}	$\left\{a_{0}, a_{1}, a_{2}\right\}$	($a_{0} a_{1} a_{2}{ }^{0}$)
4	$\left\{g_{1}, g_{2}, g_{3}\right\}$	a_{4}	-	$\left\{a_{1}, a_{2}, a_{3}\right\}$	$\left(a_{1} a_{2} a_{3} 0\right)$
5	$\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}$	a_{5}	a_{2}	$\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$	$\left(a_{1} a_{2} a_{3} a_{4}\right)$
6	$\left\{g_{1}, g_{3}, g_{4}, g_{5}\right\}$	${ }^{a_{6}}$	a_{1}	$\left\{a_{1}, a_{3}, a_{4}, a_{5}\right\}$	$\left(a_{1} a_{3} a_{4} a_{5}\right)$
7	$\left\{g_{3}, g_{4}, g_{5}, g_{6}\right\}$	-	a_{4}	$\left\{a_{3}, a_{4}, a_{5}, a_{6}\right\}$	$\left(a_{3} a_{4} a_{5} a_{6}\right)$
8	$\left\{g_{3}, g_{5}, g_{6}\right\}$	a_{7}	-	$\left\{a_{3}, a_{5}, a_{6}\right\}$	($a_{3} a_{5} a_{6}{ }^{0}$)
9	$\left\{g_{3}, g_{5}, g_{6}, g_{7}\right\}$	a_{8}	${ }^{a_{6}}$	$\left\{a_{3}, a_{5}, a_{6}, a_{7}\right\}$	$\left(a_{3} a_{5} a_{6} a_{7}\right)$
10	$\left\{g_{3}, g_{5}, g_{7}, g_{8}\right\}$	a_{9}	a_{5}	$\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}$	($a_{3} a_{5} a_{7} a_{8}{ }^{\text {a }}$)
11	$\left\{g_{3}, g_{7}, g_{8}, g_{9}\right\}$	-	${ }^{4}$	$\left\{a_{3}, a_{7}, a_{8}, a_{9}\right\}$	($a_{3} a_{7} a_{8} a_{9}$)
12	$\left\{g_{3}, g_{8}, g_{9}\right\}$	a_{10}	a_{3}	$\left\{a_{3}, a_{8}, a_{9}\right\}$	($a_{3} a_{8} a_{9} 0$)
13	$\left\{g_{8}, g_{9}, g_{10}\right\}$	-	${ }^{9} 9$	$\left\{a_{8}, a_{10}\right\}$	$\left(a_{8} a_{9} a_{10}{ }^{0}\right)$
14	$\left\{g_{8}, g_{10}\right\}$	-	a_{8}	$\left\{a_{10}\right\}$	($a_{8} a_{10}{ }^{00}$)
15	$\left\{g_{10}\right\}$	-	a_{10}	¢	($a_{10} 0000$)
16	ϕ	-	-	ϕ	(0000)

Table 4: State-defining sets and labels for the 16 -section trellis for the $(16,11)$ RM code.

Figure 6: $\quad 16$-section trellis for the $(16,11) \mathrm{RM}$ code with state labeling by the state-defining information sets.

Department of Electrical Engineering, National Chung Hsing University

Structure properties of trellises

- For $0 \leq i<j<n$, let $C_{i, j}$ denote the subcode of C consisting of and G_{i}^{f}, respectively, and they are called the past and future subcodes of C with respective to time $-i$.
those codewords in C whose nonzero components are confined to
- For a linear code B, let $k(B)$ denote its dimension. Then, $k\left(C_{0, i}\right)=\left|G_{i}^{p}\right|$, and $k\left(C_{i, n}\right)=\left|G_{i}^{f}\right|$. the span of $j-i$ consecutive positions in the set
- The dimension of the state space $\sum_{i}(C)$ at time- i is
$\{i, i+1, \ldots, j-1\}$.

$$
\rho_{i}(C)=\left|G_{i}^{s}\right|,
$$

then, it follows from the definitions of G_{i}^{s}, G_{i}^{p}, and G_{i}^{f} that

$$
\begin{aligned}
\rho_{i}(C) & =k-\left|G_{i}^{p}\right|-\left|G_{i}^{f}\right| \\
& =k-k\left(C_{0, i}\right)-k\left(C_{i, n}\right) .
\end{aligned}
$$

and $C_{i, j}$ is a subcode of C.

- The direct-sum of $C_{0, i}$ and $C_{i, n}{ }^{\text {a }}$, denote by $C_{0, i} \oplus C_{i, n}$, is a
- It follows from the definitions of G_{i}^{p}, G_{i}^{f}, and G_{i}^{s} that subcode of C with dimension $k\left(C_{0, i}\right)+k\left(C_{i, n}\right)$. The partition $C /\left(C_{0, i} \oplus C_{i, n}\right)$ consists of

$$
\begin{aligned}
\left|C /\left(C_{0, i} \oplus C_{i, n}\right)\right| & =2^{k-k\left(C_{0, i}\right)-k\left(C_{i, n}\right)} \\
& =2^{\rho_{i}}
\end{aligned}
$$

- Let S_{i} denote the subspace of C that is spanned by the rows in the submatrix G_{i}^{s}. Then, each codeword in S_{i} is given by

$$
C=S_{i} \oplus\left(C_{0, i} \oplus C_{i, n}\right)
$$

The $2^{\rho_{i}}$ codewords in S_{i} can be used as the representatives for the cosets in the partition $C /\left(C_{0, i} \oplus C_{i, n}\right)$. Therefore, S_{i} is the coset representative space for the partition $C /\left(C_{0, i} \oplus C_{i, n}\right)$.

- For $0 \leq i<j<n$, let $p_{i, j}(C)$ denote the linear code of length $j-i$ obtained from C by removing the first i and last $n-j$

$$
\begin{aligned}
v & =\left(a_{1}^{(i)}, a_{2}^{(i)}, \ldots, a_{\rho_{i}}^{(i)}\right) \cdot G_{i}^{s} \\
& =a_{1}^{(i)} \cdot g_{1}^{(i)}+a_{2}^{(i)} \cdot g_{2}^{(i)}+\ldots+a_{\rho_{i}}^{(i)} \cdot g_{\rho_{i}}^{(i)}
\end{aligned}
$$

where $a_{l}^{(i)} \in A_{i}^{s}$ for $1 \leq l \leq \rho_{i}$. ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Note that $C_{0, i}$ and $C_{i, n}$ have only the all zero codeword $\mathbf{0}$ in common.
${ }_{\mathrm{b}}$ We see that there is one-to-one correspondence between v and the state $s_{i} \in$
${ }^{\mathrm{b}} \sum_{i}(C)$ defined by $\left(a_{1}^{(i)}, a_{2}^{(i)}, \ldots, a_{\rho_{i}}^{(i)}\right)$.

State labeling and trellis construction

 based on the parity-check matrix- It follows from the structure of the TOGM $G_{T O G M}$ that components of each codeword in C. Every codeword in $p_{i, j}(C)$ is of the form

$$
\left(v_{i}, v_{i+1}, \ldots, v_{j-1}\right)
$$

This code is called a punctured(or truncated) code of C.

- Let $C_{i, j}^{t r}$ denote the punctured code of the subcode $C_{i, j}$; that is,

$$
C_{i, j}^{t r} \triangleq p_{i, j}\left(C_{i, j}\right)
$$

- Consider a binary (n, k) linear block code C with a parity-check matrix

$$
\mathbf{H}=\left[\mathbf{h}_{0}, \mathbf{h}_{1}, \ldots, \mathbf{h}_{j}, \ldots, \mathbf{h}_{n-1}\right]
$$

where, for $0 \leq j<n, \mathbf{h}_{j}$ denotes the j th column of \mathbf{H} and is a binary $(n-k)$-tuple.

- From $k\left(p_{i, j}(C)\right)=k-k\left(C_{0, i}\right)-k\left(C_{j, n}\right)$ we find that
- A binary n-tuple $v=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ is a codeword in C if and only if

$$
v \cdot \mathbf{H}^{T}=(\underbrace{0,0, \ldots, 0}_{n-k})
$$

- Let $\mathbf{0}_{n-k}$ denote the all-zero $(n-k)$-tuple $(0,0, \ldots, 0)$.

For $0 \leq i<n$, let H_{i} denote the submatrix that consists of the first i columns of H; that is,

$$
\mathbf{H}_{i}=\left[\mathbf{h}_{0}, \mathbf{h}_{1}, \ldots, \mathbf{h}_{i-1}\right]
$$

- It is clear that the rank of \mathbf{H}_{i} is at most $n-k$; that is,

$$
\operatorname{Rank}\left(\mathbf{H}_{i}\right) \leq n-k
$$

- For each codeword $c \in C_{0, i}^{t r}$,

$$
c \cdot \mathbf{H}_{i}^{T}=\mathbf{0}_{n-k}
$$

Therefore, $C_{0, i}^{t r}$ is the null space of \mathbf{H}_{i}.

- For every path $\left(v_{0}, v_{1}, \ldots, v_{i-1}\right) \in L\left(s_{0}, s_{i}\right)$, the path $\left(v_{0}, v_{1}, \ldots, v_{i-1}, v_{i}\right)$ obtained by concatenating $\left(v_{0}, v_{1}, \ldots, v_{i-1}\right)$ with the branch v_{i} is a path that connects the initial state s_{0} to the state s_{i+1} through the state s_{i}. for a binary (n, k) linear block code C by state labeling using the parity-check matrix of the code.

The $(i+1)$-section of the code trellis is constructed by taking the following four steps:

- Hence, $\left(v_{0}, v_{1}, \ldots, v_{i-1}, v_{i}\right) \in L\left(s_{0}, s_{i+1}\right)$. Then, it follows from

1. Identify the special row g^{*} in the submatrix G_{i}^{f} and its corresponding information bit a^{*}. Identify the special row g^{0}

$$
\begin{aligned}
l\left(s_{i+1}\right) & =\left(v_{0}, v_{1}, \ldots, v_{i-1}, v_{i}\right) \cdot \mathbf{H}_{i+1}^{T} \\
& =\left(v_{0}, v_{1}, \ldots, v_{i-1}\right) \cdot \mathbf{H}_{i}^{T}+v_{i} \cdot \mathbf{h}_{i}^{T} \\
& =l\left(s_{i}\right)+v_{i} \cdot \mathbf{h}_{i}^{T}
\end{aligned}
$$ in the submatrix G_{i}^{s}. Form the submatrix G_{i+1}^{s} by including g^{*} in G_{i}^{s} and excluding g^{0} from G_{i}^{s}.

2. Determine the set of information bits

$$
A_{i+1}^{s}=\left(a_{1}^{(i+1)}, a_{2}^{(i+1)}, \ldots, a_{\rho_{i+1}}^{(i+1)}\right)
$$

- The foregoing expression simply says that given the label of the starting state s_{i}, and the output code bit v_{i} during the interval between time $-i$ and time $-(i+1)$, the label of the destination
that correspond to the rows in G_{i+1}^{s}. Define and label the state s_{i+1} is uniquely determined.
- Let $L\left(s_{0}, s_{i}\right)$ denote the set of paths in the trellis T for C that connect the initial state s_{0} to a state s_{i} in the state space $\sum_{i}(C)$ at time i.
- Definition: For $0 \leq i<n$, the label of a state $s_{i} \in \sum_{i}(C)$ based on a parity-check matrix \mathbf{H} of C, denoted by $l\left(s_{i}\right)$, is defined as the binary $(n-k)$-tuple

$$
l\left(s_{i}\right) \triangleq \mathbf{a} \cdot \mathbf{H}_{i}^{T}
$$

for any $\mathbf{a} \in L\left(s_{0}, s_{i}\right)$.

- For $i=0, \mathbf{H}_{i}=\phi$, and the initial state s_{0} is labeled with the all-zero $(n-k)$-tuple, $\mathbf{0}_{n-k}$.
- For $i=n, L\left(s_{0}, s_{f}\right)=C$, and the final state s_{f} is also labeled with 0_{n-k}.

Department of Electrical Engineering, National Chung Hsing University the preceding definition of a state label that states in $\sum_{i+1}(C)$.
3. For each state $s_{i} \in \sum_{i}(C)$, form the next output v_{i} code bit from either $v_{i}=a^{*}+\sum_{l=1}^{\rho_{i}} a_{l}^{(i)} \cdot g_{l, i}^{(i)}$ (if there is such a row g^{*} in G_{i}^{f} at time- i) or $v_{i}=\sum_{l=1}^{\rho_{i}} a_{l}^{(i)} \cdot g_{l, i}^{(i)}$ (if there is such no row

- Example:

Suppose we choose the parity-check matrix as follows:

$$
\mathbf{H}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

Label the connecting branch, denoted by $L\left(s_{i}, s_{i+1}\right)$, with v_{i}. This completes the construction of the $(i+1)$ th section of the

- Using this parity-check matrix for state labeling and following the foregoing trellis construction steps, we obtain the 8-section trellis with state label shown in Figure 7.
Repeat the preceding steps until the entire code trellis is constructed

Trellises for Linear Block Code

- To illustrate the construction process, we assume that the trellis has been completed up to time -3 .
- At this instant, $G_{3}^{s}=\left\{g_{0}, g_{1}, g_{2}\right\}$ and $A_{3}^{s}=\left\{a_{0}, a_{1}, a_{2}\right\}$ are known. The eight states in $\sum_{3}(C)$ are defined by the eight combinations of a_{0}, a_{1}, and a_{2}.
- These eight states and their labels are given in Table 5.

Figure 7: An 8-section trellis for the $(8,4)$ RM code with state labeling by the parity-check matrix.

	State defined by $\left(a_{0}, a_{1}, a_{2}\right)$	State label
$s_{3}^{(0)}$	(000)	(0000)
$s_{3}^{(1)}$	(001)	(1010)
$s_{3}^{(2)}$	(010)	(1001)
$s_{3}^{(3)}$	(011)	(0011)
$s_{3}^{(4)}$	(100)	(1011)
$s_{3}^{(5)}$	(101)	(0001)
$s_{3}^{(6)}$	(110)	(0010)
$s_{3}^{(7)}$	(111)	(1001)

- The submatrix \mathbf{H}_{4} is

$$
\mathbf{H}_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

From $p_{0,4}\left(v_{j}\right)$, with $0 \leq j \leq 3$ and \mathbf{H}_{4}, we can determine the labels of the four states, $s_{4}^{(0)}, s_{4}^{(1)}, s_{4}^{(2)}$, and $s_{4}^{(3)}$, in $\sum_{4}(C)$, which are given in Table 6.
Table 5: Labels of the states at time-3 for the $(8,4)$ RM code based on the parity-check matrix.

- Now, suppose the encoder is in the state $s_{3}^{(2)}$ with label $l\left(s_{3}^{(2)}\right)=(1001)$ at time- 3 .

	State defined by $\left(a_{1}, a_{2}\right)$	State label
$s_{4}^{(0)}$	(00)	(0000)
$s_{4}^{(1)}$	(01)	(0001)
$s_{4}^{(2)}$	(10)	(0010)
$s_{4}^{(3)}$	(11)	(0011)

- Because no such row g^{*} exists at time $i=3$, the output code bit v_{3} is computed as follows:

$$
\begin{aligned}
v_{3} & =a_{0} \cdot g_{03}+a_{1} \cdot g_{13}+a_{2} \cdot g_{23} \\
& =0 \cdot 1+1 \cdot 1+0 \cdot 1 \\
& =1 .
\end{aligned}
$$

- The state $s_{3}^{(2)}$ is connected to the state in $\sum_{4}(\mathrm{C})$ with label

$$
\begin{aligned}
l\left(s_{3}^{(2)}\right)+v_{3} \cdot \mathbf{h}_{3}^{T} & =(1001)+1 \cdot(1011) \\
& =(0010)
\end{aligned}
$$

which is state $s_{4}^{(2)}$, as shown in Figure 8.

Figure 8: State labels at the two ends of the fourth section of the trellis for the $(8,4) \mathrm{RM}$ code.

- For example:
- Trellis complexity is, in general, measured in terms of the state
- To Consider the $(8,4)$ RM code. For this code, $k=n-k=4$; however, $\rho_{\max }(C)=3$. and branch complexities.
- For a binary (n, k) linear block code $C, \rho_{\max }(C)$ must satisfy the following bound:

$$
\rho_{\max }(C) \leq \min \{k, n-k\} .
$$

- The third-order RM code $\operatorname{RM}(3,6)$ of length 64 is a $(64,42)$ linear code. For this code, $\min \{k, n-k\}=22$; however $\rho_{\max }(C)=14$.
- We see that there is a big gap between the bound and $\rho_{\max }(C)$; however, for cyclic (or shortened cyclic) codes, the bound
This bound was first proved by Wolf. In general, this bound is $\min \{k, n-k\}$ gives the exact state complexity. quite loose.
- Let C^{\perp} denote the dual code of C.
C^{\perp} is an $(n, n-k)$ linear block code. For $0 \leq i<n$, let $\sum_{i}\left(C^{\perp}\right)$ denote the state space of C^{\perp} at time- i.
- There is a one-to-one correspondence between the state in $\sum_{i}\left(C^{\perp}\right)$ and the cosets in the partition $p_{0, i}\left(C^{\perp}\right) / C_{0, i}^{\perp, t r}$, where $C_{0, i}^{\perp, t r}$ denotes the truncation of $C_{0, i}^{t r}$, in the interval $[0, i-1]$.
Therefore, the dimension of $\sum_{i}\left(C^{\perp}\right)$ is given by

$$
\rho_{i}\left(C^{\perp}\right)=k\left(p_{0, i}\left(C^{\perp}\right)-k\left(C_{0, i}^{\perp, t r}\right)\right.
$$

- Note that $p_{0, i}\left(C^{\perp}\right)$ is the dual code of $C_{0, i}^{t r}$, and $C_{0, i}^{\perp, t r}$ is the dual code of $p_{0, i}(C)$. Therefore

$$
\begin{aligned}
k\left(p_{0, i}\left(C^{\perp}\right)\right) & =i-k\left(C_{0, i}^{t r}\right) \\
& =i-k\left(C_{0, i}\right)
\end{aligned}
$$

and $k\left(C_{0, i}^{\perp, t r}\right)=i-k\left(p_{0, i}(C)\right)$.

- It follows that $\rho_{i}\left(C^{\perp}\right)=k\left(p_{0, i}\left(C^{\perp}\right)-k\left(C_{0, i}^{\perp, t r}\right)\right.$ through $k\left(C_{0, i}^{\perp, t r}\right)=i-k\left(p_{0, i}(C)\right)$ that

$$
\rho_{i}\left(C^{\perp}\right)=k\left(p_{0, i}(C)\right)-k\left(C_{0, i}\right)
$$

Because $k\left(p_{0, i}(C)\right)=k-k\left(C_{i, n}\right)$, we have

$$
\rho_{i}\left(C^{\perp}\right)=k-k\left(C_{0, i}\right)-k\left(C_{i, n}\right)
$$

- Example:

The dual code of this the first-order code RM code $\mathrm{RM}(1,4)$ of length 16. It is a $(16,5)$ code with a minimum distance of 8 . Its TOGM is
$G_{\mathrm{TOGM}}=\left[\begin{array}{cccccccccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$
\Rightarrow This expression says that C and its dual code C^{\perp} have the same state complexity.

- We can analyze the state complexity of a code trellis from either the code or its dual code.
- In general, they have different branch complexities

$$
(0,1,2,3,3,4,4,4,3,4,4,4,3,3,2,1,0)
$$

- They have the same state complexity.
- The state-defining information sets and state labels are given in Table 7.
- The 16-section trellis for the code is shown in Figure 9.
- State labeling is done based on the state-defining information sets.
- State labeling based on the parity-check matrix of the code would require 11 bits.

i	G_{i}^{s}	a^{*}	a^{0}	A_{i}^{s}	State label
0	ϕ	a_{0}	-	ϕ	(0000)
1	$\left\{g_{0}\right\}$	a_{1}	-	$\left\{a_{0}\right\}$	$\left(a_{0} 00_{0}\right)$
2	$\left\{g_{0}, g_{1}\right\}$	a_{2}	-	$\left\{a_{0}, a_{1}\right\}$	$\left(a_{0} a_{1} 00\right)$
3	$\left\{g_{0}, g_{1}, g_{2}\right\}$	-	-	$\left\{a_{0}, a_{1}, a_{2}\right\}$	$\left(a_{0} a_{1} a_{2} 0\right)$
4	$\left\{g_{0}, g_{1}, g_{2}\right\}$	a_{3}	-	$\left\{a_{0}, a_{1}, a_{2}\right\}$	$\left(a_{0} a_{1} a_{2} 0\right)$
5	$\left\{g_{0}, g_{1} g_{2}, g_{3}\right\}$	-	-	$\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}$	$\left(a_{0} a_{1} a_{2} a_{3}\right)$
6	$\left\{g_{0}, g_{1}, g_{2}, g_{3}\right\}$	-	-	$\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}$	$\left(a_{0} a_{1} a_{2} a_{3}\right)$
7	$\left\{g_{0}, g_{1}, g_{2}, g_{3}\right\}$	-	a_{0}	$\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}$	$\left(a_{0} a_{1} a_{2} a_{3}\right)$
8	$\left\{g_{1}, g_{2}, g_{3}\right\}$	a_{4}	-	$\left\{a_{1}, a_{2}, a_{3}\right\}$	$\left(a_{1} a_{2} a_{3} 0\right)$
9	$\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}$	-	-	$\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$	$\left(a_{1} a_{2} a_{3} a_{4}\right)$
10	$\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}$	-	-	$\left\{a_{1} a_{2}, a_{3}, a_{4}\right\}$	$\left(a_{1} a_{2} a_{3} a_{4}\right)$
11	$\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}$	-	a_{3}	$\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$	$\left(a_{1} a_{2} a_{3} a_{4}\right)$
12	$\left\{g_{1}, g_{2}, g_{4}\right\}$	-	-	$\left\{a_{1}, a_{2}, a_{4}\right\}$	$\left(a_{1} a_{2} a_{4} 0\right)$
13	$\left\{g_{1}, g_{2}, g_{4}\right\}$	-	a_{2}	$\left\{a_{1}, a_{2}, a_{4}\right\}$	$\left(a_{1} a_{2} a_{4} 0\right)$
14	$\left\{g_{1}, g_{4}\right\}$	-	a_{1}	$\left\{a_{1}, a_{4}\right\}$	$\left(a_{1} a_{4} 00\right)$
15	$\left\{g_{4}\right\}$	-	a_{4}	$\left\{a_{4}\right\}$	$\left(a_{4} 000\right)$
16	ϕ	-	-	ϕ	(0000)

Table 7: State-defining sets and labels for the 16 -section trellis for $(16,5) \mathrm{RM}$ code.

Department of Electrical Engineering, National Chung Hsing University

- Let T be an n-section trellis for an (n, k) code C with state space dimension profile $\left(\rho_{0}, \rho_{1}, \ldots, \rho_{n}\right)$.
- The trellis T is said to be minimal if for any other n-section trellis T^{\prime} for C with state space dimension profile $\left(\rho_{0}^{\prime}, \rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right)$ the following inequality holds:

$$
\rho_{i} \leq \rho_{i}^{\prime}
$$

for $0 \leq i \leq n$.

- A minimal trellis is unique within isomorphism.
- A minimal trellis results in a minimal total number of states in the trellis. In fact, the inverse is also true: a trellis with a minimum total number of states in a minimal trellis.
Figure 9: A 16 -section trellis for $(16,5)$ RM code with state
- From

$$
\begin{aligned}
\rho_{i}(C) & =k-\left|G_{i}^{p}\right|-\left|G_{i}^{f}\right| \\
& =k-k\left(C_{0, i}\right)-k\left(C_{i, n}\right)
\end{aligned}
$$

we see that the state space dimension ρ_{i} at time-i depends on the

- A permutation that yields the smallest state space dimension at every time of the code trellis is called an optimum permutation
dimensions of the past and future codes, $C_{0, i}$ and $C_{i, n}$. (or bit ordering)
\Rightarrow For a given code $C, k\left(C_{0, i}\right)$ and $k\left(C_{i, n}\right)$ are fixed.
\Rightarrow Optimum permutation is hard to find.
- Given an (n, k) linear code C, a permutation of the orders of the bit (or symbol) positions result in an equivalent code C^{\prime} with the
\Rightarrow Optimum permutations for RM codes are known, but they same weight distribution and the same error performance; however, different permutations of bit positions may result in different dimensions for $C_{0, i}, C_{i, n}$ and ρ_{i} at time- i.

Trellises for Linear Block Codes

- The branch complexity of an n-section trellis diagram for an (n, k) linear code C is defined as the total number of branches in the trellis.
- An n-section trellis diagram for an (n, k) linear block code is said to be a minimal branch (or edge) trellis diagram if it has the smallest branch complexity.
- A minimal trellis diagram has the smallest branch complexity.
- We define

$$
I_{i}\left(a^{*}\right)= \begin{cases}1, & \text { if } a^{*} \nsubseteq A_{i}^{f} \\ 2, & \text { if } a^{*} \cong A_{i}^{f}\end{cases}
$$

Let ε denote the total number of branches in T.

- Then

$$
\begin{aligned}
\varepsilon & =\sum_{i=0}^{n-1}\left|\sum_{i}(C)\right| \cdot I_{i}\left(a^{*}\right) \\
& =\sum_{i=0}^{n-1} 2^{\rho_{i}} \cdot I_{i}\left(a^{*}\right) .
\end{aligned}
$$

For $0 \leq i<n, 2^{\rho_{i}} \cdot I_{i}\left(a^{*}\right)$ is simply the number of branches in the i th section of trellis T.

- Example:

To consider the TOGM of the $(8,4)$ RM code

$$
G_{\mathrm{TOGM}}=\left[\begin{array}{l}
g_{0} \\
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right]=\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- From Table 2 we find that

$$
I_{0}\left(a^{*}\right)=I_{1}\left(a^{*}\right)=I_{2}\left(a^{*}\right)=I_{4}\left(a^{*}\right)=2
$$

and

$$
I_{3}\left(a^{*}\right)=I_{5}\left(a^{*}\right)=I_{6}\left(a^{*}\right)=I_{7}\left(a^{*}\right)=1 .
$$

- The state space dimension profile of the 8 -section trellis for the code is $(0,1,2,3,2,3,2,1,0)$.
- From $\varepsilon=\sum_{i=0}^{n-1} 2^{\rho_{i}} \cdot I_{i}\left(a^{*}\right)$ we have
$\varepsilon=2^{0} \cdot 2+2^{1} \cdot 2+2^{2} \cdot 2+2^{3} \cdot 1+2^{2} \cdot 2+2^{3} \cdot 1+2^{2} \cdot 1+2^{1} \cdot 1$
$=2+4+8+8+8+8+4+2$
$=44$.
- For convenience, we reproduce it here
$G=\left[\begin{array}{c}g_{0} \\ g_{1} \\ \vdots \\ g_{k-1}\end{array}\right]$
$=\left[\begin{array}{lllllllllll}1 & g_{1} & g_{2} & \ldots & \ldots & g_{n-k-1} & 1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & g_{1} & g_{2} & \ldots & \ldots & g_{n-k-1} & 1 & 0 & \ldots & 0 \\ & & & & & \ddots & & & & & \\ 0 & 0 & \ldots & 0 & 1 & g_{1} & g_{2} & \ldots & \cdots & g_{n-k-1} & 1\end{array}\right]$
- We readily see that the generator matrix is already in trellis-oriented form.
- For $0 \leq i<k$, the time span of the i-row g_{i} is

$$
\tau\left(g_{i}\right)=[i, n-k+1+i]
$$

- Consider the case $k>n-k$, we see that the maximum state space dimension is $\rho_{\max }(C)=n-k$, and the state space profile is
(or the bit span $\phi\left(g_{i}\right)=[i, n-k+i]$). The active time spans of all the rows have the same length, $n-k$.
- Now, we consider the n-section bit-level trellis for this (n, k) cyclic code. There are two cases to be considered:

1. $k>n-k$.
2. $k \leq n-k$.

$$
(0,1, \ldots, n-k-1, n-k, \ldots, n-k, n-k-1, \ldots, 1,0)
$$

- Consider the case $k \leq n-k$, we see that the maximum state space dimension is $\rho_{\max }(C)=k$, and the state space profile is

$$
(0,1, \ldots, k-1, k, \ldots, k, k-1, \ldots, 1,0)
$$

Department of Electrical Engineering, National Chung Hsing University

- Example:

Consider the $(7,4)$ cyclic hamming code generated by $g(x)=1+X+x^{3}$.
Its generator matrix in TOF is

$$
G=\left[\begin{array}{l}
g_{0} \\
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right]=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

- By examining the generator matrix, we find that the trellis state space dimension profile is $(0,1,2,3,3,2,1,0)$. Therefore, $\rho_{\text {max }}(C)=3$.
- The 7 -section trellis for this code is shown in Figure 10, the state-defining information sets and the state labels are given in Table 8.

Figure 10: The 7 -section trellis diagram for the $(7,4)$ Hamming code with 3 -bit state label.

i	G_{i}^{s}	a^{*}	a^{0}	A_{i}^{s}	State label
0	ϕ	a_{0}	-	ϕ	(000)
1	$\left\{g_{0}\right\}$	a_{1}	-	$\left\{a_{0}\right\}$	$\left(a_{0} 00\right)$
2	$\left\{g_{0}, g_{1}\right\}$	a_{2}	-	$\left\{a_{0}, a_{1}\right\}$	$\left(a_{0} a_{1} 0\right)$
3	$\left\{g_{0}, g_{1}, g_{2}\right\}$	a_{3}	a_{0}	$\left\{a_{0}, a_{1}, a_{2}\right\}$	$\left(a_{0} a_{1} a_{2}\right)$
4	$\left\{g_{1}, g_{2}, g_{3}\right\}$	-	a_{1}	$\left\{a_{1}, a_{2}, a_{3}\right\}$	$\left(a_{1} a_{2} a_{3}\right)$
5	$\left\{g_{2}, g_{3}\right\}$	-	a_{2}	$\left\{a_{2}, a_{3}\right\}$	$\left(a_{2} a_{3} 0\right)$
6	$\left\{g_{3}\right\}$	-	a_{3}	$\left\{a_{3}\right\}$	$\left(a_{3} 00\right)$
7	ϕ	-	-	ϕ	(000)

Table 8: \quad State-defining sets and state labels for the 8 section trellis for $(8,4) \mathrm{RM}$ code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes

- Suppose the TOGM G has the following symmetry property:
- For each row g in G with bit span $\phi(g)=[a, b]$, there exists a row g^{\prime} in G with bit span $\phi\left(g^{\prime}\right)=[n-1-b, n-1-a]$.
Next, we derive a special symmetry structure for trellises of some linear block codes. This structure is quite useful for implementing a row g in G with bit span $\phi\left(g^{\prime}\right)=[$
With this symmetry in G, we can readily see that for
- Consider the TOGM of a binary (n, k) linear block code of even length n, $0 \leq i \leq n / 2$, the number of rows in G that are active at time- $(n-i)$ is equal to the number of rows in G that are active at time- i.
This implies that

$$
\left|\sum_{n-i}(C)\right|=\left|\sum_{i}(C)\right| \text { or } \rho_{n-i}=\rho_{i}
$$

for $0 \leq i \leq n / 2$.

- If we rotate the matrix $G^{\prime} 180^{\circ}$ counterclockwise, we obtain a matrix $G^{\prime \prime}$ in which the i th row $g_{i}^{\prime \prime}$ is simply the $(k-1-i)$ th row g_{k-1-i}^{\prime} of G^{\prime} in reverse order ${ }^{\text {a }}$.
- We can permute the rows of G such that the resultant matrix, denoted by G^{\prime}, is in a reverse trellis-oriented form:

1. The trailing 1 of each row appears in a column before the trailing 1 of any row below it.
2. No two rows have their leading 1's in the same column.

- We obtain the following matrix in reverse trellis-oriented form:

$$
G^{\prime}=\left[\begin{array}{c}
g_{0}^{\prime} \\
g_{1}^{\prime} \\
g_{2}^{\prime} \\
g_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- Rotating $G^{\prime} 180^{\circ}$ counterclockwise, we obtain the following matrix:

$$
G^{\prime \prime}=\left[\begin{array}{l}
g{ }_{0} \\
g_{1} \\
g_{1}{ }_{2} \\
g "_{3}
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- For the case in which n is odd, if the TOGM $G_{T O G M}$ of a binary

Trellis sectionalization and parallel decomposition

 (n, k) code C has the mirror symmetry property, then the last ($n-1$)/2 sections of the n-section trellis T for C form the mirror image of the first $(n-1) / 2$ sections of T.- The trellises of all cyclic codes have mirror-image symmetry.
- In a bit-level trellis diagram, every time instant in the encoding interval $\Gamma=[0,1,2, \ldots, n]$.
- It is possible to sectionalize a bit-level trellis with section boundary locations at selected instants in Γ.

Department of Electrical Engineering, National Chung Hsing University

- A v-section trellis diagram for C with section boundaries at the locations(time instants) in Λ, denoted by $T(\Lambda)$, can be obtained from the n-section trellis T by

1. To delete every state in $\Sigma_{t}(\mathrm{C})$ for $t \in\{0,1, \ldots, n\} \backslash \Lambda$ and every branch entering or leaving a deleted state.
2. For $1 \leq j \leq v$, connecting a state $s \in \sum_{t_{j-1}}$ to a state $s \in \sum_{t_{j}}$ by a branch with label α if and only if there is a path with label α from state s to state s^{\prime} in the n-section trellis T.

- In this v-section trellis, a branch connecting a state $s \in \sum_{t_{j-1}}$ to a state $s^{\prime} \in \sum_{t_{j}}$ represents $\left(t_{j}-t_{j-1}\right)$ code symbols.
- The state space $\sum_{t_{j-1}}(C)$ at time- t_{j-1}, the state space $\sum_{t_{j}}(C)$ at time- t_{j}, and all the branches between states in $\sum_{t_{j-1}}(C)$ and states in $\sum_{t_{j}}(C)$, form the j th section of $T(\Lambda)$.
- If the lengths of all the sections are the same, $T(\Lambda)$ is said to be uniformly sectionalized.

Department of Electrical Engineering, National Chung Hsing University

- If the section boundary locations $t_{0}, t_{1}, \ldots, t_{v}$ are chosen at the places where $\rho_{t_{1}}, \rho_{t_{2}}, \ldots, \rho_{t_{v-1}}$ are small, then the resultant v-section code trellis $T(\Lambda)$ has a small state space complexity
- However, sectionalization, in general, results in an increase in branch complexity.

It is important to properly choose the section boundary locations to provide a good trade-off between state and branch complexities.

- Example:

Consider the 16 -section trellis for the $(16,11)$ RM code shown in Figure 11.

- Suppose we choose $v=4$ and the section boundary set $\Lambda=\{0,4,8,12,16\}$.
- The result is a 4 -section trellis as shown in Figure 12. Each section is 4 bits long.
- The state space dimension profile for this 4-section trellis is $(0,3,3,3,0)$, and the maximum state space dimension is $\rho_{4, \text { max }}(C)=3$.
- The trellis consists of two parallel and structurally identical subtrellises without cross-connections between them.

Trellises for Linear Block Codes

Figure 11: A 4-section trellis for the $(8,4) \mathrm{RM}$ code.

Parallel decomposition

- For long codes with large dimensions, it is very difficult to implement any trellis-based MLD algorithm based on a full code trellis on (an) integrated circuit(IC) chip(s) for hardware implementation.
- Parallel decomposition:

To overcome this implementation difficulty, one possible approach is to decompose the minimal trellis diagram of a code into parallel and structurally identical subtrellises of smaller dimensions without cross connections between them so that each subtrellis with reasonable complexity can be put on a single IC chip of reasinable size.

- Suppose we choose a subcode C_{1} of C by removing a row g from the $G_{\text {тоg }}$ of C.
\Rightarrow The generator matrix G_{1} for this subcode is $G_{1}=G_{\text {TOGM }} \backslash\{g\}$.
- Let $\operatorname{dim}(C)$ and $\operatorname{dim}\left(C_{1}\right)$ denote the dimensions of C and C_{1}, respectively.
$\Rightarrow \operatorname{dim}\left(C_{1}\right)=\operatorname{dim}(C)-1=k-1$.
- The state space dimension $\rho_{i}(\mathrm{C})$ is equal to the number of rows
of G whose active time spans contain the time index i.

$$
\Rightarrow \begin{cases}\rho_{i}\left(C_{1}\right)=\rho_{i}(C)-1 & \text { for } i \in \tau_{a}(g) \\ \rho_{i}\left(C_{1}\right)=\rho_{i}(C) & \text { for } i \notin \tau_{a}(g)\end{cases}
$$

Parallel decomposition should be done in such a way that the maximum state space dimension of the minimal trellis of a code is not exceeded.

- Advantages:
- Complexity:

Because all the subtrellis are structurally identical, we can devise identical decoders of much smaller complexity to process these subtrellises in parallel.

- Speed:

This method speeds up the decoding process.

- Implementation:

Parallel decomposition resolves wire routing problem in IC implementation and reduces internal communication.

- We define the following index set:

$$
I_{\max }(C) \triangleq\left\{i: \rho_{i}(C)=\rho_{\max }(C), \text { for } 0 \leq i \leq n\right\}
$$

- Theorem:

If there exists a row g in the $G_{\text {Togm }}$ for an (n, k) linear code C

- Because G is in TOF, $G_{1}=G \backslash\{g\}$ is also in TOF. If the condition of Theorem holds, then it follows from the foregoing such that $\tau_{a}(g) \supseteq I_{\max }(C)$, then the subcode C_{1} of C generated by $G_{\text {ToGM }} \backslash\{g\}$ has a minimal trellis T_{1} with maximum state space that it is possible to construct a trellis for C that consists of two parallel and structurally identical subtrellises, one for C_{1} and the other for its coset $C_{1} \oplus g$. dimension $\rho_{\max }\left(C_{1}\right)=\rho_{\max }(C)-1$, and

$$
I_{\max }\left(C_{1}\right)=I_{\max }(C) \cup\left\{i: \rho_{i}(C)=\rho_{\max }(C)-1, i \nsubseteq \tau_{a}(g)\right\} .^{\cdot a}
$$

- Each subtrellis is a minimal trellis and has maximum state space dimension equal to $\rho_{\max }(C)$.

[^8]Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes

- Suppose we remove g_{1} from $G_{\text {Togm }}$. The resulting matrix is

$$
G_{1}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

which generates an $(8,3)$ subcode C_{1} of the $(8,4)$ RM code C.

- From G_{1} we can construct a minimal 8 -section trellis T_{1} for C_{1}, as shown in Figure 13 (the upper subtrellis).
- Its state space dimension profile is $(0,1,2,3,2,3,2,1,0)$ and
- The state space dimension profile of T_{1} is $(0,1,1,2,1,2,1,1,0)$ and $\rho_{\max }(C)=2$. Adding $g_{1}=(01011010)$ to every path in T_{1}, we obtain the minimal 8 -section trellis T_{1}^{\prime} for the coset $g_{1} \oplus C_{1}$, as shown in Figure 13 (the lower subtrellis).
- The trellises T_{1} and T_{1}^{\prime} form a parallel decomposition of the minimal 8 -section trellis T for the $(8,4) \mathrm{RM}$ code. We see that the state space dimension profile of $T_{1} \cup T_{1}^{\prime}$ is $(0,2,2,3,2,3,2,2,0)$.
- Clearly, $T_{1} \cup T_{1}^{\prime}$ is not a minimal 8 -section trellis for the $(8,4)$ RM code: however, its maximum state space dimension is still $\rho_{\max }(C)=3$.
- If we sectionalize $T_{1} \cup T_{1}^{\prime}$ at locations $\Lambda=\{0,2,4,6,8\}$, we obtain the minimal 4 -section trellis for the code, as shown in Figure 11.

Figure 13: Parallel decomposition of the minimal 8-section trellis for the $(8,4)$ RM code.

Department of Electrical Engineering, National Chung Hsing University

- Theorem:

Let $G_{\text {Togm }}$ be the TOGM of an (n, k) linear block code C over $G F(2)$. Define the following subset of rows of $G_{\text {ToGm }}$:

$$
R(C) \triangleq\left\{g \in G_{\mathrm{TOGM}}: \tau_{a}(g) \supseteq I_{\max }(C)\right\}
$$

- Corollary:

In decomposing a minimal trellis diagram for a linear block code C, the maximum number of parallel isomorphic subtrellises one can obtain such that the total state space dimension at any time does not exceed $\rho_{\max }(C)$ is upper bounded by $2^{|R(C)|}$.
For any integer r with $1 \leq r \leq|R(C)|$, there exists a subcode of C_{r} of C such that

$$
\rho_{\max }\left(C_{r}\right)=\rho_{\max }(C)-r \text { and } \operatorname{dim}\left(C_{r}\right)=\operatorname{dim}(C)-r
$$

- Corollary:

The logarithm base-2 of the number of parallel isomorphic if and only if there exists a subset $R_{r} \subseteq R(C)$ consisting of r rows of $R(C)$ such that for every i with $\rho_{i}(C)>\rho_{\max }\left(C_{r}\right)$, there subtrellises in a minimal v-section trellis with section boundary exist at least $\rho_{i}(C)-\rho_{\max }\left(C_{r}\right)$ rows in R_{r} whose active time spans contains i. The subcode C_{r} is generated by $G_{\text {ToGm }} \backslash R_{r}$, and locations in $\Lambda=\left\{t_{0}, t_{1}, t_{2}, \ldots, t_{v}\right\}$ for a binary (n, k) linear block code C is given by the number of rows in the $G_{\text {TOGM }}$ whose active the set of coset representatives for C / C_{r} is generated by R_{r}.

- Example:

To consider the $(16,11)$ RM code. Suppose we sectionalize the bit-level trellis at locations in $\Lambda=\{0,4,8,12,16\}$. Examining the TOGM of the code, we find only row

$$
g_{3}=(0001111010001000)
$$

whose active time span, $\tau_{a}\left(g_{3}\right)=[4,12]$, consider $\{4,8,12\}$.
Therefore, the 4 -section trellis $T(\{0,4,8,12,16\})$ consists of two parallel isomorphic subtrellises.

Cartesian product

- Consider the interleaved code $C^{\lambda}=C_{1} * C_{2} * \ldots * C_{\lambda}$, which is constructed by interleaving λ linear block code, $C_{1}, C_{2}, \ldots, C_{\lambda}$, of length n.
- For $1 \leq j \leq \lambda$, let T_{j} be an n-section trellis for C_{j}. For $0 \leq i \leq n$, let $\sum_{i}\left(C_{j}\right)$ denote the state space of T_{j} at time- i.

Trellises for Linear Block Codes
2. A state $\left(s_{i}^{(1)}, s_{i}^{(2)}, \ldots, s_{i}^{(\lambda)}\right)$ in $\sum_{i}\left(C^{\lambda}\right)$ is adjacent to a state $\left(s_{i+1}^{(1)}, s_{i+1}^{(2)}, \ldots, s_{i+1}^{(\lambda)}\right)$ in $\sum_{i+1}\left(C^{\lambda}\right)$ if and only if s_{i}^{j} is adjacent to s_{i+1}^{j} for $1 \leq j \leq \lambda$. Let $l_{j} \triangleq l\left(s_{i}^{j}, s_{i+1}^{j}\right)$ denote the label of the branch that connects the state s_{i}^{j} to the state s_{i+1}^{j} for

- The Cartesian product of $T_{1}, T_{2}, \ldots, T_{\lambda}$, denote by $T^{\lambda} \triangleq T_{1} \times T_{2} \times \ldots \times T_{\lambda}$, is constructed as follows:

1. For $0 \leq i \leq n$, form the Cartesian product of $\sum_{i}\left(C_{1}\right)$, $\sum_{i}\left(C_{2}\right), \ldots, \sum_{i}\left(C_{\lambda}\right)$,

$$
\begin{aligned}
\sum_{i}\left(C^{\lambda}\right) & \triangleq \sum_{i}\left(C_{1}\right) \times \sum_{i}\left(C_{2}\right) \times \ldots \times \sum_{i}\left(C_{\lambda}\right) \\
& =\left\{\left(s_{i}^{(1)}, s_{i}^{(2)}, \ldots, s_{i}^{(\lambda)}\right): s_{i}^{(j)} \in \sum_{i}\left(C_{j}\right) \text { for } 1 \leq j \leq \lambda\right\} .
\end{aligned}
$$

Then, $\sum_{i}\left(C^{\lambda}\right)$ forms the state space of T^{λ} at time- i, i.e., the λ-tuple in $\sum_{i}\left(C^{\lambda}\right)$ form the nodes of T^{λ} at level- i.
$1 \leq j \leq \lambda$. We connect the state $\left(s_{i}^{(1)}, s_{i}^{(2)}, \ldots, s_{i}^{(\lambda)}\right) \in \sum_{i}\left(C^{\lambda}\right)$ to the state $\left(s_{i+1}^{(1)}, s_{i+1}^{(2)}, \ldots, s_{i+1}^{(\lambda)}\right) \in \Sigma_{i+1}\left(C^{\lambda}\right)$ by a branch that is labeled by the following λ-tuple:

$$
\left(l_{1}, l_{2}, \ldots, l_{\lambda}\right) .
$$

This label is simply a column of the array of
$\left[\begin{array}{cccc}v_{1,0} & v_{1,1} & \ldots, & v_{1, n-1} \\ v_{2,0} & v_{2,1} & \ldots, & v_{2, n-1} \\ \vdots & & & \\ v_{\lambda, 0} & v_{\lambda, 1} & \ldots & v_{\lambda, n-1}\end{array}\right]$

- Example:

Let C be the $(3,2)$ even parity-check code whose generator matrix in trellis-oriented form is

$$
G_{\mathrm{TOGM}}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] .
$$

- The 3-section bit level trellis T fot this code can easily be constructed form $G_{\text {TоGM }}$ and is shown in Figure 14(a).
- Suppose the code is interleaved to a depth of $\lambda=2$. Then, the interleaved code $C^{2}=C * C$ is a $(6,4)$ linear code.
- The Cartesian product $T \times T$ results in 3 -section trellis T^{2} for C^{2}, as shown in Figure 14(b).

Trellises for Linear Block Codes

Figure 14: (a) The minimal 3 -section bit level trellis for $(3,2)$ even parity-check code, (b) A 3-section trellis for the interleaved $(3,2)$ code of depth 2 .

- Example:

Let C_{1} and C_{2} both be the $(3,2)$ even parity-check code. Then, the product $C_{1} \times C_{2}$ is a $(9,4)$ linear code with a minimum distance 4

- Using the Cartesian product construction method given above, we first construct the 3 -section trellis for the interleaved code $C_{1}^{2}=C_{1} * C_{1}$, which is shown in Figure 14(b).
- we encode each branch label in this trellis based on the $C_{2}=(3,2)$ code. The result is a 3 -section trellis for the product code $C_{1} \times C_{2}$, as shown in Figure 16 .
Figure 15: Code array for the product code $C_{1} \times C_{2}$.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes

$\mathrm{A}=(000), \mathrm{B}=(011), \mathrm{C}=(110), \mathrm{D}=(101)$

Figure 16: A 3 -section trellis for the product $(3,2) \times(3,2)$.

- Let C_{1} and C_{2} be an $\left(n, k_{1}, d_{1}\right)$ and an $\left(n, k_{2}, d_{2}\right)$ binary linear block code with generator matrix, G_{1} and G_{2}, respectively.
- Suppose C_{1} and C_{2} have only the all-zero codeword $\mathbf{0}$ in common; that is, $C_{1} \cap C_{2}=\{\mathbf{0}\}$.
- Their direct-sum, denoted by $C_{1} \oplus C_{2}$, is defined as follows:

$$
C \triangleq C_{1} \oplus C_{2} \triangleq\left\{u+v: u \in C_{1}, v \in C_{2}\right\} .
$$

- Then, $C=C_{1} \oplus C_{2}$ is an $\left(n, k_{1}+k_{2}\right)$ code with minimum distance $d_{\text {min }} \leq \min \left\{d_{1}, d_{2}\right\}$ and generator matrix

$$
G=\left[\begin{array}{l}
G_{1} \\
G_{2}
\end{array}\right]
$$

- Let T_{1} and T_{2} be the n-section trellis for C_{1} and C_{2}, respectively. Then, an n-section trellis T for the direct-sum code $C=C_{1} \oplus C_{2}$ can be constructed by taking the Cartesian product of T_{1} and T_{2}.
- The formation of state spaces for T and the condition for state adjacency between states in T are the same as for forming the trellis for an interleaved code by taking the Cartesian product of the trellis for the component codes. The difference is branch labeling.
- For two adjacent $\operatorname{states}\left(s_{i}^{(1)}, s_{i}^{(2)}\right)$ and $\left(s_{i+1}^{(1)}, s_{i+1}^{(2)}\right)$ in T at time- i and time- $(i+1)$, let $l_{j} \triangleq 1\left(s_{i}^{(j)}, s_{i+1}^{(j)}\right)$ be the label of the branch that connects the state $s_{i}^{(j)}$ and the state $s_{i+1}^{(j)}$ for $1 \leq j \leq 2$.
- We connect the state $\left(s_{i}^{(1)}, s_{i}^{(2)}\right)$ and the state $\left(s_{i+1}^{(1)}, s_{i+1}^{(2)}\right)$ with a branch that is labeled with $l_{1}+l_{2}=1\left(s_{i}^{(1)}, s_{i+1}^{(1)}\right)+1\left(s_{i}^{(2)}, s_{i+1}^{(2)}\right)$.
- The described product of two trellises is also known as the Shannon product.

Trellises for Linear Block Codes

Trellises for Linear Block Codes

The direct-sum $C_{1} \oplus C_{2}$ is generated by

$$
G=\left[\begin{array}{l}
G_{1} \\
G_{2}
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

which is simply the TOGM for the $(8,4,4)$ RM code given in before example.

- Both G_{1} and G_{2} are TOF. Based on G_{1} and G_{2}, we construct the 8 -section trellises T_{1} and T_{2} for C_{1} and C_{2} as shown in Figure 17 and 18 , respectively.
- Taking the Shannon product of T_{1} and T_{2}, we obtain an 8 -section trellis $T_{1} \times T_{2}$ for the direct-sum $C_{1} \oplus C_{2}$ as shown in Figure 19, which is simply the 8 -section minimal trellis for the $(8,4,4) \mathrm{RM}$ code as shown in Figure 5.

Figure 17: The 8-section minimum trellis for the code generate

Figure 18: The 8-section minimum trellis for the code generate

$$
\text { by } G_{1}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

Trellises for Linear Block Codes

Figure 19: The Shannon product of the trellis of Figures 17 and 18.

Trellises for Linear Block Codes

- The Shannon product can be generalized to construct a trellis for a code that is a direct-sum of m linear block codes.
- For a positive integer $m \geqq 2$, and $1 \leqq j \leqq m$, let C_{j} be an (N, K_{j}, d_{j}) linear code.
- Suppose $C_{1}, C_{2}, \ldots, C_{m}$ satisfy the following condition: for $1 \leqq \mathrm{j}$, $j^{\prime} \leqq \mathrm{m}$, and $\mathrm{j} \neq j^{\prime}$,

$$
C_{j} \cap C_{j^{\prime}}=\{\mathbf{0}\}
$$

- This condition simply implies that for $v_{j} \in C_{j}$ with $1 \leqq j \leqq m$,

$$
v_{1}+v_{2}+\ldots+v_{m}=\mathbf{0}
$$

if and only if $v_{1}=v_{2}=\ldots=v_{m}=\mathbf{0}$.

- The direct-sum of $C_{1}, C_{2}, \ldots, C_{m}$ is defined as
- Let G_{j} be the generator matrix of C_{j} for $1 \leq j \leq m$.

Then, $C=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{m}$ is generated by the following

$$
\begin{aligned}
C & \triangleq C_{1} \oplus C_{2} \oplus \ldots \oplus C_{m} \\
& =\left\{v_{1}+v_{2}+\ldots+v_{m}: v_{j} \in C_{j}, 1 \leq j \leq m\right\} .
\end{aligned}
$$

- Then, $C=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{m}$ is an (N, K, d) linear block code with

$$
K=K_{1}+K_{2}+\ldots+K_{m} \text { and } d \leq \min _{1 \leq j \leq m}\left\{d_{j}\right\} .
$$ matrix:

$$
G=\left[\begin{array}{c}
G_{1} \\
G_{2} \\
\vdots \\
G_{m}
\end{array}\right]
$$

- The construction of an n-section trellis T for the direct-sum
- Example:
$C=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{m}$ is the same as that for the direct-sum of
Again, we consider the $(8,4,4) \mathrm{RM}$ code generated by the following TOGM:
- Let $\left(s_{i}^{(1)}, s_{i}^{(2)}, \ldots, s_{i}^{(m)}\right)$ and $\left(s_{i+1}^{(1)}, s_{i+1}^{(2)}, \ldots, s_{i+1}^{(m)}\right)$ be two adjacent states in T.
- The branch connecting $\left(s_{i}^{(1)}, s_{i}^{(2)}, \ldots, s_{i}^{(m)}\right)$ to $\left(s_{i+1}^{(1)}, s_{i+1}^{(2)}, \ldots\right.$, $\left.s_{i+1}^{(m)}\right)$ is labeled with

$$
l\left(s_{i}^{(1)}, s_{i+1}^{(1)}\right)+l\left(s_{i}^{(2)}, s_{i+1}^{(2)}\right)+\ldots+l\left(s_{i}^{(m)}, s_{i+1}^{(m)}\right),
$$

where for $1 \leq j \leq m, l\left(s_{i}^{(j)}, s_{i+1}^{(j)}\right)$ is the label of the branch that connects the state $s_{i}^{(j)}$ and the state $s_{i+1}^{(j)}$ in the trellis T_{j} for the j th code C_{j}.

$$
G=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- For $1 \leq j \leq 4$, let C_{j} be the $(8,1,4)$ code generated by the j th row of G. Then, the direct-sum, $C_{1} \oplus C_{2} \oplus C_{3} \oplus C_{4}$, gives the $(8,4,4)$ RM code.
- The 8-section minimal trellises for the four component codes are shown in Figure 20.
- The Shannon products $T_{1} \times T_{2}$ and $T_{3} \times T_{4}$ generate the trellises for $C_{1} \oplus C_{2}$ and $C_{3} \oplus C_{4}$, respectively, as shown in figure 17 and 18.
- The Shannon product $\left(T_{1} \times T_{2}\right) \times\left(T_{3} \times T_{4}\right)$ results in the overall trellis for the $(8,4,4) \mathrm{RM}$ code shown in Figure 19.

$$
\begin{aligned}
& \text { (a) } T \\
& \text { (a) } 0 \text { (c) } 1+\text { (1)- } 0 \text { (1)- } \\
& \text { ○○ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1)-0-0-(0)-(0)- (0) } \\
& \text { (d) } T_{\text {. }}
\end{aligned}
$$

Figure 20: The 8-section minimal trellises for the four component codes.

Department of Electrical Engineering, National Chung Hsing University

- Let T denote the minimal n-section trellis for C, and $\rho_{i}(C)$ denote the state space dimension of T at time- i for $0 \leq i \leq n$.
- For $1 \leq j \leq m$, let T_{j} be the minimal N-section trellis for the component code C_{j}.
Then,
Then, the Shannon product $T_{1} \times T_{2} \times \ldots \times T_{m}$ is the minimal N-section trellis for C if and only if the following condition holds: for $0 \leq i \leq N, 1 \leq j, j^{\prime} \leq m$, and $j \neq j^{\prime}$,

$$
p_{0, i}\left(C_{j}\right) \cap p_{0, i}\left(C_{j^{\prime}}\right)=\{\mathbf{0}\} .
$$

保 $0 \leq i \leq n$, then the Shannon product T
$\times T_{2} \times \ldots \times T_{m}$ is the minimal n-section trellis for the direct-sum $C=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{m}$.

- Example:

Suppose we sectionalize each of the two 8-section trellises of
Figures 17 and 18 into 4 sections, each of length 2. The resultant 4 -section trellises are shown in Figure 21, and the Shannon product of these two 4 -section trellises gives a 4 -section trellis, as shown in Figure 22, which is the same as the 4 -section trellis for the $(8,4,4)$ RM code shown in Figure 11.

Figure 21: The 4-section trellises for the trellises of Figures 17 and 18.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes

Figure 22: A 4-section trellises for the $(8,4,4) \mathrm{RM}$ code.

Trellises for Linear Block Codes

14.1 THE VITERBI DECODING ALGORITHM

- The decoder processes the trellis from the initial state to the final state serially, section by section.
- The survivors at each level of the code trellis are extended to the next through the connecting branches between the two levels.
- The paths that enter a state at the next level are compared, and the most probable path is chosen as the survivor.
- This process continues until the end of the trellis is reached.
- The number of computations required to decode a received sequence can be enumerated easily.
- In a bit-level trellis, each branch represents one code bit, and
- If there is an oldest information bit a^{0} to be shifted out from the encoder memory at time- i, then there are two branches entering hence a branch metric is simply a bit metric.
- Let N_{a} denote the total number of additions required to process each state s_{i+1} of the trellis at time $-i+1$.
- Define
$J_{i}\left(a^{0}\right)=0, \quad$ if $a^{0} \nsubseteq A_{i}^{s}$
$J_{i}\left(a^{0}\right)=1, \quad$ if $a^{0} \subseteq A_{i}^{s}$,
where A_{i}^{s} is the state-defining information set at time- i.
- Let N_{c} denote the total number of comparisons required to determine the survivors in the decoding process. Then,

$$
\begin{equation*}
N_{c}=\sum_{i=0}^{n-1} 2^{\rho_{i+1}} \cdot J_{i}\left(a^{0}\right) \tag{2}
\end{equation*}
$$

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes

- The total number of computations(additions and comparisons) required to decode a received sequence based on the bit-level trellis T using the Viterbi decoding algorithm is $N_{a}+N_{c}$.

- The total number of computations(additions and comparisons) required to process a sectionalized trellis $T(\Lambda)$ depends on the choice of the section boundary location set $\Lambda=\left[t_{0}, t_{1}, \ldots, t_{v}\right]$.
- For any two integers x and y with $0 \leq \mathrm{x}<\mathrm{y} \leq \mathrm{n}$, the section from time-x to time-y in any sectionalized trellis $\mathrm{T}(\Lambda)$ with $\mathrm{x}, \mathrm{y} \in$ Λ and $\mathrm{x}+1, \mathrm{x}+2, \ldots, \mathrm{y}-1 \nsubseteq \Lambda$ is identical.
- A sectionalization of a code trellis that given the smallest total
- Let $\varphi(\mathrm{x}, \mathrm{y})$ denote the number of computations of the Viterbi decoding algorithm to process the trellis section from time-x to number of computations is called an "optimal sectionalization" for the code. time-y. Let $\varphi_{\min }(\mathrm{x}, \mathrm{y})$ denote the smallest number of computations of the Viterbi decoding algorithm to process the trellis section from time-x to time-y.

Department of Electrical Engineering, National Chung Hsing University

- It follows from the definitions of $\varphi(\mathrm{x}, \mathrm{y})$ and $\varphi_{\min }(\mathrm{x}, \mathrm{y})$ that $\varphi_{\text {min }}(0, y)=$

For every $y \in\{1,2, \ldots, \mathrm{n}\}, \varphi_{\text {min }}(0, \mathrm{y})$ can be computed as follows.

- Example: Consider the second-order RM code of length 64 that is a $(64,22)$ code with minimum Hamming distance 16. We find that the boundary location ser $\Lambda=\{0,8,16,32,48,56,61,63$, $64\}$ results in an optimum sectionalization. With this optimum sectionalization, $\varphi_{\min }(0,64)$ is 101786.
With the section boundary location set $\Lambda=\{0,8,16,24,32,40$,
$48,56,64\}$, requires a total of 119935 computations.

14.4.1 The MAP Algorithm Based on a Bit-level Trellis

- Assume BPSK transmission. Let $\mathrm{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ be a codeword and $\mathrm{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ be its corresponding bipolar signal sequence, where for $0 \leq i<n, c_{i}=2 v_{i}-1= \pm 1$. Let $\mathrm{r}=$ $\left(r_{0}, r_{1}, \ldots, r_{n-1}\right)$ be the soft-decision received sequence.
- The estimated code bit v_{i} is then given by the sign of its LLR as follows:

$$
v_{i}= \begin{cases}1, & \text { if } L\left(v_{i}\right)>0 \tag{4}\\ 0, & \text { if } L\left(v_{i}\right) \leq 0\end{cases}
$$

the larger the $\left|L\left(v_{i}\right)\right|$, the more reliable the hard decision of v_{i}. Therefore, $L\left(v_{i}\right)$ represents the soft information associated with the decision on v_{i}.
where $p\left(v_{i} \mid r\right)$ is the a posteriori probability of v_{i} given the received sequence r.

- In the n -section bit-level trellis T for C , let $B_{i}(\mathrm{C})$ denote the set - For $\left(s^{\prime}, s\right) \in B_{i}(C)$, we define the joint probabilities

$$
\begin{equation*}
\lambda_{i}\left(s^{\prime}, s\right) \triangleq p\left(s_{i}=s^{\prime}, s_{i+1}=s, r\right) \tag{6}
\end{equation*}
$$

$\Sigma_{i}(\mathrm{C})$ at time- i and the states in state space $\Sigma_{i+1}(\mathrm{C})$ at
ete rex etorere
time- $(i+1)$.
for $0 \leq i<n$. Then, the joint probabilities $p\left(v_{i}, r\right)$ for $v_{i}=0$ and $v_{i}=1$ are given by

$$
\begin{align*}
& p\left(v_{i}=0, r\right)=\sum_{\left(s^{\prime}, s\right) \in B_{i}^{0}(C)} \lambda_{i}\left(s^{\prime}, s\right) \tag{7}\\
& p\left(v_{i}=1, r\right)=\sum_{\left(s^{\prime}, s\right) \in B_{i}^{1}(C)} \lambda_{i}\left(s^{\prime}, s\right) . \tag{8}
\end{align*}
$$

- In fact, the LLR of v_{i} can be computed directly from the joint
- It follows from the definitions of $\alpha_{i}(s)$ and $\beta_{i}(s)$ that probabilities $p\left(v_{i}=0, r\right)$ and $p\left(v_{i}=1, r\right)$, as follows:

$$
\begin{equation*}
L\left(v_{i}\right) \triangleq \log \frac{p\left(v_{i}=1, r\right)}{p\left(v_{i}=0, r\right)} \tag{9}
\end{equation*}
$$

for $0 \leq j \leq l \leq n$. let $r_{j, l}$ denote the following section of the received sequence r :

$$
r_{j, l} \triangleq\left(r_{j}, r_{j+1}, \ldots, r_{l-1}\right)
$$

- For any state $s \in \sum_{i}(C)$, we define the probabilities

$$
\begin{align*}
& \alpha_{i}(s) \triangleq p\left(s_{i}=s, r_{0, i}\right) \tag{11}\\
& \beta_{i}(s) \triangleq p\left(r_{i, n} \mid s_{i}=s\right) \tag{12}
\end{align*}
$$

Department of Electrical Engineering, National Chung Hsing University

- Then $\alpha_{i}(s)$ and $\beta_{i}(s)$ can be expressed as follows:

1. For $0 \leq i \leq n$,

$$
\begin{array}{r}
\alpha_{i}(s)=\sum_{s^{\prime} \in \Omega_{i-1}^{(c)}(s)} p\left(s_{i-1}=s^{\prime}, s_{i}=s, r_{i-1}, r_{0, i-1}\right) \tag{17}\\
=\sum_{s^{\prime} \in \Omega_{i-1}^{(c)}(s)} \alpha_{i-1}\left(s^{\prime}\right) \gamma_{i-1}\left(s^{\prime}, s\right)
\end{array}
$$

2. For $0 \leq i \leq n$,

$$
\begin{array}{r}
\beta_{i}(s)=\sum_{s^{\prime} \in \Omega_{i+1}^{(d)}(s)} p\left(r_{i}, r_{i-1, n}, s_{i+1}=s^{\prime} \mid s_{i}=s\right) \tag{18}\\
=\sum_{s^{\prime} \in \Omega_{i+1}^{(d)}(s)} \gamma_{i}\left(s, s^{\prime}\right) \beta_{i+1}\left(s^{\prime}\right)
\end{array}
$$

- The state transition probability $\gamma_{i}\left(s^{\prime}, s\right)$ depends on the probability distribution of the information bits and the channel. Assume that each information bit is equally likely to be 0 or 1 .
Then, all the states in $\sum_{i}(\mathrm{C})$ are equiprobable, and the
transition probability

$$
\begin{equation*}
p\left(s_{i+1}=s \mid s_{i}=s^{\prime}\right)=\frac{1}{\Omega_{i+1}^{(d)}\left(s^{\prime}\right)} \tag{19}
\end{equation*}
$$

For an AWGN channel with zero mean and two-sided power spectral density $\frac{N_{0}}{2}$, the conditional probability

$$
\begin{equation*}
p\left(r_{i} \mid\left(s_{i}, s_{i+1}\right)=\left(s^{\prime}, s\right)\right)=\frac{1}{\sqrt{\pi N_{0}}} \exp \left\{\frac{-\left(r_{i}-c_{i}\right)^{2}}{N_{0}}\right\} \tag{20}
\end{equation*}
$$

where $c_{i}=2 v_{i}-1$, and v_{i} is the code bit on the $\operatorname{branch}\left(s^{\prime}, \mathrm{s}\right)$.

Department of Electrical Engineering, National Chung Hsing University

- We can use

$$
w_{i}\left(s^{\prime}, s\right) \triangleq \exp \left\{\frac{-\left(r_{i}-c_{i}\right)^{2}}{N_{0}}\right\}
$$

- Then, to carry out the MAP decoding algorithm, use the following three steps:

1. Perform the forward recursion process to compute the forward state probabilities, $\alpha_{i}(s)$'s, for $0 \leq i \leq n$.
2. Perform the backward recursion process to compute the backward state probabilities, $\beta_{i}(s)$'s, for $0 \leq i \leq n$.
3. Decoding is also performed during the backward recursion. As soon as the probabilities $\beta_{i+1}(s)$'s for all state $s \in \sum_{i+1}(C)$ have been computed, evaluate the probabilities $\lambda_{i}\left(s^{\prime}, s\right)^{\prime} s$ for all branches $\left(s^{\prime}, s\right) \in B_{i}(C)$.

Factor Graphs

Coding and Communication Laboratory

 $p\left(v_{i}=1, r\right)$. Then, compute the LLR of v_{i} from (9) and decodev_{i} based on the decision rule given by (4).

Dept. of Electrical Engineering,
National Chung Hsing University

Department of Electrical Engineering, National Chung Hsing University

Factor Graphs

Reference

1. Kschischang, Factor graphs and sum-product algorithm
2. Kschischang, Codes defined on graphs
3. Wiberg, Codes and iterative decoding on general graphs
4. Wiberg, Codes and decoding on general graphs
5. Forney, Codes and graphs: normal realizations
6. Forney, Codes on Graphs: News and Views
7. Tanner, A recursive approach to low complexity codes
8. Loeliger, An introduction to factor graphs
9. Schlegel, Trellis and turbo coding: chapter 8

CC Lab., EE, NCHU

CC Lab., EE, NCHU

Factor Graphs
. A factor graph is a graphical representation of any function, in particular for a complicated global function which is a product of some simple local functions.
In other words, a factor graph expresses how a global function of many variables factors into a product of local functions of a subset of some variables.

$f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$
$=f_{A}\left(x_{1}\right) \cdot f_{B}\left(x_{2}\right) \cdot f_{c}\left(x_{1}, x_{2}, x_{3}\right) \cdot f_{D}\left(x_{3}, x_{4}\right) \cdot f_{E}\left(x_{3}, x_{5}\right)$.
2. The sum product algorithm operated on the factor graph attempts to computer (1) exact marginal functions associated with the global function when the factor graph is cycle free or (2) almost exact marginal function with low complexity iterative processing when the factor graph has cycles.

3. For coding, factor graphs provide a nice graphical description of any realization of codes and the sum product algorithms represent the optimal or near optimal decoding of codes.

check realization and its factor graph

4. For any linear code C (block or convolutional codes), we can associate C with at least two realizations and its corresponding factor graphs:

- one based on the parity check matrix of C, (check-based realization: Tanner factor graph with cycles)
- the other based on the trellis of C.
(trellis-based realization: Wiberg factor graph without cycles).

5. We can then apply the sum product decoding algorithms on these two factor graphs.

CC Lab., EE, NCHU

For a binary code, we have simple parity check nodes and
binary-valued symbol nodes (bit nodes).
The factor graph is not unique since a linear code has many parity check matrices associated with it.

The factor graph with parity check matrices for $C[6,3,3]$ is in general not cycle free and supports suboptimal iterative decoding with low complexity.

We can combined these three simple check nodes into a single complex global $(6,3)$ check node whose factor graph is now cycle free and support optimal noniterative decoding with high complexity.

A $r \times n$ parity check matrix with constant $\rho \ll n$ row weights and constant $\gamma \ll r$ column weights, i.e., a factor graph in which every check node has degree ρ and every symbol node has degree γ, is called a regular $(\gamma, \rho) \mathrm{LDPC}$ code.

- (a) A factor graph with cycles: three simple $(4,3,2)$ single parity check with iterative decoding
- (b) A cycle-free factor graph: a complicated global $(7,4,3)$ Hamming check with optimum decoding

trellis realization and its factor graph

The same $C[6,3,3]$ linear code with trellis and factor graph:
$\left[\left(x_{1}, x_{2}, \ldots, x_{6}\right) \in C,\left(s_{0}, s_{1}, \ldots, s_{6}\right) \in S\right]=\left[\left(s_{0}, x_{1}, s_{1}\right) \in T_{1}\right]$.
里

$\left[\left(s_{1}, x_{2}, s_{2}\right) \in T_{2}\right] \cdot\left[\left(s_{2}, x_{3}, s_{3}\right) \in T_{3}\right] \cdot\left[\left(s_{3}, x_{4}, s_{4}\right) \in T_{4}\right]$.
$\left[\left(s_{4}, x_{5}, s_{5}\right) \in T_{5}\right] \cdot\left[\left(s_{5}, x_{6}, s_{6}\right) \in T_{6}\right] \cdot\left[\left(s_{6}, x_{7}, s_{7}\right) \in T_{7}\right]$
E.g., $T_{2}=\{(0,0,00),(0,1,10),(1,0,11),(1,1,01)\}$

Besides the n symbol nodes and n trellis-section check nodes, we also have $n+1$ state nodes.

The state nodes are not binary-valued. For a good code, the number of states is prohibitively large.

This factor graph is also called a Wiberg graph.

The factor graph based on the trellis of C is cycle free but also not unique since there are many trellises realizations of a code even though the ordering of the codeword bits is fixed.

Since the minimal trellis of C always exists for fixed ordering, the corresponding factor graph for the minimal trellis is unique.
6. Many Shannon capacity approaching codes, such as turbo codes,

The problem of finding an optimal minimal trellis among all LDPC codes, RA codes, are all well understood as codes defined permutations of bit positions is extremely difficult. Right now, only Reed Muller codes of natural ordering with optimal minimal
(a) Turbo codes (1993): Berrou
(b) LDPC codes (1963): Gallager
(c) RA codes (1998): McEliece trellis have been found.

We can also consider the tailbiting trellises for C whose factor graph is with one cycle.

Finding a good tailbiting trellis for C is a very active research

Factor Graphs

п

A factor graph of LDPC codes with random permutation Π

Factor Graphs

A factor graph of turbo codes with random permutation Π

A factor graph of RA codes with random permutation
9. Factor graphs are bipartite graphs:

The nodes (vertices) of factor graphs are divided into two groups

Algebraic vs. Graphic coding

 such that there are no edges (branches) connections inside each group, but only edges connected between nodes in different groups.- Algebraic coding \Longrightarrow coding theory
- Graphic coding \Longrightarrow coding practice
- Algebraic coding and Graphic coding are two important disciplines in error correcting codes.
(a) variable nodes (symbol nodes, visible nodes, bit nodes)
- Coding theory and coding practice are indispensable subject in communication engineering.
(c) function nodes (constraints nodes, factor nodes, check nodes)

Each node can be thought of a processor doing the calculation of

- More connection and twists between algebraic coding (coding theory) and graphic coding (coding practice) are expected and need to be explored.

History

- In 1981, Tanner introduced bipartite graphs to describe any linear block code with $r \times n$ parity check matrix H, in particular
- In 1995, Wiberg et al. introduced analogous graphs for any codes with trellis structure by adding hidden state variables to Tanner's graphs. and row weight.
- The bipartite graph of codes has n codeword bit nodes as one
- In 1999, Aji and McEliece present an equivalent definition: generalized distributive law (GDL). group and r parity check nodes as the other group, representing parity check constraints. The edge is connected from the i check node to the j bit node iff $h_{i, j}=1$.
- In 2001, Kschischang et al. introduced factor graph notations.
- In 2001, Forney introduced the normal graphs.
- Tanner also presented the fundamentals of two iterative decoding on graphs, i.e., the min-sum and sum-product algorithms.

Factor Graphs

Factor vs. Normal graphs

- The artificial intelligence community also developed graphical methods of solving probabilistic inference problems, termed probability propagation.
- A realization of a code/system is a mathematical characterization of the code/system.
- Pearl presented an algorithm in 1986 under the name belief propagation in Bayesian Networks, for use in acyclic or cycle-free graphs.
- Fact: many algorithms used in digital communications and signal processing are all special instances of a more general message-passing algorithm, the sum-product algorithm, operating on factor graphs.
- Given a code, we can have at least two different realizations of the code, i.e., the check realization and the trellis realization.
- For each realization, we can associate it with different graphs, e.g., the factor graphs and the normal graphs.
- For coding, factor graphs by Kschischang and normal graphs by Forney are two different graphical representations of any realization of a code C.
- The normal graph replaces the symbol nodes by an edge of degree 1 and the state nodes by an edge of degree 2 .
- We can easily transform a factor graph into a normal graph and vice versa.
- For a beginner, we suggest him to understand the factor graphs first.
- For an expert, you might learn the factor and normal graphs simultaneously.
- It seems that the normal graphs is more natural than factor graph in coding society.

CC Lab., EE, NCHU
CC Lab., EE, NCHU

Factor Graphs

- Let $g(x)=g\left(x_{1}, \ldots, x_{n}\right)$ be a real-valued function of these variables.
- I.e., $g(x)$ a function with domain

$$
S=A_{1} \times A_{2} \times \ldots \times A_{n}
$$

and codomain R.

- The domain S of g is also called the configuration space and each element of S is a particular configuration of g.
- We can compute n marginal functions $g_{i}(x)$, i.e., for each $a \in A_{i}$ the value of $g_{i}(a)$ is obtained by summing the value of global function $g\left(x_{1}, \ldots, x_{n}\right)$ over all configurations of the variables which have $x_{i}=a$.
- Let g be a function of three variables x_{1}, x_{2}, and x_{3}, then the "summary for x_{2} " is denoted by

$$
\sum_{\sim\left\{x_{2}\right\}} g\left(x_{1}, x_{2}, x_{3}\right):=\sum_{x_{1} \in A_{1}} \sum_{x_{3} \in A_{3}} g\left(x_{1}, x_{2}, x_{3}\right)
$$

- Therefore, the i-th marginal function is denoted by

$$
g_{i}\left(x_{i}\right):=\sum_{\sim\left\{x_{i}\right\}} g\left(x_{1}, \ldots, x_{n}\right)
$$

- Assuming that $g(x)$ can be factored into some local functions and with the help of distributive law of product operation over sum operation, we are seeking an efficient algorithm operate on the
- A complicated global function $g\left(x_{1}, \ldots, x_{n}\right)$ can be factored into a product of several simple local functions, each having some subset of $\left\{x_{1}, \ldots, x_{n}\right\}$ as arguments:

$$
g\left(x_{1}, \ldots, x_{n}\right)=\prod_{j \in J} f_{j}\left(X_{j}\right)
$$

where X_{j} is a subset of $\left\{x_{1}, \ldots, x_{n}\right\}$, and $f_{j}\left(X_{j}\right)$ is the j-th function having the elements of X_{j} as arguments.
factor graph of $g(x)$ to compute $g_{i}\left(x_{i}\right)$.

- More precisely, given a global function $g(x)=g\left(x_{1}, \ldots, x_{n}\right)$ factored into some local functions $f_{E}\left(x_{E}\right), E \in Q$

$$
g\left(x_{1}, \ldots, x_{n}\right)=\prod_{E \in Q} f_{E}\left(x_{E}\right)
$$

A factor graph has a variable node for each variable x_{i}, a factor node
a factor graph of $g(x)$ is a bipartite graph with vertex set $S \cup Q$ and edge set $\{\{i, E\}: i \in S, E \in Q, i \in E\}$, where $S=\{$ variable nodes $\}$ and $Q=\{$ function nodes $\}$.

CC Lab., EE, NCHU
CC Lab., EE, NCHU

- Then the extended code (full behavior) is the set of all symbol/state configurations satisfying all local constraints.
- The code (partial behavior) is the symbol configurations (codewords) that appears as part of symbol/state configurations in the extended code.
- In coding, it is preferred to separate the variable nodes into symbol and state nodes and call the function nodes as constraint or check nodes.
- In other words, we have three nodes: symbol, state, and check nodes in coding application.
- The edge is connected from the i-th check node to the k-th symbol node or the j-th state node if the i-th constraint node is involved with the k-th symbol and the j-th state nodes
- In factor graphs, symbol, state, and check nodes are three different nodes and can be thought as processors doing the calculation of the message.

Factor Graphs

- In normal graphs, we only have check nodes which purely do the computation; symbol edges are purely for input/output and state edges are purely for message passing.

An example

CC Lab., EE, NCHU
CC Lab., EE, NCHU

Factor Graphs

Example 1 (A Simple Factor Graph)

Let $g(x)$ be a function of five variables, and suppose that $g(x)$ can be expressed as a product

$$
\begin{aligned}
g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)= & f_{A}\left(x_{1}\right) f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right) \\
& \cdot f_{D}\left(x_{3}, x_{4}\right) f_{E}\left(x_{3}, x_{5}\right),
\end{aligned}
$$

Figure 1: A factor graph for
$g(x)=f_{A}\left(x_{1}\right) \cdot f_{B}\left(x_{2}\right) \cdot f_{C}\left(x_{1}, x_{2}, x_{3}\right) \cdot f_{D}\left(x_{3}, x_{4}\right) \cdot f_{E}\left(x_{3}, x_{5}\right)$.

Expression trees

- Now, we can compute the first marginal function $g_{1}\left(x_{1}\right)$ as

$$
\begin{aligned}
g_{1}\left(x_{1}\right)= & f_{A}\left(x_{1}\right)\left(\sum _ { x _ { 2 } } f _ { B } (x _ { 2 }) \left(\sum_{x_{3}} f_{C}\left(x_{1}, x_{2}, x_{3}\right)\right.\right. \\
& \left.\left.\cdot\left(\sum_{x_{4}} f_{D}\left(x_{3}, x_{4}\right)\right)\left(\sum_{x_{5}} f_{E}\left(x_{3}, x_{5}\right)\right)\right)\right)
\end{aligned}
$$

or, in summary notation

$$
\begin{aligned}
g_{1}\left(x_{1}\right)= & f_{A}\left(x_{1}\right) \times \sum_{\sim\left\{x_{1}\right\}}\left(f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right) \times\left(\sum_{\sim\left\{x_{3}\right\}} f_{D}\left(x_{3}, x_{4}\right)\right)\right. \\
& \left.\times\left(\sum_{\sim\left\{x_{3}\right\}} f_{E}\left(x_{3}, x_{5}\right)\right)\right)
\end{aligned}
$$

- Similarly, we find that

$$
\begin{aligned}
g_{3}\left(x_{3}\right)= & \left(\sum_{\sim\left\{x_{3}\right\}} f_{A}\left(x_{1}\right) f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right)\right) \\
& \times\left(\sum_{\sim\left\{x_{3}\right\}} f_{D}\left(x_{3}, x_{4}\right)\right) \times\left(\sum_{\sim\left\{x_{3}\right\}} f_{E}\left(x_{3}, x_{5}\right)\right) .
\end{aligned}
$$

- In computer science, arithmetic expressions like the right-hand sides of $g_{1}\left(x_{1}\right)$ and $g_{3}\left(x_{3}\right)$ are often represented by ordered rooted trees, here called expression trees.
- The operators shown in these figures are the function product and the summary, having various local functions as their arguments

CC Lab., EE, NCHU
CC Lab., EE, NCHU

Figure 4: (a) A tree representation for $g_{3}\left(x_{3}\right)$.
(b) The factor graph with x_{3} as root.

- When a factor graph is cycle-free, the factor graph not only encodes in its structure the factorization of the global function, but also provides an efficient way to compute the marginal functions.
- To find $g_{i}\left(x_{i}\right)$, we can arrange x_{i} as the root of the expression tree. Then every node v in the factor graph has a clearly defined parent node, namely, the neighboring node through which the unique path from v to x_{i} must pass.

CC Lab., EE, NCHU

- In (a), replace each variable node in the factor graph with a product operator.
- In (b), replace each factor node in the factor graph with a "form product and multiply by f " operator, and between a factor node f and its parent x, insert a $\sum_{\sim\{x\}}$ summary operator.

CC Lab., EE, NCHU

- To best understand such algorithms, it helps to imagine that
$\left\{\begin{array}{lll}\text { processor } & \Leftrightarrow & \text { each vertex of the factor graph } \\ \text { channel } & \Leftrightarrow & \text { the factor-graph edge }\end{array}\right.$
- Messages sent along the edges (channels) between the nodes (processor) are some appropriate description of some marginal function.
- The computation starts from the leaves.
- Each leaf variable node sends an identity function message to its

Computing all marginal functions

 parent- Each leaf function node sends the description of f to its parent.
- Computation of $g_{i}\left(x_{i}\right)$ for all i simultaneously can be efficiently accomplished by essentially "overlaying" on a single factor graph all possible instances of the single- i algorithm.
- After receiving the messages from all its children, the vertex then computes them and sends the updated messages to its parent.
- For a variable node, it sends the product of all messages from its children to its parent.
- For a function node with parent node x, it operates the summary of x of the product of all messages form its children and sends to its parent.
- The process terminates at node x_{i} and $g_{i}\left(x_{i}\right)$ is the product of all messages from the children of x.

CC Lab., EE, NCHU

- At variable node x_{i}, the product of all incoming messages is the marginal function $g_{i}\left(x_{i}\right)$, just as in the single- i algorithm.
- Since this algorithm operates by computing various sums and products, we refer to it as the sum-product algorithm.
- The operations of sum and product in $R(+, \cdot)$ need to satisfy the distributive law

$$
x \cdot(y+z)=x \cdot y+x \cdot z
$$

CC Lab., EE, NCHU

The sum-product algorithm

- The sum-product algorithm operates according to the following simple rule:
The sum-product update rule:
The message sent from a node v on an edge e is the product of the local function at v (or the unit function if v is a variable node) with all messages received at v on edges other than e, summarized for the variable associated with e.

$\left\{\begin{array}{l}\mu_{x \rightarrow f}(x) \text { : The message sent from node } x \text { to node } f . \\ \mu_{f \rightarrow x}(x) \text { : The message sent from node } f \text { to node } x . \\ n(v) \text { : The set of neighbors of a given node } v \text { in a factor graph. }\end{array}\right.$

CC Lab., EE, NCHU

- The message computations performed by the sum-product algorithm may be expressed as follows:
- variable to local function:

$$
\mu_{x \rightarrow f}(x)=\prod_{h \in n(x) \backslash\{f\}} \mu_{h \rightarrow x}(x)
$$

- local function to variable:

$$
\mu_{f \rightarrow x}(x)=\sum_{\sim\{x\}}\left(f(X) \prod_{y \in n(f) \backslash\{x\}} \mu_{y \rightarrow f}(y)\right)
$$

where $X=n(f)$ is the set of arguments of the function f

Factor Graphs

Figure 6: message passing in an edge between f and x.

CC Lab., EE, NCHU

- A detailed Example:

Fig. 7 shows the flow of messages that would be generated by the sum-product algorithm applied to the factor graph of Fig. 1.

Figure 7: sum-product algorithm for a cycle-free graph .
1.

$$
\begin{aligned}
& \mu_{f_{A} \rightarrow x_{1}}\left(x_{1}\right)=\sum_{\sim\left\{x_{1}\right\}} f_{A}\left(x_{1}\right)=f_{A}\left(x_{1}\right) \\
& \mu_{f_{B} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{\sim\left\{x_{2}\right\}} f_{B}\left(x_{2}\right)=f_{B}\left(x_{1}\right) \\
& \mu_{x_{4} \rightarrow f_{D}}\left(x_{4}\right)=1 \\
& \mu_{x_{5} \rightarrow f_{E}}\left(x_{5}\right)=1
\end{aligned}
$$


```
2.
```

$$
\begin{aligned}
& \mu_{x_{1} \rightarrow f_{C}}\left(x_{1}\right)=\mu_{f_{A} \rightarrow x_{1}}\left(x_{1}\right) \\
& \mu_{x_{2} \rightarrow f_{C}}\left(x_{2}\right)=\mu_{f_{B} \rightarrow x_{2}}\left(x_{2}\right) \\
& \mu_{f_{D} \rightarrow x_{3}}\left(x_{3}\right)=\sum_{\sim\left\{x_{3}\right\}} \mu_{x_{4} \rightarrow f_{D}}\left(x_{4}\right) f_{D}\left(x_{3}, x_{4}\right)=\sum_{\sim\left\{x_{3}\right\}} f_{D}\left(x_{3}, x_{4}\right) \\
& \mu_{f_{E} \rightarrow x_{3}}\left(x_{3}\right)=\sum_{\sim\left\{x_{3}\right\}} \mu_{x_{5} \rightarrow f_{E}}\left(x_{5}\right) f_{E}\left(x_{3}, x_{5}\right)=\sum_{\sim\left\{x_{3}\right\}} f_{E}\left(x_{3}, x_{5}\right)
\end{aligned}
$$

CC Lab., EE, NCHU
3.

$$
\begin{aligned}
\mu_{f_{C} \rightarrow x_{3}}\left(x_{3}\right) & =\sum_{\sim\left\{x_{3}\right\}} \mu_{x_{1} \rightarrow f_{C}}\left(x_{1}\right) \mu_{x_{2} \rightarrow f_{C}}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right) \\
\mu_{x_{3} \rightarrow f_{C}}\left(x_{3}\right) & =\mu_{f_{D} \rightarrow x_{3}}\left(x_{3}\right) \mu_{f_{E} \rightarrow x_{3}}\left(x_{3}\right)
\end{aligned}
$$

4.

$$
\begin{aligned}
\mu_{f_{C} \rightarrow x_{1}}\left(x_{1}\right) & =\sum_{\sim\left\{x_{1}\right\}} \mu_{x_{3} \rightarrow f_{C}}\left(x_{3}\right) \mu_{x_{2} \rightarrow f_{C}}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right) \\
\mu_{f_{C} \rightarrow x_{2}}\left(x_{2}\right) & =\sum_{\sim\left\{x_{2}\right\}}^{\sim} \mu_{x_{3} \rightarrow f_{C}}\left(x_{3}\right) \mu_{x_{1} \rightarrow f_{C}}\left(x_{1}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right) \\
\mu_{x_{3} \rightarrow f_{D}}\left(x_{3}\right) & =\mu_{f_{C} \rightarrow x_{3}}\left(x_{3}\right) \mu_{f_{E} \rightarrow x_{3}}\left(x_{3}\right) \\
\mu_{x_{3} \rightarrow f_{E}}\left(x_{3}\right) & =\mu_{f_{C} \rightarrow x_{3}}\left(x_{3}\right) \mu_{f_{D} \rightarrow x_{3}}\left(x_{3}\right) \\
f_{B} & \xrightarrow{(1)}
\end{aligned}
$$

5.

$$
\begin{aligned}
& \mu_{x_{1} \rightarrow f_{A}}\left(x_{1}\right)=\mu_{f_{C} \rightarrow x_{1}}\left(x_{1}\right) \\
& \mu_{x_{2} \rightarrow f_{B}}\left(x_{2}\right)=\mu_{f_{C} \rightarrow x_{2}}\left(x_{2}\right) \\
& \mu_{f_{D} \rightarrow x_{4}}\left(x_{4}\right)=\sum_{\sim\left\{x_{4}\right\}} \mu_{x_{3} \rightarrow f_{D}}\left(x_{3}\right) f_{D}\left(x_{3}, x_{4}\right) \\
& \mu_{f_{E} \rightarrow x_{5}}\left(x_{5}\right)=\sum_{\sim\left\{x_{5}\right\}} \mu_{x_{3} \rightarrow f_{E}}\left(x_{3}\right) f_{E}\left(x_{3}, x_{5}\right)
\end{aligned}
$$

CC Lab., EE, NCHU
6. Termination:
$g_{1}\left(x_{1}\right)=\mu_{f_{A} \rightarrow x_{1}}\left(x_{1}\right) \mu_{f_{C} \rightarrow x_{1}}\left(x_{1}\right)$
$g_{2}\left(x_{2}\right)=\mu_{f_{B} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{C} \rightarrow x_{2}}\left(x_{2}\right)$
$g_{3}\left(x_{3}\right)=\mu_{f_{C} \rightarrow x_{3}}\left(x_{3}\right) \mu_{f_{D} \rightarrow x_{3}}\left(x_{3}\right) \mu_{f_{E} \rightarrow x_{3}}\left(x_{3}\right)$
$g_{4}\left(x_{4}\right)=\mu_{f_{D} \rightarrow x_{4}}\left(x_{4}\right)$
$g_{5}\left(x_{5}\right)=\mu_{f_{E} \rightarrow x_{5}}\left(x_{5}\right)$

CC Lab., EE, NCHU

Factor Graphs

- Equivalently, since the message passed on any given edge is equal to the product of all but one of these messages, we may compute $g_{i}\left(x_{i}\right)$ as the product of the two messages that were passed (in opposite directions) over any single edge incident on x_{i}.
- Thus, for example, we may compute $g_{3}\left(x_{3}\right)$ in three other ways

$$
\begin{aligned}
g_{3}\left(x_{3}\right) & =\mu_{f_{C} \rightarrow x_{3}}\left(x_{3}\right) \mu_{x_{3} \rightarrow f_{C}}\left(x_{3}\right) \\
& =\mu_{f_{D} \rightarrow x_{3}}\left(x_{3}\right) \mu_{x_{3} \rightarrow f_{D}}\left(x_{3}\right) \\
& =\mu_{f_{E} \rightarrow x_{3}}\left(x_{3}\right) \mu_{x_{3} \rightarrow f_{E}}\left(x_{3}\right)
\end{aligned}
$$

Code realization and factor graphs

- We now apply the factor graph description to coding realization.
- Given a code, we will talk about two realizations for codes and one realization for decoding:
- Forney makes a clear distinction between the realization of a code and the graphic model of the realization.
- In other words, a code can have many realizations and for each realization, we can associated it with different graphic modeling.
- We will describe various ways in which factor graphs may be

1. behavior modeling: check-based and trellis-based realization
2. probability modeling

- For each realization, we will only consider the factor graph associated with it and leave the normal graph to the readers. used to model the code/systems.
- We will use "the realization of a code" and "the modeling of a code" interchangeably.

If P is a predicate (Boolean proposition) involving some set of variables, then $[P]$ is the $\{0,1\}$-valued function that indicates the

- If we let \wedge denote the logical conjunction or "AND" operator, truth of P, i.e.

$$
[P]= \begin{cases}1, & \text { if } P \text { is true } \\ 0, & \text { otherwise }\end{cases}
$$

- For example, $f(x, y, z)=[x+y+z=0]$ is the function that then an important property of Iverson's convention is that

$$
\left[P=P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n}\right]=\left[P_{1}\right]\left[P_{2}\right] \ldots\left[P_{n}\right]
$$

Thus, P is true iff P_{i} is true for all i; then the complicated global indicator $[P]$ can be factored into n simple indicators P_{i} product. takes a value of 1 if (x, y, z) has even weight, and 0 otherwise.

- In the "behavioral" modeling of codes/systems:

Use the characteristic (i.e., indicator) function for the given code/behavior; then the factor graph for the characteristic function is the graphic description for the code/beharior.

- Factorizations of this characteristic function can give important structural information about the model.
- In probabilistic modeling of systems:

A factor graph can be used to represent the joint probability mass function of the variables that comprise the system.

- Factorizations of this function can give important information about statistical dependencies among these variables.
- For example, in channel coding, we model both the valid behavior (i.e., the set of codewords) and the a posteriori joint probability mass function over the variables that define the codewords given the received output of a channel.

CC Lab., EE, NCHU

check-based modeling

- Behavioral modeling is natural for codes.
- If the domain of each variable is some finite alphabet A, so that the configuration space is the n-fold Cartesian product
- Let $x_{1}, x_{2} \ldots, x_{n}$ be a collection of variables with configuration $S=A^{n}$, then a behavior $C \subset S$ is called a block code of space $S=A_{1} \times A_{2} \times \ldots \times A_{n}$. length n over A, and the valid configurations are called
- Any element of S is called a configuration (word).
- By a code/behavior in S, we mean any subset B of S.
- The characteristic (or set membership indicator) function for a behavior B is defined as
- The elements of B are called the valid configurations (codewords).
- Since a system is specified via its behavior B, this approach is

$$
\chi_{B}\left(x_{1}, \ldots, x_{n}\right):=\left[\left(x_{1}, \ldots, x_{n}\right) \in B\right]
$$

Obviously, specifying χ_{B} is equivalent to specifying B.

Example 2 (Tanner Graphs for Linear Codes)

The characteristic function for any linear code defined by an $r \times n$ parity check matrix H can be represented by a factor graph having n variable nodes and r factor nodes.

- Let C be the binary linear code with parity-check matrix

$$
H=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

- C is the set of all binary 6 -tuples $\mathbf{x} \triangleq\left(x_{1}, x_{2}, \ldots, x_{6}\right)$ that satisfy three simultaneous equations: $C=\left\{x: H \mathbf{x}^{T}=0\right\}$.
- The factor graph of C has 6 symbol nodes and 3 check nodes.

CC Lab., EE, NCHU

- The indication function of C is

$$
\begin{aligned}
\chi_{C}\left(x_{1}, x_{2}, \ldots, x_{6}\right)= & {\left[\left(x_{1}, x_{2}, \ldots, x_{6}\right) \in C\right] } \\
= & {\left[x_{1} \oplus x_{2} \oplus x_{5}=0\right]\left[x_{2} \oplus x_{3} \oplus x_{6}=0\right] } \\
& \cdot\left[x_{1} \oplus x_{3} \oplus x_{4}=0\right]
\end{aligned}
$$

By this example, a Tanner graph for any $[n, k]$ linear block code may be obtained from a parity-check matrix $H=\left[h_{i j}\right]$ for the code.

- Such a parity-check matrix has n columns and at least $n-k$ rows.
- The factor graph (Tanner graph) for the code is:
- Variable (symbol) nodes correspond to the columns of H and factor (check) nodes to the rows of H, with an edge connecting factor node i to variable node j if and only if $h_{i j} \neq 0$.
- Of course, since there are, in general, many parity check matrices that represent a given code, there are, in general, many Tanner graph representations for the code.

trellis-based modeling

- Often, a description of a system is simplified by introducing hidden (sometimes called auxiliary, latent, or state) variables. Nonhidden variables are called visible.
- A particular behavior B with both auxiliary and visible variables

Such graphs were introduced by Wiberg et al. and may be called Wiberg-type graphs. is said to represent a given (visible) behavior C if the projection of the elements of B on the visible variables is equal to C. double circle

- An important class of models with hidden variables are the trellis representations.
- Any factor graph for B is then considered to be also a factor graph for C.

CC Lab., EE, NCHU

A trellis for a block code C is an edge labelled directed graph with one left root and one right goal vertices.

- Each sequence of edge labels encountered in any directed path from the root vertex to the goal vertex is a codeword in C.
- The collection of all pathes forms the code.
- All paths from the root to any given vertex should have the same fixed length d, called the depth of the given vertex.
- The root vertex has depth 0 , and the goal vertex has depth n. The set of depth d vertices can be viewed as the d-th state space.
- (a) A trellis and its (b) Wibger graph for a $[6,3,4]$ code.
- In addition to the visible variable nodes $x_{1}, x_{2}, \ldots, x_{6}$, there are also hidden (state) variable nodes $s_{0}, s_{1}, \ldots, s_{6}$.
- Each local check corresponds to one section of the trellis.
- In this example, the local behavior T_{2} corresponding to the
- (a) A trellis and its (b) Wibger graph for a $[7,4,3]$ code.
second trellis section from the left in Fig. 9 consists of the following triples $\left(s_{1}, x_{2}, s_{2}\right)$:

$$
T_{2}=\{(0,0,00),(0,1,10),(1,1,01),(1,0,11)\}
$$

where the domains of the state variables s_{1} and s_{2} are taken to be $\{0,1\}$ and $\{00,01,10,11\}$, respectively, numbered from bottom to top.

- Each element of the local behavior corresponds to one trellis edge.
- The corresponding factor node in the Wiberg-type graph is the indicator function $f\left(s_{1}, x_{2}, s_{2}\right)=\left[\left(s_{1}, x_{2}, s_{2}\right) \in T_{2}\right]$.

CC Lab., EE, NCHU

- It is important to note that a factor graph corresponding to a trellis is cycle-free.
- A trellis divides naturally into n sections, where the i th trellis section T_{i} is the subgraph of the trellis induced by the vertices at depth $i-1$ and depth i.
- The set of edge labels in T_{i} may be viewed as the domain of a (visible) variable x_{i}.
- In effect, each trellis section T_{i} defines a "local behavior" that constrains the possible combinations of s_{i-1}, x_{i}, and s_{i}.
- Since every code has a trellis representation, it follows that every code can be represented by a cycle-free factor graph.
- Unfortunately, it often turns out that the state-space sizes (the sizes of domains of the state variables) can easily become too large to be practical.
For example, trellis representations of the overall turbo codes have enormous state spaces. But the trellis of the two component codes in turbo codes is relatively small.

Other behavior modeling

Example 4 (State-Space Models)

- Trellises are basically conventional state-space system models, and the generic factor graph shown below can represent any
- The classical linear time-invariant state-space model is given by the equations

$$
\begin{aligned}
x(j+1) & =A x(j)+B u(j) \\
y(j) & =C x(j)+D u(j)
\end{aligned}
$$

where $j \in \mathbb{Z}$ is the discrete time index

- $u(j)=\left(u_{1}(j), \ldots, u_{k}(j)\right)$ are the time $-j$ input variables, $y(j)=\left(y_{1}(j), \ldots, y_{n}(j)\right)$ are the time $-j$ output variables, and $x(j)=\left(x_{1}(j), \ldots, x_{m}(j)\right)$ are the time $-j$ state variables.
- A, B, C, D are $m \times m, m \times k, n \times m$, and $n \times k$, matrices respectively.

CC Lab., EE, NCHU

- The behavioral/code realization of a code is characterized by three sets of elements:

1. A symbol configuration space

$$
A=\prod_{k \in I_{A}} A_{k},
$$

2. A state configuration space

$$
S=\prod_{j \in I_{S}} S_{j}
$$

3. some local constraints

$$
\left\{C_{i}: i \in I_{C}\right\}
$$

where I_{A}, I_{S}, and I_{C} are discrete index sets.

- A check-based realization of a code $C \subset A$ is defined by some
- A trellis-based realization of a code $C \subset A$ is defined by some local constraints (behaviors). Each local behavior C_{i} involves a subset of some symbol variables, indexed by $I_{A}(i) \subset I_{A}$: subset of some symbol variables, indexed by $I_{A}(i) \subset I_{A}$ and some state variables, indexed by $I_{S}(i) \subset I_{S}$:

$$
C_{i} \subset W_{i}=\prod_{k \in I_{A}(i)} A_{k} \times \prod_{j \in I_{S}(i)} S_{j}
$$

- The code $C \subset A$ is the set of all valid symbol configuration satisfying all local constraints:
- The full behavior $B \subset A \times S$ is the set of all valid symbol/state configuration satisfying all local constraints:

$$
B=\left\{(a, s) \in A \times S \mid\left(a_{\mid I_{A}(i)}, s_{\mid I_{S}(i)}\right) \in C_{i}, \forall i \in I_{C}\right\}
$$

where $a_{\mid I_{A}(i)}=\left\{a_{k} \mid k \in I_{A}(i)\right\} \in T_{i}$ is the projection of a onto T_{i}.

- The factor graph associated this realization is also called a
where $\left(a_{\mid I_{A}(i)}, s_{\mid I_{S}(i)}\right)=\left\{\left\{a_{k}, k \in I_{A}(i)\right\},\left\{s_{j}, j \in I_{S}(i)\right\}\right\} \in W_{i}$ is the projection of a onto W_{i}.
- In coding, there are three possible behavior/code realizations
- The code C is then the projection of B onto the symbol configuration space, i.e., $C=B_{\mid A}$.

1. code modeling by a parity check matrix (with cycles)

- The factor graph associated this realization is also called a Wiber

2. code modeling by conventional trellis (cycle-free) graph.

Code modeling by a parity check matrix (with many cycles)
$I_{A}=[1, n]$ and $I_{C}=[1, r]$
$C_{i}=\left[n_{i}, n_{i}-1,2\right]$ single parity check code, where $n_{i}=\left|I_{A}(i)\right|$.

C Lab., EE, NCHU

Code modeling by tailbiting trellis (with one cycle)
Code modeling by conventional trellis (cycle-free)
$I_{A}=[0, n-1]=Z_{n}, I_{S}=[0, n]$, and $I_{C}=[0, n-1]=Z_{n}$
C_{i} is the i-th trellis section specifies the valid local configuration:
$\left(s_{i}, a_{i}, s_{i+1}\right) \in S_{i} \times A_{i} \times S_{i+1}$

CC Lab., EE, NCHU

Factor Graphs

Probability Modeling for codes

$I_{A}=Z_{n}, I_{S}=Z_{n}$, and $I_{C}=Z_{n}$

- In decoding of DMC with input $x \in X$ and output $y \in Y$, we are given the prior probability $p(x)$, usually uniform distributed, and the conditional probability $p(y \mid x)$.

$$
\left(s_{n-1}, a_{n-1}, s_{0}\right) \in S_{n-1} \times A_{n-1} \times S_{0}
$$

- In BSC, $X=Y=F_{2}^{n}$ and

$$
\begin{aligned}
p(y \mid x) & =p^{d(x, y)}(1-p)^{n-d(x, y)} \\
& =\prod_{i=1}^{n} p^{d\left(x_{i}, y_{i}\right)}(1-p)^{1-d\left(x_{i}, y_{i}\right)}
\end{aligned}
$$

- In AWGN, $X=F_{2}^{n}$ and $Y=R^{n}$ and

$$
p(y \mid x)=\prod_{i=1}^{n} \frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{\left(y_{i}-x_{i}\right)^{2}}{N_{0}}}
$$

- We can find the posterior probability $p(x \mid y)=p(x) p(y \mid x)$.
- Then we may do the MAP decoding for minimizing block or bit error probability:
- Since conditional and unconditional independence of random variables is expressed in terms of a factorization of their joint

$$
\begin{aligned}
\max _{x \in C} p(x \mid y) & =\max _{x \in C} p(x) p(y \mid x) \\
p\left(x_{i} \mid y\right) & =\sum_{\sim\left\{x_{i}\right\}} p(x \mid y)
\end{aligned}
$$

probability mass or density function, factor graphs for
probability distributions arise in many situations.

CC Lab., EE, NCHU
CC Lab., EE, NCHU

Factor Graphs

Example 5 (APP Distributions)

- Assuming that the a priori distribution for the transmitted vectors is uniform over codewords, we have

$$
p(x)=\chi_{C}(x) /|C|
$$

$x=\left(x_{1}, \ldots, x_{n}\right)$ is selected from a code C of length n and
where $\chi_{C}(x)$ is the characteristic function for C and $|C|$ is the number of codewords in C.
If the channel is memoryless, then $f(y \mid x)$ factors as

$$
f\left(y_{1}, \ldots, y_{n} \mid x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(y_{i} \mid x_{i}\right)
$$

- Under these assumptions, we have

$$
g\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{|C|} \chi_{C}\left(x_{1}, \ldots, x_{n}\right) \prod_{i=1}^{n} f\left(y_{i} \mid x_{i}\right)
$$

Now the characteristic function χ_{C} itself may factor into a product of local characteristic functions.

- Given a factor graph F for $\chi_{C}(x)$, we obtain a factor graph for (a scaled version of) the APP distribution over simply by augmenting F with factor nodes corresponding to the different $f\left(y_{i} \mid x_{i}\right)$ factors.
- The i th such factor has only one argument, namely x_{i}, since y_{i} is regarded as a parameter. Thus, the corresponding factor nodes appear as pendant vertices ("dongles") in the factor graph.
- Consider a $C[6,3,3]$ binary linear code with $p(x \mid y)$

$$
\begin{aligned}
g\left(x_{1}, \ldots, x_{6}\right)= & {\left[x_{1} \oplus x_{2} \oplus x_{5}=0\right] \cdot\left[x_{2} \oplus x_{3} \oplus x_{6}=0\right] } \\
& \cdot\left[x_{1} \oplus x_{3} \oplus x_{4}=0\right] \cdot \prod_{i=1}^{6} f\left(y_{i} \mid x_{i}\right)
\end{aligned}
$$

whose factor graph is shown in Fig. 11.

- With this factor graph, we can run the iterative sum product decoding.

Factor Graphs

Other probability modeling

Example 6 (Markov Chains, Hidden Markov Models)

- In general, since all variables appear as arguments of $f\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)$, the factor graph of Fig. 12(b) has no advantage over the trivial factor graph shown in Fig. 12(a).
In general, let $f\left(x_{1}, \ldots, x_{n}\right)$ denote the joint probability mass function of a collection of random variables. By the chain rule of conditional probability, we may always express this function as
- Suppose that random variables $X_{1}, X_{2}, \ldots, X_{n}$ (in that order) form a Markov chain. We then obtain the nontrivial factorization

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i} \mid x_{i-1}\right)
$$

whose factor graph is shown in Fig. 12(c) for $n=4$.

- For example, if $n=4$, then

$$
f\left(x_{1}, \ldots, x_{4}\right)=f\left(x_{1}\right) f\left(x_{2} \mid x_{1}\right) f\left(x_{3} \mid x_{1} x_{2}\right) f\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)
$$

which has the factor graph representation shown in Fig. 12(b).

- Continuing this Markov chain example, if we cannot observe each X_{i} directly, but instead can observe only Y_{i}, the output of a memoryless channel with X_{i} as input, then we obtain a so-called "hidden Markov model."
- The joint probability mass or density function for these random variables then factors as

$$
f\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\prod_{i=1}^{n} f\left(x_{i} \mid x_{i-1}\right) f\left(y_{i} \mid x_{i}\right)
$$

whose factor graph is shown in Fig. $12(\mathrm{~d})$ for $n=4$.

Figure 12: Factor graphs for probability distributions. (a) The trivial factor graph. (b) The chain-rule factorization. (c) A Markov chain. (d) A hidden Markov model.

CC Lab., EE, NCHU
CC Lab., EE, NCHU

Trellis processing

- An important family of cycle free factor graphs for a code is the one with the chain graphs that represent trellises or Markov

Trellis decoding for trellis-based realization models for it.

- Apply the sum-product algorithm to the trellises; it is obvious that a variety of well-known algorithms:

1. the forward/backward algorithm (BCJR, MAP, APP)
2. the Viterbi algorithm, SOVA
may be viewed as special cases of the sum-product algorithm.

The forward/backward algorithm

- We start with the forward/backward algorithm, sometimes referred to in coding theory as the BCJR, APP, or MAP algorithm.
- The factor graph of Fig. 13 models the most general situation, which involves a combination of behavioral and probabilistic modeling.
- We have vectors $u=\left(u_{1}, u_{2}, \ldots, u_{k}\right), x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and $s=\left(s_{0}, \ldots, s_{n}\right)$ that represent, respectively, input variables, output variables, and state variables in a Markov model, where each variable is assumed to take on values in a finite domain.

Figure 13: The factor graph in which the forward/backward algorithm operates: the s_{i} are state variables, the u_{i} are input variables, the x_{i} are output variables, and each y_{i} is the output of a memoryless channel with input x_{i}.

> CC Lab., EE, NCHU

Factor Graphs

- Given y, we would like to find the APPs $p\left(u_{i} \mid y\right)$ for each i. These marginal probabilities are proportional to the following marginal functions associated with g :

$$
p\left(u_{i} \mid y\right) \propto \sum_{\sim\left\{u_{i}\right\}} g_{y}(u, s, x)
$$

Since the factor graph of Fig. 13 is cycle-free, these marginal functions may be computed by applying the sum-product
where y is again regarded as a parameter of g. The factor graph algorithm to the factor graph of Fig. 13.

Initialization

- This is a cycle-free factor graph for the code and the sum product algorithm starts at the leaf variable nodes, i.e.,

$$
s_{0}, s_{n}, \text { and } u_{i}, 1 \leq i \leq k
$$

and the leaf functional nodes, i.e.,

$$
f\left(y_{i} \mid x_{i}\right), 1 \leq i \leq n
$$

- Trivial messages are sent by the input variable nodes and the endmost state variable nodes, i.e.

$$
\begin{gathered}
\mu_{u_{i} \rightarrow T_{i}}\left(u_{i}=0\right)=\mu_{u_{i} \rightarrow T_{i}}\left(u_{i}=1\right)=1,1 \leq i \leq k \\
\mu_{s_{0} \rightarrow T_{1}}\left(s_{0}=0\right)=\mu_{s_{n} \rightarrow T_{n}}\left(s_{n}=0\right)=1 \\
\mu_{s_{0} \rightarrow T_{1}}\left(s_{0} \neq 0\right)=\mu_{s_{n} \rightarrow T_{n}}\left(s_{n} \neq 0\right)=1
\end{gathered}
$$

CC Lab., EE, NCHU

- In the literature on the forward/backward algorithm:
- The message $\mu_{x_{i} \rightarrow T_{i}}\left(x_{i}\right)$ is denoted as $\gamma\left(x_{i}\right)$
- The message $\mu_{s_{i} \rightarrow T_{i+1}}\left(s_{i}\right)$ is denoted as $\alpha\left(s_{i}\right)$
- The message $\mu_{s_{i} \rightarrow T_{i}}\left(s_{i}\right)$ is denoted as $\beta\left(s_{i}\right)$.
- The message $\mu_{T_{i} \rightarrow u_{i}}\left(u_{i}\right)$ is denoted as $\delta\left(u_{i}\right)$.

- Each pendant factor node, $f\left(y_{i} \mid x_{i}\right), 1 \leq i \leq n$, sends a message $\left(f\left(y_{i} \mid x_{i}=0\right), f\left(y_{i} \mid x_{i}=1\right)\right)$ to the corresponding output variable node.
- Since the output variable nodes, x_{i}, have degree two, no computation is performed; instead, incoming messages received on one edge are simply transferred to the other edge and sent to the corresponding trellis check node T_{i}.

CC Lab., EE, NCHU

- The operation of the sum-product algorithm creates two natural recursions:
one to compute $\alpha\left(s_{i}\right)$ as a function of $\alpha\left(s_{i-1}\right)$ and $\gamma\left(x_{i}\right)$ and the other to compute $\beta\left(s_{i-1}\right)$ as a function of $\beta\left(s_{i}\right)$ and $\gamma\left(x_{i}\right)$.
- These two recursions are called the forward and backward recursions, respectively, according to the direction of message flow in the trellis.

[^9]so they could be computed in parallel.

- Fig. 14 gives a detailed view of the message flow for a single

The Forward/Backward Recursions

 trellis section. The local function in this figure represents the trellis check $T_{i}\left(s_{i-1}, u_{i}, x_{i}, s_{i}\right)$$$
\begin{aligned}
\alpha\left(s_{i}\right) & =\sum_{\sim\left\{s_{i}\right\}} T_{i}\left(s_{i-1}, u_{i}, x_{i}, s_{i}\right) \alpha\left(s_{i-1}\right) \gamma\left(x_{i}\right) \\
\beta\left(s_{i-1}\right) & =\sum_{\sim\left\{s_{i-1}\right\}} T_{i}\left(s_{i-1}, u_{i}, x_{i}, s_{i}\right) \beta\left(s_{i}\right) \gamma\left(x_{i}\right)
\end{aligned}
$$

CC Lab., EE, NCHU
CC Lab., EE, NCHU

Termination

The algorithm terminates with the computation of the $\delta\left(u_{i}\right)$.

$$
\delta\left(u_{i}\right)=\sum_{\sim\left\{u_{i}\right\}} T_{i}\left(s_{i-1}, u_{i}, x_{i}, s_{i}\right) \alpha\left(s_{i-1}\right) \beta\left(s_{i}\right) \gamma\left(x_{i}\right) .
$$

- These sums can be viewed as being defined over valid trellis edges $e=\left(s_{i-1}, u_{i}, x_{i}, s_{i}\right)$ such that $T_{i}(e)=1$.
- For each edge e, we let $\alpha(e)=\alpha\left(s_{i-1}\right), \beta(e)=\beta\left(s_{i}\right)$, and $\gamma(e)=\gamma\left(x_{i}\right)$.
- Denoting by $E_{i}(s)$ the set of edges incident on a state s in the i th trellis section, the α and β update equations may be rewritten as

$$
\begin{aligned}
& \alpha\left(s_{i}\right)=\sum_{e \in E_{i}\left(s_{i}\right)} \alpha(e) \gamma(e) \\
& \beta\left(s_{i-1}\right)=\sum_{e \in E_{i}\left(s_{i-1}\right)} \beta(e) \gamma(e)
\end{aligned}
$$

The basic operations in the forward and backward recursions are therefore "sum of products."

CC Lab., EE, NCHU

The min-sum and max-product semirings

- The codomain R of the global function g represented by a factor graph may in general be any semiring with two operations "+" and "." that satisfy the distributive law

$$
(\forall x, y, z \in R) \quad x \cdot(y+z)=(x \cdot y)+(x \cdot z)
$$

- For nonnegative real-valued quantities x, y, and z, "." distributes over "max"

$$
x(\max (y, z))=\max (x y, x z) .
$$

- With maximization as a summary operator, the maximum value of a nonnegative real-valued function $g\left(x_{1}, \ldots, x_{n}\right)$ is viewed as the "complete summary" of g; i.e.

$$
\begin{aligned}
\max g\left(x_{1}, \ldots, x_{n}\right) & =\max _{x_{1}}\left(\max _{x_{2}}\left(\ldots\left(\max _{x_{n}} g\left(x_{1}, \ldots, x_{n}\right)\right)\right)\right) \\
& =\sum_{\sim\{ \}} g\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Factor Graphs

- MAP decoding for minimizing the codeword error probability

$$
\max _{x \in C} p(x \mid y)=\max _{x \in C} p(x) p(y \mid x)
$$

- MAP decoding is equivalent to ML decoding if $p(x)=\frac{1}{M}$.
- For the MAP or ML decoding problem, we are interested in finding a valid configuration x that achieves this maximum.
- The sum product decoding becomes max. product decoding.
- Applying the min-sum algorithm in this context yields the same message flow as in the forward/backward algorithm.
- As in the forward/backward algorithm, we may write an update
- In practice, MLSD is most often carried out in the negative log-likelihood domain.
- Here, the "product" operation becomes a "sum" and the "max" operation becomes a "min" operation, so that we deal with the "min-sum" semiring.
- For real-valued quantities $x, y, z, "+$ " distributes over "min"

$$
x+\min (y, z)=\min (x+y, x+z) .
$$

equation for the various messages.

- For example, the basic update equation corresponding to $\alpha\left(s_{i}\right)=$ $\sum_{e \in E_{i}\left(s_{i}\right)} \alpha(e) \gamma(e)$ is

$$
\alpha\left(s_{i}\right)=\min _{e \in E_{i}\left(s_{i}\right)}(\alpha(e)+\gamma(e))
$$

so that the basic operation is a "minimum of sums" instead of a "sum of products."

- A similar recursion may be used in the backward direction, and from the results of the two recursions the most likely sequence may be determined. The result is a "bidirectional" Viterbi algorithm.

CC Lab., EE, NCHU

- We now apply the sum product algorithm to the factor graphs with cycles

Iterative decoding for LDPC, turbo, and RA codes

- We will discuss three Iterative decoding for:

1. Turbo codes
2. LDPC codes
3. RA codes

Iterative decoding of turbo code

- A "turbo code" ("parallel concatenated convolutional code") has the encoder structure shown in Figure 15(a).

- The first parity-check sequence p is generated via a standard recursive convolutional encoder; viewed together, u and p would form the output of a standard rate $\frac{1}{2}$ convolutional code.
- The second parity-check sequence q is generated by applying a permutation π to the input stream, and applying the permuted stream to a second convolutional encoder.

Figure 15: Turbo code. (a) Encoder block diagram.
A block u of data to be transmitted enters a systematic encoder which produces u, and two parity-check sequences p and q at its output.

CC Lab., EE, NCHU
CC Lab., EE, NCHU

- A factor graph representation for a (very) short turbo code is shown in Fig. 15(b).
- Included in the figure are the state variables for the two
- Iterative decoding of turbo codes is usually accomplished via a constituent encoders, as well as a terminating trellis section in message-passing schedule that involves a forward/backward which no data is absorbed, but outputs are generated. computation over the portion of the graph representing one
 constituent code, followed by propagation of messages between encoders (resulting in the so-called extrinsic information in the turbo-coding literature).
- This is then followed by another forward/backward computation over the other constituent code, and propagation of messages back to the first encoder.

LDPC codes

- LDPC codes were introduced by Gallager in the early 1960s.
- LDPC codes are defined in terms of a regular bipartite graph.
- In a (j, k) LDPC code, left nodes, representing codeword symbols, all have degree j, while right nodes, representing checks, all have degree k.
- For example, Fig. 16 illustrates the factor graph for a short $(2,4)$ LDPC code.

Figure 16: A factor graph for a LDPC code.

CC Lab., EE, NCHU

Factor Graphs

RA codes

- RA codes are a special, low-complexity class of turbo codes introduced by Divsalar, McEliece, and others, who initially devised these codes because their ensemble weight distributions are relatively easy to derive
- An encoder for an RA code operates on k input bits u_{1}, \ldots, u_{k}, repeating each bit Q times, and permuting the result to arrive at a sequence $z_{1}, \ldots, z_{k Q}$.
- An output sequence $x_{1}, \ldots, x_{k Q}$ is formed via an accumulator

Factor Graphs

Figure 17: Two Equivalent factor graphs for an RA code. that satisfies $x_{1}=z_{1}$ and $x_{i}=x_{i-1}+z_{i}$ for $i>1$.

Iterative decoding for LDPC and RA codes

- We treat here only the important case where all variables are binary (Bernoulli) and all functions except single-variable functions are parity checks.
- The probability mass function for a binary random variable may be represented by the vector $\left(p_{0}, p_{1}\right)$, where $p_{0}+p_{1}=1$.
- According to the generic updating rules, when messages $\left(p_{0}, p_{1}\right)$ and $\left(q_{0}, q_{1}\right)$ arrive at a variable node of degree three, the resulting (normalized) output message should be

$$
\operatorname{VAR}\left(p_{0}, p_{1}, q_{0}, q_{1}\right)=\left(\frac{p_{0} q_{0}}{p_{0} q_{0}+p_{1} q_{1}}, \frac{p_{1} q_{1}}{p_{0} q_{0}+p_{1} q_{1}}\right)
$$

CC Lab., EE, NCHU implementations arise. We give four different parametrizations, and derive the VAR and CHK functions for each

1. Likelihood ratio (LR)

4 Likelihood ratio (LR)
Definition: $\lambda\left(p_{0}, p_{1}\right)=p_{0} / p_{1}$.

$$
\begin{aligned}
& \operatorname{VAR}\left(\lambda_{1}, \lambda_{2}\right)=\lambda_{1} \lambda_{2} \\
& \operatorname{CHK}\left(\lambda_{1}, \lambda_{2}\right)=\frac{1+\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}
\end{aligned}
$$

〔 Log-likelihood ratio (LLR)
2. Log-likelihood ratio (LLR)
3. Likelihood difference (LD)
4. Signed log-likelihood difference (SLLD)

$$
\begin{aligned}
\operatorname{VAR}\left(\Lambda_{1}, \Lambda_{2}\right)= & \Lambda_{1}+\Lambda_{2} \\
\operatorname{CHK}\left(\Lambda_{1}, \Lambda_{2}\right)= & \ln \left(\cosh \left(\left(\Lambda_{1}+\Lambda_{2}\right) / 2\right)\right) \\
& -\ln \left(\cosh \left(\left(\Lambda_{1}-\Lambda_{2}\right) / 2\right)\right) \\
= & 2 \tanh ^{-1}\left(\tanh \left(\Lambda_{1} / 2\right) \tanh \left(\Lambda_{2} / 2\right)\right) .
\end{aligned}
$$

4 Likelihood difference (LD)
Definition: $\delta\left(p_{0}, p_{1}\right)=p_{0}-p_{1}$.

- In the LLR domain, we observe that for $x \gg 1$

$$
\begin{aligned}
& \operatorname{VAR}\left(\delta_{1}, \delta_{2}\right)=\frac{\delta_{1}+\delta_{2}}{1+\delta_{1} \delta_{2}} \\
& \operatorname{CHK}\left(\delta_{1}, \delta_{2}\right)=\delta_{1} \delta_{2}
\end{aligned}
$$

4 Signed log-likelihood difference (SLLD)
Definition: $\Delta\left(p_{0}, p_{1}\right)=\operatorname{sqn}\left(p_{1}-p_{0}\right) \ln \left|p_{1}-p_{0}\right|$.
$\operatorname{VAR}\left(\Delta_{1}, \Delta_{2}\right)=\left\{\begin{array}{c}s \ln \left(\frac{\cosh \left(\left(\left|\Delta_{1}\right|+\left|\Delta_{2}\right|\right) / 2\right)}{\cosh \left(\left(\left|\Delta_{1}\right|-\left|\Delta_{2}\right|\right) / 2\right)}\right), \\ \text { if } \operatorname{sgn}\left(\Delta_{1}\right)=\operatorname{sgn}\left(\Delta_{2}\right)=s . \\ s \cdot \operatorname{sgn}\left(\left|\Delta_{1}\right|-\left|\Delta_{2}\right|\right) \ln \left(\frac{\sinh \left(\left(\left|\Delta_{1}\right|+\left|\Delta_{2}\right|\right) / 2\right)}{\sinh \left(\left(\left|\Delta_{1}\right|-\left|\Delta_{2}\right|\right) / 2\right)}\right), \\ \text { if } \operatorname{sgn}\left(\Delta_{1}\right)=-\operatorname{sgn}\left(\Delta_{2}\right)=-s .\end{array}\right.$
$\operatorname{CHK}\left(\Delta_{1}, \Delta_{2}\right)=\operatorname{sgn}\left(\Delta_{1}\right) \operatorname{sgn}\left(\Delta_{2}\right)\left(\left|\Delta_{1}\right|+\left|\Delta_{2}\right|\right)$.

CC Lab., EE, NCHU

- In particular, we may extend the VAR and CHK functions to more than two arguments via the relations

$$
\begin{aligned}
& \operatorname{VAR}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{VAR}\left(x_{1}, \operatorname{VAR}\left(x_{2}, \ldots, x_{n}\right)\right) \\
& \operatorname{CHK}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{CHK}\left(x_{1}, \operatorname{CHK}\left(x_{2}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

Of course, there are other alternatives, corresponding to the various binary trees with n leaf vertices.

- For example, when $n=4$ we may compute $\operatorname{VAR}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ as

$$
\operatorname{VAR}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\operatorname{VAR}\left(\operatorname{VAR}\left(x_{1}, x_{2}\right), \operatorname{VAR}\left(x_{3}, x_{4}\right)\right)
$$

which would have better time complexity in a parallel implementation than a computation based on above equations.

$$
\ln (\cosh (x)) \approx|x|-\ln (2)
$$

Thus, an approximation to the CHK function is

$$
\begin{aligned}
\operatorname{CHK}\left(\Lambda_{1}, \Lambda_{2}\right) & \approx\left|\left(\Lambda_{1}+\Lambda_{2}\right) / 2\right|-\left|\left(\Lambda_{1}-\Lambda_{2}\right) / 2\right| \\
& =\operatorname{sgn}\left(\Lambda_{1}\right) \operatorname{sgn}\left(\Lambda_{2}\right) \min \left(\left|\Lambda_{1}\right|,\left|\Lambda_{2}\right|\right)
\end{aligned}
$$

which turns out to be precisely the min-sum update rule.

- By applying the equivalence between factor graphs illustrated in Figure 18, it is easy to extend these formulas to cases where variable nodes or check nodes have degree larger than three.

Figure 18
Transforming variable and check nodes of high degree to multiple nodes of degree three.

Iterative probability propagation

- Let us now study the more complex factor graph of the $[8,4]$ extended Hamming code. This code has the systematic parity-check matrix

$$
H_{[8,4]}=\left[\begin{array}{cccccccc}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The code has 4 information bits, which we associate with variable nodes U_{1}, \ldots, U_{4}; it also has 4 parity bits, which are associated with the variable nodes X_{5}, \ldots, X_{8}

- There are also 8 observed output symbols, nodes Y_{1}, \ldots, Y_{8}, which are the noisy received variables U_{1}, \ldots, X_{8}.
- The function nodes V_{1}, \ldots, V_{4} are the four parity-check equations described by above matrix, given as boolean truth functions.
- The function nodes V_{1}, \ldots, V_{4} are the four parity-check equations, given as boolean truth functions.
For example,

$$
\begin{array}{ll}
V_{1}: & U_{1} \oplus U_{2} \oplus U_{3} \oplus X_{5}=0 \\
V_{2}: & U_{1} \oplus U_{2} \oplus U_{4} \oplus X_{6}=0 \\
V_{3}: & U_{1} \oplus U_{3} \oplus U_{4} \oplus X_{7}=0 \\
V_{4}: & U_{2} \oplus U_{3} \oplus U_{4} \oplus X_{8}=0
\end{array}
$$

- The complete factor graph of the parity-check matrix representation of this code is shown in Figure 7(a).

Factor Graphs

- This network has loops (e.g., $U_{1}-V_{1}-U_{2}-V_{2}-U_{1}$) and thus the sum-product algorithm has no well-defined forward-backward schedule, but many possible schedules of passing messages between the nodes.
- A sensible message passing schedule will involve all nodes which are not observation nodes in a single sweep, called an iteration.
- Such iterations can then be repeated until a desired result is achieved. The messages are passed exactly according to the rules of the sum-product algorithm.

Figure 7(a): [8,4] Hamming code factor graph representation.

Turbo Codes

Coding and Communication Laboratory

Dept. of Electrical Engineering,
National Chung Hsing University

- Chapter 10: Turbo Codes

1. Introduction
2. Turbo code encoder
3. Iterative decoding of turbo codes

Turbo codes

Reference

1. Lin, Error Control Coding

- chapter 16

What are turbo codes?

- A firm understanding of convolutional codes is an important prerequisite to the understanding of turbo codes.
- Turbo codes, which a class of error correcting codes is, are
- Tow fundamental ideas of Turbo code: introduced by Berrou and Glavieux in ICC93.
$\begin{cases}\text { Encoder: } & \text { It produce a codeword with randomlike } \\ & \text { properties. } \\ \text { Decoder: } & \text { It make use of soft-output values and } \\ & \text { iterative decoding. }\end{cases}$
than any other class of error correcting codes.
- Turbo codes achieve their remarkable performance with relatively iterative decoding. low complexity encoding and decoding algorithms.

CC Lab., EE, NCHU
CC Lab., EE, NCHU

Turbo codes

Power efficiency of existing standards

Turbo codes

CC Lab., EE, NCHU

Turbo code encoder

- The fundamental turbo code encoder:

Two identical recursive systematic convolutional (RSC) codes with parallel concatenation.

- To achieve performance close to the Shannon limit, the information block length (interleaver size) is chosen to be very large, usually at least several thousand bits.
- An RSC encoder ${ }^{\text {a }}$ is termed a component encoder.
- The two component encoders are separated by an interleaver.
- RSC codes, generated by systematic feedback encoders, give much better performance than nonrecursive systematic convolutional codes, that is, feedforward encoders.
- Because only the ordering of the bits changed by the interleaver, the sequence that enters the second RSC encoder has the same weight as the sequence x that enters the first encoder.

Figure A: Fundamental Turbo Code Encoder ($r=\frac{1}{3}$)

$$
{ }^{\mathrm{a}} \text { In general, an RSC encoder is typically } r=\frac{1}{2} \text {. }
$$

CC Lab., EE, NCHU
CC Lab., EE, NCHU

Turbo codes suffer from two disadvantages:

1. A large decoding delay, owing to the large block lengths and many iterations of decoding required for near-capacity performance.
2. It significantly weakened performance at BERs below 10^{-5} owing to the fact that the codes have a relatively poor minimum distance, which manifests itself at very low BERs.

Turbo codes

Figure A-1: Performance comparison of convolutional codes and turbo codes

Recursive systematic convolutional (RSC)

- The RSC encoder:

The conventional convolutional encoder by feeding back one of its encoded outputs to its input.

- Example. Consider the conventional convolutional encoder in which

Turbo codes

- The RSC encoder of the conventional convolutional encoder:
 $$
G=\left[1, g_{2} / g_{1}\right]
$$
 where the first output is fed back to the input.
 - In the above representation:
 | 1 | the systematic output |
| :---: | :--- |
| g_{2} | the feed forward output |
| g_{1} | the feedback to the input of the RSC encoder |

- Figure C shows the resulting RSC encoder.

CC Lab., EE, NCHU

Trellis termination

- For the conventional encoder, the trellis is terminated by

For encoding the input sequence, the switch is turned on to position A and for terminating the trellis, the switch is inserting $m=K-1$ additional zero bits after the input sequence. These additional bits drive the conventional convolutional encoder to the all-zero state (Trellis termination). However, this strategy is not possible for the RSC encoder due to the feedback.

- Convolutional encoder are time-invariant, and it is this property that accounts for the relatively large numbers of low-weight codewords in terminated convolutional codes.
- Figure D shows a simple strategy that has been developed in ${ }^{\text {a }}$ which overcomes this problem
${ }_{a}$ Divsalar, D. and Pollara, F., "Turbo Codes for Deep-Space Communications, JPL TDA Progress Report 42-120, Feb. 15, 1995.

CC Lab., EE, NCHU

CC Lab., EE, NCHU

Turbo codes

- Example. Figure F shows the equivalent recursive convolutional encoder of Figure E with $G=\left[1, \frac{g_{2}}{g_{1}}\right]$.

Figure F: Recursive $r=\frac{1}{2}$ and $K=2$ convolutional encoder of Figure E with input and output sequences.

- Compare Figure E with Figure F:

The nonrecursive encoder	output codeword with weight of 3
The recursive encoder	output codeword with weight of 5

- State diagram:

Figure G-1: State diagram of the nonrecursive encoder in Figure E.

CC Lab., EE, NCHU

Figure G-2: State diagram of the recursive encoder in Figure F.

- A recursive convolutional encoder tends to produce codewords with increased weight relative to a nonrecursive encoder. This results in fewer codewords with lower weights and this leads to better error performance.
- For turbo codes, the main purpose of implementing RSC encoders as component encoders is to utilize the recursive nature of the encoders and not the fact that the encoders are systematic.

CC Lab., EE, NCHU

Turbo codes

- Clearly, the state diagrams of the encoders are very similar.
- The transfer function of Figure G-1 and Figure G-2 :

$$
T(D)=\frac{D^{3}}{1-D} \quad \text { Where } \mathrm{N} \text { and } \mathrm{J} \text { are neglected. }
$$

Turbo codes

- The two codes have the same minimum free distance and can be described by the same trellis structure.
- These two codes have different bit error rates. This is due to the fact that BER depends on the input-output correspondence of the encoders. ${ }^{\text {b }}$
- It has been shown that the BER for a recursive convolutional code is lower than that of the corresponding nonrecursive convolutional code at low signal-to-noise ratios E_{b} / N_{0}. ${ }^{\text {c }}$

[^10]
Concatenation of codes

- A concatenated code is composed of two separate codes that combined to form a large code.
- There are two types of concatenation:
- Serial concatenation
- Parallel concatenation
- The total code rate for serial concatenation is

$$
r_{\text {tot }}=\frac{k_{1} k_{2}}{n_{1} n_{2}}
$$

which is equal to the product of the two code rates.

Figure H: Serial concatenated code

CC Lab., EE, NCHU
CC Lab., EE, NCHU

Turbo codes

- The total code rate for parallel concatenation is:

$$
r_{\mathrm{tot}}=\frac{k}{n_{1}+n_{2}}
$$

Figure I: Parallel concatenated code.

Turbo codes

- For serial and parallel concatenation schemes:

An interleaver is often between the encoders to improve burst error correction capacity or to increase the randomness of the code.

- Turbo codes use the parallel concatenated encoding scheme. However, the turbo code decoder is based on the serial concatenated decoding scheme.
- The serial concatenated decoders are used because they perform better than the parallel concatenated decoding scheme due to the fact that the serial concatenation scheme has the ability to share information between the concatenated decoders whereas the decoders for the parallel concatenation scheme are primarily decoding independently.

Interleaver design

- The interleaver is used to provide randomness to the input $c_{1 i}$ and $c_{2 i}$ respectively. The input sequence x_{1} and x_{2} are different permuted sequences of x_{0}.

Figure K: An illustrative example of an interleaver's capability.

> CC Lab., EE, NCHU

Turbo codes

Table: Input an Output Sequences for Encoder in Figure K.

	Input Sequence x_{i}	Output Sequence $c_{1 i}$	Output Sequence $c_{2 i}$	Codeword Weight i
$i=0$	1100	1100	1000	3
$i=1$	1010	1010	1100	4
$i=2$	1001	1001	1110	5

- The interlever affect the performance of turbo codes because it directly affects the distance properties of the code.

Turbo codes

Block interleaver

- The block interleaver is the most commonly used interleaver in communication system.
- It writes in column wise from top to bottom and left to right and reads out row wise from left to right and top to bottom.

Figure L: Block interleaver.

- The random interleaver uses a fixed random permutation and maps the input sequence according to the permutation order.
- The length of the input sequence is assumed to be L.
- The best interleaver reorder the bits in a pseudo-random manner. Conventional block (row-column) interleavers do not perform well in turbo codes, except at relatively short block lengths.

Figure M: A random (pseudo-random) interleaver with $L=8$.

CC Lab., EE, NCHU
CC Lab., EE, NCHU

Turbo codes

Circular-Shifting interleaver

- The permutation \mathbf{p} of the circular-shifting interleaver is defined by

$$
p(i)=(a i+s) \quad \bmod L
$$

satisfying $a<L, a$ is relatively prime to L , and $s<L$ where i is

CC Lab., EE, NCHU

The notation of turbo code enocder

- The information sequence (including termination bits) is considered to a block of length $K=K^{*}+v$ and is represented by the vector $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{K-1}\right)$.

CC Lab., EE, NCHU

Turbo codes

The basic structure
 of an iterative turbo decoder

- The basic structure of an iterative turbo decoder is shown in Figure O. (We assume here a rate $R=1 / 3$ parallel concatenated code without puncturing.)

Figure O: Basic structure of an iterative turbo decoder

[^11]- At each time unit l, three output values are received from the (sort) outputs, we define the log-likelihood ratio (L-value) $L\left(v_{l}^{(0)} \mid r_{l}^{(0)}\right)=L\left(u_{l} \mid r_{l}^{(0)}\right)$ (before decoding) of a transmitted information bit u_{l} given the channel, one for the information bit $u_{l}=v_{l}^{(0)}$, denoted by $r_{l}^{(0)}$ received value $r_{l}^{(0)}$ as and two for the parity bits $v_{l}^{(1)}$ and $v_{l}^{(2)}$, denote by $r_{l}^{(1)}$ and $r_{l}^{(2)}$, and the 3 K -dimensional received vector is denoted by

$$
r=\left(r_{0}^{(0)} r_{0}^{(1)} r_{0}^{(2)}, r_{1}^{(0)} r_{1}^{(1)} r_{1}^{(2)}, \ldots, r_{K-1}^{(0)} r_{K-1}^{(1)} r_{K-1}^{(2)}\right)
$$

- Let each transmitted bit represented using the mapping

$$
0 \rightarrow-1 \text { and } 1 \rightarrow+1 .
$$

$$
\begin{aligned}
L\left(u_{l} \mid r_{l}^{(0)}\right) & =\ln \frac{P\left(u_{l}=+1 \mid r_{l}^{(0)}\right)}{P\left(u_{l}=-1 \mid r_{l}^{(0)}\right)} \\
& =\ln \frac{P\left(r_{l}^{(0)} \mid u_{l}=+1\right) P\left(u_{l}=+1\right)}{P\left(r_{l}^{(0)} \mid u_{l}=-1\right) P\left(u_{l}=-1\right)} \\
& =\ln \frac{P\left(r_{l}^{(0)} \mid u_{l}=+1\right)}{P\left(r_{l}^{(0)} \mid u_{l}=-1\right)}+\ln \frac{P\left(u_{l}=+1\right)}{P\left(u_{l}=-1\right)} \\
& =\ln \frac{e^{-\left(E_{s} / N_{0}\right)\left(r_{l}^{(0)}-1\right)^{2}}}{e^{-\left(E_{s} / N_{0}\right)\left(r_{l}^{(0)}+1\right)^{2}}}+\ln \frac{P\left(u_{l}=+1\right)}{P\left(u_{l}=-1\right)}
\end{aligned}
$$

where E_{s} / N_{0} is the channel SNR, and u_{l} and $r_{l}^{(0)}$ have both been normalized by a factor of $\sqrt{E_{s}}$.

CC Lab., EE, NCHU

Turbo codes

- In a linear block code with equally likely information bits, the parity bits are also equally likely to be +1 or -1 , and thus the a priori L-values of the parity bits are 0 ; that is,

$$
L_{a}\left(v_{l}^{(j)}=\ln \frac{P\left(v_{l}^{(j)}\right)}{P\left(v_{l}^{(j)}=-1\right)}=0, j=1,2\right.
$$

- In the case of a transmitted parity bit $v_{l}^{(j)}$, given the received value $r_{l}^{(j)}, j=1,2$, the L-value (before decoding) is given by

$$
L\left(v_{l}^{(j)} \mid r_{l}^{(j)}\right)=L_{c} r_{l}^{(j)}+L_{a}\left(v_{l}^{(j)}\right)=L_{c} r_{l}^{(j)}, j=1,2
$$

$$
\begin{aligned}
L\left(u_{l} \mid r_{l}^{(0)}\right) & =-\frac{E_{s}}{N_{0}}\left\{\left(r_{l}^{(0)}-1\right)^{2}-\left(r_{l}^{(0)}+1\right)^{2}\right\}+\ln \frac{P\left(u_{l}=+1\right)}{P\left(u_{l}=-1\right)} \\
& =\frac{E_{s}}{N_{0}} r_{l}^{(0)}+\ln \frac{P\left(u_{l}=+1\right)}{P\left(u_{l}=-1\right)} \\
& =L_{c} r_{l}^{(0)}+L_{a}\left(u_{l}\right)
\end{aligned}
$$

where $L_{c}=4\left(E_{s} / N_{0}\right)$ is the channel reliability factor, and $L_{a}\left(u_{l}\right)$
where $L_{c}=4\left(E_{s} / N_{0}\right)$ is the channel

- The received soft channel L-valued $L_{c} r_{l}^{(0)}$ for u_{l} and $L_{c} r_{l}^{(1)}$ for $v_{l}^{(1)}$ enter decoder 1, and the (properly interleaved) received soft channel L-valued $L_{c} r_{l}^{(2)}$ for $v_{l}^{(2)}$ enter decoder 2.

The output of decoder 1 contains two terms:

1. $L^{(1)}\left(u_{l}\right)=\ln \left[P\left(u_{l}=+1 / \mathbf{r}_{1}, \mathbf{L}_{a}\right) / P\left(u_{l}=-1 \mid \mathbf{r}_{1}, \mathbf{L}_{a}\right)\right]$, the a posteriori L-value (after decoding) of each information bit produced by decoder 1 given the (partial) received vector $\mathbf{r}_{1} \triangleq$ $\left[r_{0}^{(0)} r_{0}^{(1)}, r_{1}^{(0)} r_{1}^{(1)}, \ldots, r_{K-1}^{(0)} r_{K-1}^{(1)}\right]$ and the a priori input vector $\mathbf{L}_{a}^{(1)} \triangleq\left[L_{a}^{(1)}\left(u_{0}\right), L_{a}^{(1)}\left(u_{1}\right), \ldots, L_{a}^{(1)}\left(u_{K-1}\right)\right]$ for decoder 1, and
2. $L_{e}^{(1)}\left(u_{l}\right)=L^{(1)}\left(u_{l}\right)-\left[L_{c} r_{l}^{(0)}+L_{e}^{(2)}\left(u_{l}\right)\right]$, the extrinsic a posteriori L-value (after decoding) associated with each information bit produced by decoder 1, which, after interleaving, is passed to the input of decoder 2 as the a priori value $L_{a}^{(2)}\left(u_{l}\right)$.

- Subtracting the term in brackets, namely, $L_{c} r_{l}^{(0)}+L_{e}^{(2)}\left(u_{l}\right)$, removes the effect of the current information bit u_{l} from $L^{(1)}\left(u_{l}\right)$, leaving only the effect of the parity constraint, thus providing an independent estimate of the information bit u_{l} to decoder 2 in addition to the received soft channel L-values at time l.

Similarly, the output of decoder 2 contains two terms: 1. $L^{(2)}\left(u_{l}\right)=\ln \left[P\left(u_{l}=+1 \mid \mathbf{r}_{2}, \mathbf{L}_{a}^{(2)}\right) / P\left(u_{l}=-1 \mid r_{2}, \mathbf{L}_{a}^{(2)}\right)\right]$, where \mathbf{r}_{2} is the (partial) received vector and $L_{a}^{(2)}$ the a priori input vector for decoder 2, and
2. $L_{e}^{(2)}\left(u_{l}\right)=L^{(2)}\left(u_{l}\right)-\left[L_{c} r_{l}^{(0)}+L_{e}^{(1)}\right]$, and the extrinsic a posteriori L-values $L_{e}^{(2)}\left(u_{l}\right)$ produced by decoder 2, after deinterleaving, are passed back to the input of decoder 1 as the a priori values $L_{a}^{(1)}\left(u_{l}\right)$.

Iterative decoding using the log-MAP algorithm

- Example. Consider the parallel concatenated convolutional code (PCCC) formed by using the 2 -state $(2,1,1)$ systematic recursive convolutional code (SRCC) with generator matrix

$$
G(D)=\left[1 \frac{1}{1+D}\right]
$$

as the constituent code. A block diagram of the encoder is shown in Figure $\mathrm{P}(\mathrm{a})$.

- Also consider an input sequence of length $K=4$, including one termination bit, along with a 2×2 block (row-column) interleaver, resulting in a $(12,3) \mathrm{PCCC}$ with overall rate $R=1 / 4$.

Turbo codes

Figure P: (a) A 2-state turbo encoder and (b) the decoding trellis for $(2,1,1)$ constituent code with $K=4$.

- The length $K=4$ decoding trellis for the component code is show in Figure $\mathrm{P}(\mathrm{b})$, where the branches are labeled using the mapping $0 \rightarrow-1$ and $1 \rightarrow+1$.
- The input block is given by the vector $\mathbf{u}=\left[u_{0}, u_{1}, u_{2}, u_{3}\right]$, the interleaved input block is $u^{\prime}=\left[\left[u_{0}^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right]=\left[u_{0}, u_{1}, u_{2}, u_{3}\right]\right.$, the parity vector for the first component code is given by $\mathbf{p}^{(1)}=\left[p_{0}^{(1)}, p_{1}^{(1)}, p_{2}^{(1)}, p_{3}^{(1)}\right]$, and the parity vector for the second component code is $\mathbf{p}^{(2)}=\left[p_{0}^{(2)}, p_{1}^{(2)}, p_{2}^{(2)}, p_{3}^{(2)}\right]$.
- We can represent the 12 transmitted bits in a rectangular array, as shown in Figure $R(a)$, where the input vector \mathbf{u} determines the parity vector $\mathbf{p}^{(1)}$ in the first two rows, and the interleaved input vector \mathbf{u}^{\prime} determines the parity vector $\mathbf{p}^{(2)}$ in the first two columns

Figure R: Iterative decoding example for a $(12,3) \mathrm{PCCC}$.

CC Lab., EE, NCHU

- For purposes of illustration, we assume the particular bit values shown in Figure R(b).
- We also assume a channel SNR of $E_{s} / N_{0}=1 / 4(-6.02 \mathrm{~dB})$, so that the received channel L-values corresponding to the received vector

$$
\mathbf{r}=\left[r_{0}^{(0)} r_{0}^{(1)} r_{0}^{(2)}, r_{1}^{(0)} r_{1}^{(1)} r_{1}^{(2)}, r_{2}^{(0)} r_{2}^{(1)} r_{2}^{(2)}, r_{3}^{(0)} r_{3}^{(1)} r_{3}^{(2)}\right]
$$ \log-MAP algorithm is applied to the trellis of the 2-state $(2,1,1)$ code shown in Figure $\mathrm{P}(\mathrm{b})$ to compute the a posteriori L-values $L^{(1)}\left(u_{l}\right)$ for each of the four input bits and the corresponding extrinsic a posteriori L-values $L_{e}^{(1)}\left(u_{l}\right)$ to pass to decoder 2 (the column decoder).

are given by

- Similarly, in the first iteration of decoder 2, the log-MAP algorithm uses the extrinsic posteriori L-values $L_{e}^{(1)}\left(u_{l}\right)$ received from decoder 1 as the a priori L-values, $L_{a}^{(2)}\left(u_{l}\right)$ to compute the a posteriori L-values $L^{(2)}\left(u_{l}\right)$ for each of the four input bits and the corresponding extrinsic a posteriori
Again for purposes of illustration, a set of particular received L-values $L_{e}^{(2)}\left(u_{l}\right)$ to pass back to decoder 1.
Further decoding proceeds iteratively in this fashion.
- To simplify notation, we denote the transmitted vector as $\mathbf{v}=\left(\mathbf{v}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$, where $\mathbf{v}_{l}=\left(u_{l}, p_{l}\right), l=0,1,2,3, u_{l}$ is an input bit, and p_{l} is a parity bit.
- An input bit a posteriori L-value is given by

$$
\begin{aligned}
L\left(u_{l}\right) & =\ln \frac{P\left(u_{l}=+1 \mid\right) \mathbf{r}}{P\left(u_{l}=-1 \mid\right) \mathbf{r}} \\
& =\ln \frac{\sum_{\left(s^{\prime}, s\right) \in \sum_{l}+} p\left(s^{\prime}, s, \mathbf{r}\right)}{\sum_{\left(s^{\prime}, s\right) \in \sum_{l}^{-}} p\left(s^{\prime}, s, \mathbf{r}\right)}
\end{aligned}
$$

- Similarly, the received vector is denoted as $\mathbf{r}=\left(\mathbf{r}_{0}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)$, where where $\mathbf{r}_{l}=\left(r_{u_{l}}, r_{p_{l}}\right), l=0,1,2,3, r_{u_{l}}$ is the received symbol
$-s^{\prime}$ represents a state at time l (denote by $s^{\prime} \in \sigma_{l}$). corresponding to the transmitted input bit u_{l}, and $r_{p_{l}}$ is the
$-s$ represents a state at time $l+1$ (denoted by $s \in \sigma_{l+1}$). received symbol corresponding to the transmitted parity bit p_{l}.
- The sums are over all state pairs $\left(s^{\prime}, s\right)$ for which $u_{l}=+1$ or -1 , respectively.

CC Lab., EE, NCHU

Turbo codes

- We can write the joint probabilities $p\left(s^{\prime}, s, \mathbf{r}\right)$ as

$$
p\left(s^{\prime}, s, \mathbf{r}\right)=e^{\alpha_{l}^{*}\left(s^{\prime}\right)+\gamma_{l}^{*}\left(s^{\prime}, s\right)+\beta_{l+1}^{*}(s)}
$$

where $\alpha_{l}^{*}\left(s^{\prime}\right), \gamma_{l}^{*}\left(s^{\prime}, s\right)$, and $\beta_{l+1}^{*}(s)$ are the familiar log-domain $\alpha^{\prime} s, \gamma^{\prime} s$ and $\beta^{\prime} s$ of the MAP algorithm.

- For a continuous-output AWGN channel with an SNR of E_{s} / N_{0}, we can write the MAP decoding equations as

$$
\begin{array}{ll}
\text { Branch metric: } & r_{l}^{*}\left(s^{\prime}, s\right)=\frac{u_{l} L_{a}\left(u_{l}\right)}{2}+\frac{L_{c}}{2} \mathbf{r}_{l} \cdot \mathbf{v}_{l}, l=0,1,2,3 \\
\text { Forward metric: } & \alpha_{l+1}^{*}(s)=\max _{s^{\prime} \in \alpha_{l}}^{*}\left[\gamma_{l}^{*}\left(s^{\prime}, s\right)+\alpha_{l}^{*}\left(s^{\prime}\right)\right], l=0,1,2,3 \\
\text { Backward metric: } & \beta_{l}^{*}\left(s^{\prime}\right)=\max _{s \in \sigma_{l+1}^{*}}^{*}\left[\gamma_{l}^{*}\left(s^{\prime}, s\right)+\beta_{l+1}^{*}(s)\right]
\end{array}
$$

where the max function is defined in $\max ^{*}(x, y) \equiv \ln \left(e^{x}+e^{y}\right)=$ $\max (x, y)+\ln \left(1+e^{-|x+y|}\right)$ and the initial conditions are $\alpha_{0}^{*}\left(S_{0}\right)=\beta_{4}^{*}\left(S_{0}\right)=0$, and $\alpha_{0}^{*}\left(S_{1}\right)=\beta_{4}^{*}\left(S_{1}\right)=-\infty$.

Turbo codes

- Further simplifying the branch metric, we obtain

$$
\begin{aligned}
r_{l}^{*}\left(s^{\prime}, s\right) & =\frac{u_{l} L_{a}\left(u_{l}\right)}{2}+\frac{L_{c}}{2}\left(u_{l} r_{u_{l}}+p_{l} r_{p_{l}}\right) \\
& =\frac{u_{l}}{2}\left[L_{a}\left(u_{l}\right)+L_{c} r_{u_{l}}\right]+\frac{p_{l}}{2} L_{c} r_{p_{l}}, l=0,1,2,3 .
\end{aligned}
$$

- We can express the a posteriori L-value of u_{0} as

$$
\begin{aligned}
L\left(u_{0}\right)= & \ln p\left(s^{\prime}=S_{0}, s=S_{1}, \mathbf{r}\right)-\ln p\left(s^{\prime}=S_{0}, s=S_{0}, \mathbf{r}\right) \\
= & {\left[\alpha_{0}^{*}\left(S_{0}\right)+\gamma_{0}^{*}\left(s^{\prime}=S_{0}, s=S_{1}\right)+\beta_{1}^{*}\left(S_{1}\right)\right]-} \\
& {\left[\alpha_{0}^{*}\left(S_{0}\right)+\gamma_{0}^{*}\left(s^{\prime}=S_{0}, s=S_{0}\right)+\beta_{1}^{*}\left(S_{1}\right)\right] } \\
= & \left\{+\frac{1}{2}\left[L_{a}\left(u_{0}\right)+L_{c} r_{u_{0}}\right]+\frac{1}{2} L_{c} r_{p 0}+\beta_{1}^{*}\left(S_{1}\right)\right\}- \\
& \left\{-\frac{1}{2}\left[L_{a}\left(u_{0}\right)+L_{c} r_{u_{0}}\right]+\frac{1}{2} L_{c} r_{p 0}+\beta_{1}^{*}\left(S_{0}\right)\right\} \\
= & \left\{+\frac{1}{2}\left[L_{a}\left(u_{0}\right)+L_{c} r_{u_{0}}\right]\right\}-\left\{-\frac{1}{2}\left[L_{a}\left(u_{0}\right)+L_{c} r_{u_{0}}\right]\right\}+ \\
& \left\{+\frac{1}{2} L_{c} r_{p 0}+\beta_{1}^{*}\left(S_{1}\right)+\frac{1}{2} L_{c} r_{p 0}-\beta_{1}^{*}\left(S_{0}\right)\right\} \\
= & L_{c} r_{u 0}+L_{a}\left(u_{0}\right)+L_{e}\left(u_{0}\right),
\end{aligned}
$$

where $L_{e}\left(u_{0}\right) \equiv L_{c} r_{p 0}+\beta_{1}^{*}\left(S_{1}\right)-\beta_{1}^{*}\left(S_{0}\right)$ represents the extrinsic a posterior (output) L-value of u_{0}.

The final form of above equation illustrate clearly the three components of the a posteriori L-value of u_{0} computed at the output of a log-MAP decoder:

- $L_{c} r_{u 0}$: the received channel L-value corresponding to bit u_{0},
- We now proceed in a similar manner to compute the a posteriori L-value of bit u_{1}. which was part of the decoder input.
- $L_{a}\left(u_{0}\right)$: the a priori L-value of u_{0}, which was also part of the
- We see from Figure $\mathrm{P}(\mathrm{b})$ that in this case there are two terms in each of the sums in $L\left(u_{l}\right)=\ln \frac{\sum_{\left(s^{\prime}, s\right) \in \sum_{l}^{+}} p\left(s^{\prime}, s, \mathbf{r}\right)}{\sum_{\left(s^{\prime}, s \in \sum_{l}^{-}\right.} p\left(s^{\prime}, s, \mathbf{r}\right)}$, because at this decoder input. Expect for the first iteration of decoder 1, this time there are two +1 and two -1 transitions in the trellis diagram. from the output of the other decoder.
- $L_{e}\left(u_{0}\right)$: the extrinsic part of the a posteriori L-value of u_{0}, which dose not depend on $L_{c} r_{u 0}$ or $L_{a}\left(u_{0}\right)$. This term is then sent to the other decoder as its a priori input.

Turbo codes

- Continuing, we can use the same procedure to compute the a posteriori L-values of bits u_{2} and u_{3} as

$$
L\left(u_{2}\right)=L_{c} r_{u 2}+L_{a}\left(u_{2}\right)+L_{e}\left(u_{2}\right),
$$

where

and

$$
L\left(u_{3}\right)=L_{c} r_{u 3}+L_{a}\left(u_{3}\right)+L_{e}\left(u_{3}\right),
$$

where
$L\left(u_{3}\right)=\left[-\frac{1}{2} L_{c} r_{p 3}+\alpha_{3}^{*}\left(S_{1}\right)+\beta_{4}^{*}\left(S_{0}\right)\right]-\left[-\frac{1}{2} L_{c} r_{p 3}+\alpha_{3}^{*}\left(S_{0}\right)+\beta_{4}^{*}\left(S_{0}\right)\right]$ $=\alpha_{3}^{*}\left(S_{1}\right)-\alpha_{3}^{*}\left(S_{0}\right)$

- We now need expressions for the terms $\alpha_{1}^{*}\left(S_{0}\right), \alpha_{1}^{*}\left(S_{1}\right), \alpha_{2}^{*}\left(S_{0}\right)$, $\alpha_{2}^{*}\left(S_{1}\right), \alpha_{3}^{*}\left(S_{0}\right), \alpha_{3}^{*}\left(S_{1}\right), \beta_{1}^{*}\left(S_{0}\right), \beta_{1}^{*}\left(S_{1}\right), \beta_{2}^{*}\left(S_{0}\right), \beta_{2}^{*}\left(S_{1}\right), \beta_{3}^{*}\left(S_{0}\right)$, and $\beta_{3}^{*}\left(S_{1}\right)$ that are used to calculate the extrinsic a posteriori L-values $L_{e}\left(u_{l}\right), l=0,1,2,3$.

$\beta_{3}^{*}\left(S_{0}\right)$	$=-\frac{1}{2}\left(L_{u 3}+L_{p 3}\right)$	
$\beta_{1}^{*}\left(S_{1}\right)$	$=\quad+\frac{1}{2}\left(L_{u 3}-L_{p 3}\right)$	
$\beta_{2}^{*}\left(S_{0}\right)$	$=\quad$ max ${ }^{*}\left\{\left[-\frac{1}{2}\left(L_{u 2}+L_{p 2}\right)+\beta_{3}^{*}\left(S_{0}\right)\right]\right.$	[$\left[+\frac{1}{2}\left(L_{u 2}-L_{p 2}\right)+\beta_{3}^{*}\left(S_{1}\right)\right]$
$\beta_{2}^{*}\left(S_{1}\right)$	$=\max \left\{\left[+\frac{1}{2}\left(L_{u 2}+L_{p 2}\right)+\beta_{3}^{*}\left(S_{0}\right)\right.\right.$]	$-\frac{1}{2}\left(L_{u 2}-L_{p 2}\right)+\beta_{3}^{*}\left(S_{1}\right)$
$\beta_{1}^{*}\left(S_{0}\right)$	$=\max _{*}^{*}\left\{-\frac{1}{2}\left(L_{u 1}+L_{p 1}\right)+\beta_{2}^{*}\left(S_{0}\right)\right]$,$\left.{ }^{-}+\frac{1}{2}\left(L_{u 1}-L_{p 1}\right)+\beta_{2}^{*}\left(S_{1}\right)\right]$
$\beta_{1}^{*}\left(S_{1}\right)$	$=\max ^{*}\left\{\left[+\frac{1}{2}\left(L_{u 1}+L_{p 1}\right)+\beta_{2}^{*}\left(S_{0}\right)\right]\right.$	$],\left[-\frac{1}{2}\left(L_{u 1}-L_{p 1}\right)+\beta_{2}^{*}\left(S_{1}\right)\right]$

$\alpha_{1}^{*}\left(S_{0}\right)$	$\frac{1}{2}\left(L_{u 0}+L_{p 0}\right)$	
$\alpha_{1}^{*}\left(S_{1}\right)$	$=-\frac{1}{2}\left(L_{u 0}+L_{p 0}\right)$	
$\alpha_{2}^{*}\left(S_{0}\right)$	$=\max _{*}^{*}\left\{\left[-\frac{1}{2}\left(L_{u 1}+L_{p 1}\right)+\alpha_{1}^{*}\left(S_{0}\right)\right]\right.$.	,$\left[+\frac{1}{2}\left(L_{u 1}-L_{p 1}\right)+\alpha_{1}^{*}\left(S_{1}\right)\right]$
$\alpha_{2}^{*}\left(S_{1}\right)$	$=\max _{*}^{*}\left\{\left[+\frac{1}{2}\left(L_{u 1}+L_{p 1}\right)+\alpha_{1}^{*}\left(S_{0}\right)\right]\right.$, ${ }^{-\frac{1}{2}\left(L_{u 1}-L_{p 1}\right)+\alpha_{1}^{*}\left(S_{1}\right)}$
$\alpha_{3}^{*}\left(S_{0}\right)$	$=\max _{*}^{*}\left\{-\frac{1}{2}\left(L_{u 2}+L_{p 2}\right)+\alpha_{2}^{*}\left(S_{0}\right)\right]$,	,${ }^{-}+\frac{1}{2}\left(L_{u 2}-L_{p 2}\right)+\alpha_{2}^{*}\left(S_{1}\right)$
$\alpha_{3}^{*}\left(S_{1}\right)$	$=\max _{*}^{*}\left\{\left[+\frac{1}{2}\left(L_{u 2}+L_{p 2}\right)+\alpha_{2}^{*}\left(S_{0}\right)\right]\right.$	$],\left[-\frac{1}{2}\left(L_{u 2}-L_{p 2}\right)+\alpha_{2}^{*}\left(S_{1}\right)\right]$

- We can write the extrinsic a posteriori L-values in terms of $L_{u 2}$ and $L_{p 2}$ as
$L_{e}\left(u_{0}\right)=L_{p 0}+\beta_{1}^{*}\left(S_{1}\right)-\beta_{1}^{*}\left(S_{0}\right)$,
$L_{e}\left(u_{1}\right)=$
$L_{e}\left(u_{2}\right)=$

$$
\left.\begin{array}{l}
,\left[-\frac{1}{2} L_{p 1}+\alpha_{1}^{*}\left(S_{1}\right)+\beta_{2}^{*}\left(S_{0}\right)\right. \\
,\left[+\frac{1}{2} L_{p 1}+\alpha_{1}^{*}\left(S_{1}\right)+\beta_{2}^{*}\left(S_{1}\right)\right. \\
,\left[-\frac{1}{2} L_{p 2}+\alpha_{2}^{*}\left(S_{1}\right)+\beta_{3}^{*}\left(S_{0}\right)\right. \\
,\left[+\frac{1}{2} L_{p 2}+\alpha_{2}^{*}\left(S_{1}\right)+\beta_{3}^{*}\left(S_{1}\right)\right]
\end{array}\right\}-2 \text { - }
$$

and

$$
L_{e}\left(u_{3}\right)=\alpha_{3}^{*}\left(S_{1}\right)-\alpha_{3}^{*}\left(S_{0}\right) .
$$

- The extrinsic L-value of bit u_{l} does not depend directly on either

Turbo codes

Iterative decoding using the max-log-MAP

 algorithm- Example. When the approximation $\max ^{*}(x, y) \approx \max (x, y)$ is applied to the forward and backward recursions, we obtain for the first iteration of decoder 1

$$
\begin{aligned}
\beta_{2}^{*}\left(S_{0}\right) & \approx \max \{0.35,1.25\}=1.25 \\
\beta_{2}^{*}\left(S_{1}\right) & \approx \max \{-1.45,-3.05\}=-3.05 \\
\beta_{1}^{*}\left(S_{0}\right) & \approx \max \left\{\left[-\frac{1}{2}(1.0-0.5)+1.25\right],\left[+\frac{1}{2}(1.0-0.5)+3.05\right]\right\} \\
= & \max \{1.00,3.30\}=3.30 \\
\beta_{1}^{*}\left(S_{1}\right) & \approx \max \left\{\left[+\frac{1}{2}(1.0+0.5)+1.25\right],\left[-\frac{1}{2}(1.0+0.5)+3.05\right]\right\} \\
= & \max \{2.00,2.30\}=2.30 \\
L_{e}^{(1)}\left(u_{0}\right) \approx & 0.1+2.30-3.30=-0.90 \\
L_{e}^{(1)}\left(u_{0}\right) \approx & \max \{[-0.25-0.45+3.05],[0.25,+0.45+1.25]\} \\
& -\max \{[0.25-0.45+1.25],[-0.25+0.45+3.05]\} \\
= & \max \{2.35,1.95\}-\max \{1.05,3.25\}=2.35-3.25=-0.90,
\end{aligned}
$$

Using these approximate extrinsic a posteriori L-values as a posteriori L-value as a priori L-values for decoder 2 , and recalling that the roles of u_{1} and u_{2} are reversed for decoder

2 , we obtain

$\alpha_{1}^{*}\left(S_{0}\right)=-\frac{1}{2}(0.8-0.9-1.2)=0.65$
$\alpha_{1}^{*}\left(S_{1}\right)=+\frac{1}{2}(0.8-0.9-1.2)=-0.65$
$\alpha_{2}^{*}\left(S_{0}\right) \approx \max \left\{\left[-\frac{1}{2}(-1.8+1.4+1.2)+0.65\right],\left[+\frac{1}{2}(-1.8+1.4-1.2)-0.65\right]\right\}$
$=\max \{0.25,-1.45\}=0.25$
$\alpha_{2}^{*}\left(S_{1}\right) \approx \max \left\{\left[+\frac{1}{2}(-1.8+1.4+1.2)+0.65\right],\left[-\frac{1}{2}(-1.8+1.4-1.2)-0.65\right]\right\}$
$\alpha_{3}^{*}\left(S_{0}\right) \approx \max \left\{\left[-\frac{1}{2}(1.0-0.9+0.2)+0.25\right],\left[+\frac{1}{2}(1.0-0.9-0.2)+1.05\right]\right\}$ $=\max \{0.10,1.00\}=1.00$
and, using similar calculations, we have
$=\max$

$$
L_{e}^{(1)}\left(u_{2}\right) \approx+1.4 \text { and } L_{e}^{(1)}\left(u_{3}\right) \approx-0.3
$$

$\alpha_{3}^{*}\left(S_{1}\right) \approx \max \left\{\left[+\frac{1}{2}(1.0-0.9+0.2)+0.25\right],\left[-\frac{1}{2}(1.0-0.9-0.2)+1.05\right]\right\}$ $=\max \{0.40,1.10\}=1.10$

CC Lab., EE, NCHU

Turbo codes

- We calculate the approximate a posteriori L-value of information bit u_{0} after the first complete iteration of decoding as

$$
L^{(2)}\left(u_{0}\right)=L_{c} r_{u_{0}}+L_{a}^{(2)}\left(u_{0}\right)+L e\left(u_{0}\right) \approx 0.8-0.9-0.8=-0.9,
$$

and we similar obtain the remaining approximate a posteriori
L-values as $L^{(2)}\left(u_{2}\right) \approx+0.7, L^{(2)}\left(u_{1}\right) \approx-0.7$, and
$L^{(2)}\left(u_{3}\right) \approx+1.4$.
and, using similar calculations, we have

$$
L_{e}^{(2)}\left(u_{1}\right) \approx-0.8 \text { and } L_{e}^{(2)}\left(u_{3}\right) \approx+0.1
$$

Fundamental principle of turbo decoding

- We now summarize our discussion of iterative decoding using the log-MAP and Max-log-MAP algorithm:
- The extrinsic a posteriori L-values are no longer strictly independent of the other terms after the first iteration of decoding, which causes the performance improvement from successive iterations to diminish over time.
- The concept of iterative decoding is similar to negative feedback in control theory, in the sense that the extrinsic information from the output that is fed back to the input has the effect of amplifying the SNR at the input, leading to a stable system output.
- Decoding speed can be improved by a factor of 2 by allowing the two decoders to work in parallel. In this case, the a priori L-values for the first iteration of decoder 2 will be the same as for decoder 1 (normally equal to 0), and the extrinsic a posteriori L-values will then be exchanged at the same time prior to each succeeding iteration.
- After a sufficient number of iterations, the final decoding decision can be taken from the a posteriori L-values of either decoder, or form the average of these values, without noticeably affect performance.

CC Lab., EE, NCHU

Turbo codes

- As noted previously, better performance is normally achieved with pseudorandom interleavers, particularly for large block lengths, and the iterative decoding procedure remains the same.
- It is possible, however, particularly on very noisy channels, for the decoder to converge to the correct decision and then diverge again, or even to "oscillate" between correct and incorrect decision
- Iterations can be stopped after some fixed number, typically
in the range $10-20$ for most turbo codes, or stopping rules based on reliability statistics can be used to halt decoding.
- The Max-log-MAP algorithm is simpler to implement than the log-MAP algorithm; however, it typically suffers a performance degradation of about 0.5 dB .
- It can be shown that MAX-log-MAP algorithm is equivalent to the SOVA algorithm.

The stopping rules for iterative decoding

1. One method is based on the cross-entropy (CE) of the APP distributions at the outputs of the two decoders.

- The cross-entropy $D(P \| Q)$ of two joint probability distributions $P(\mathbf{u})$ and $Q(\mathbf{u})$, assume statistical independence of the bits in the vector $\mathbf{u}=\left[u_{0}, u_{1}, \ldots, u_{K-1}\right]$, is defined as

$$
D(P \| Q)=E_{p}\left\{\log \frac{P(\mathbf{u})}{Q(\mathbf{u})}\right\}=\sum_{l=0}^{K-1} E_{p}\left\{\log \frac{P\left(u_{l}\right)}{Q\left(u_{l}\right)}\right\} .
$$

where $E_{p}\{\cdot\}$ denote expectation with respect to the probability distribution $P\left(u_{l}\right)$.

CC Lab., EE, NCHU

Turbo codes

- $D(P \| Q)$ is a measure of the closeness of two distributions, and

$$
D(P \| Q)=0 \text { iff } P\left(u_{l}\right)=Q\left(u_{l}\right), u_{l}= \pm 1, l=0,1, \ldots, K-1
$$

- Now, using the facts that $L_{a(i)}^{(1)}\left(u_{l}\right)=L_{e(i-1)}^{(2)}\left(u_{l}\right)$ and $L_{a(i)}^{(2)}\left(u_{l}\right)=L_{e(i)}^{(1)}\left(u_{l}\right)$, and letting $Q\left(u_{l}\right)$ and $P\left(u_{l}\right)$ represent the a posteriori probability distributions at the outputs of
- The CE stopping rule is based on the different between the a posteriori L-values after successive iterations at the outputs of the two decoders. For example, let

$$
L_{(i)}^{(1)}\left(u_{l}\right)=L_{c} r_{u_{l}}+L_{a(i)}^{(1)}\left(u_{l}\right)+L_{e(i)}^{(1)}\left(u_{l}\right)
$$

represent the a posteriori L-value at the output decoder 1 after iteration i, and let

$$
L_{(i)}^{(2)}\left(u_{l}\right)=L_{c} r_{u_{l}}+L_{a(i)}^{(2)}\left(u_{l}\right)+L_{e(i)}^{(2)}\left(u_{l}\right)
$$

represent the a posteriori L-value at the output decoder 2 after iteration i.

$$
L_{(i)}^{(Q)}\left(u_{l}\right)=L_{c} r_{u_{l}}+L_{e(i-1)}^{(P)}\left(u_{l}\right)+L_{e(i)}^{(Q)}\left(u_{l}\right)
$$

decoders 1 and 2 , respectively, we can write
and

$$
L_{(i)}^{(P)}\left(u_{l}\right)=L_{c} r_{u_{l}}+L_{e(i)}^{(Q)}\left(u_{l}\right)+L_{e(i)}^{(P)}\left(u_{l}\right)
$$

- We can write the difference in the two soft outputs as

$$
L_{(i)}^{(P)}\left(u_{l}\right)-L_{(i)}^{(Q)}\left(u_{l}\right)=L_{e(i)}^{(P)}\left(u_{l}\right)-L_{e(i-1)}^{(P)}\left(u_{l}\right) \triangleq \Delta L_{e(i)}^{(P)}\left(u_{l}\right) ;
$$

that is, $\Delta L_{e(i)}^{(P)}\left(u_{l}\right)$ represents the difference in the extrinsic a posteriori L-values of decoder 2 in two successive iterations.

- We now compute the CE of the a posteriori probability distributions $P\left(u_{l}\right)$ and $Q\left(u_{l}\right)$ as follows:

$$
\begin{aligned}
E_{p}\left\{\log \frac{P\left(u_{l}\right)}{Q\left(u_{l}\right)}\right\}= & P\left(u_{l}=+1\right) \log \frac{P\left(u_{l}=+1\right)}{Q\left(u_{l}=+1\right)} \\
& +P\left(u_{l}=-1\right) \log \frac{P\left(u_{l}=-1\right)}{Q\left(u_{l}=-1\right)} \\
= & \frac{e^{L_{(i)}^{(P)}\left(u_{l}\right)}}{1+e^{L_{(i)}^{(P)}\left(u_{l}\right)}} \log \frac{e^{L_{(i)}^{(P)}\left(u_{l}\right)}}{1+e^{L_{(i)}^{(P)}\left(u_{l}\right)}} \cdot \frac{1+e^{L_{(i)}^{(Q)}\left(u_{l}\right)}}{e^{L_{(i)}^{(Q)}\left(u_{l}\right)}}+ \\
& \frac{e^{-L_{(i)}^{(P)}\left(u_{l}\right)}}{1+e^{-L_{(i)}^{(P)}\left(u_{l}\right)}} \log \frac{e^{-L_{(i)}^{(P)}\left(u_{l}\right)}}{1+e^{-L_{(i)}^{(P)}\left(u_{l}\right)}} \cdot \frac{1+e^{-L_{(i)}^{(Q)}\left(u_{l}\right)}}{e^{-L_{(i)}^{(Q)}\left(u_{l}\right)}},
\end{aligned}
$$

where we have used expressions for the a posteriori
distributions $P\left(u_{l}= \pm 1\right)$ and $Q\left(u_{l}= \pm 1\right)$ analogous to those given in $P\left(u_{l}= \pm 1\right)=\frac{e^{ \pm L_{a}\left(u_{l}\right)}}{\left\{1+e^{ \pm L_{a}\left(u_{l}\right)}\right\}}$.

- The above equation can simplify as $E_{p}\left\{\log \frac{P\left(u_{l}\right)}{Q\left(u_{l}\right)}\right\}=-\frac{\Delta L_{e(i)}^{(P)}\left(u_{l}\right)}{1+e^{L(P)}\left(u_{l}\right)}+\log \frac{1+e^{-L_{(i)}^{(Q)}\left(u_{l}\right)}}{1+e^{-L_{(i)}^{(P)}\left(u_{l}\right)}}$.
- The hard decisions after iteration $i, \hat{u}_{l}^{(i)}$, satisfy

$$
u_{l}^{(i)}=\operatorname{sgn}\left[L_{(i)}^{(P)}\left(u_{l}\right)\right]=\operatorname{sgn}\left[L_{(i)}^{(Q)}\left(u_{l}\right)\right] .
$$

CC Lab., EE, NCHU

We now use the facts that once decoding has converged, the magnitudes of the a posteriori L-values are large; that is,

$$
\left|L_{(i)}^{(P)}\left(u_{l}\right)\right| \gg 0 \text { and }\left|L_{(i)}^{(Q)}\left(u_{l}\right)\right| \gg 0
$$

and that when x is large, e^{-x} is small, and

$$
1+e^{-x} \approx 1 \text { and } \log \left(1+e^{-x}\right) \approx e^{-x}
$$

- Applying these approximations to $E_{p}\left\{\log \frac{P\left(u_{l}\right)}{Q\left(u_{l}\right)}\right\}$, we can show that

$$
\begin{aligned}
E_{p}\left\{\log \frac{P\left(u_{l}\right)}{Q\left(u_{l}\right)}\right\} \approx & e^{-\left|L_{(i)}^{(Q)}\left(u_{l}\right)\right|}\left(1-e^{-\hat{u}_{l}^{(i)} \Delta L_{e(i)}^{(P)}\left(u_{l}\right)}\right. \\
& \left.\cdot\left(1+\hat{u}_{l}^{(i)} \Delta L_{e(i)}^{(P)}\left(u_{l}\right)\right)\right)
\end{aligned}
$$

- Noting that the magnitude of $\Delta L_{e(i)}^{(P)}\left(u_{l}\right)$ will be smaller than 1 when decoding converges, we can approximate the term $e^{-\hat{u}_{l}^{(i)} \Delta L_{e(i)}^{(P)}\left(u_{l}\right)}$ using the first two terms of its series expansion as follows:

$$
e^{-\hat{u}_{l}^{(i)} \Delta L_{e(i)}^{(P)}\left(u_{l}\right)} \approx 1-\hat{u}_{l}^{(i)} \Delta L_{e(i)}^{(P)}\left(u_{l}\right),
$$

- We can write the CE of the probability distributions $P(\mathbf{u})$ and $Q(\mathbf{u})$ at iteration i as

$$
\begin{aligned}
D_{(i)}(P \| Q) & \triangleq E_{p}\left\{\log \frac{P(\mathbf{u})}{Q(\mathbf{u})}\right\} \\
& \approx \sum_{l=0}^{K-1} \frac{\left|\Delta L_{e(i)}^{(P)}\left(u_{l}\right)\right|^{2}}{e^{\left|L_{(i)}^{(Q)}\left(u_{l}\right)\right|}}
\end{aligned}
$$

where we note that the statistical independence assumption does not hold exactly as the iterations proceed.

- We next define

$$
T(i) \triangleq \frac{\left|\Delta L_{e(i)}^{(P)}\left(u_{l}\right)\right|^{2}}{e^{\left|L_{(i)}^{(Q)}\left(u_{l}\right)\right|}}
$$

as the approximate value of the CE at iteration $i . T(i)$ can be computed after each iteration

CC Lab., EE, NCHU
CC Lab., EE, NCHU
2. Another approach to stopping the iterations in turbo decoding is to concatenate a high-rate outer cyclic code with an inner turbo code.

- Experience with computer simulations has shown that once convergence is achieved, $T(i)$ drops by a factor of $10^{-} 2$ to 10^{-4} compared with its initial value, and thus it is reasonable to use

$$
T(i)<10^{-3} T(1)
$$

as a stopping rule for iterative decoding.

Figure: A concatenation of an outer cyclic code with
an inner turbo code.

- After each iteration, the hard-decision output of the turbo decoder is used to check the syndrome of the cyclic code.
- This method of stopping the iterations is particularly effective for large block lengths, since in this case the rate of the outer
- If no errors are detected, decoding is assumed correct and the code can be made very high, thus resulting in a negligible iterations are stopped.
- It is important to choose an outer code with a low undetected overall rate loss.
error probability, so that iterative decoding is not stopped prematurely.
- For this reason it is usually advisable not to check the syndrome of the outer code during the first few iterations, when the probability of undetected error may be larger than
- For large block lengths, the foregoing idea can be extended to include outer codes, such as BCH codes, that can correct a small number of errors and still maintain a low undetected error probability.
- In this case, the iterations are stopped once the number of hard-decision errors at the output of the turbo decoder is within the error-correcting capability of the outer code.

LDPC Codes

Communication and Coding Laboratory

- This method also provides a low word-error probability for the complete system; that is, the probability that the entire information block contains one or more decoding errors can be made very small.

Reference

1. (*)

-

2. •
3. •
[^12]CC Lab, EE, NCHU

LDPC Codes

- Chapter 11: LDPC Codes

1. Introduction
2. A geometric construction of LDPC code
3. EG-LDPC code

Introduction
4. PG-LDPC code
5. Random LDPC code
6. Decoding of LDPC code

- Properties (1) and (2) say that the parity check matrix \mathbf{H} has constant row and column weights ρ and γ. Property (3) implies that no two rows of \mathbf{H} have more than one 1 in common
- We define the density r of the parity-check matrix \mathbf{H} as the ratio of the total number of 1's in \mathbf{H} to the total number of entries in \mathbf{H}. Then, we readily see that

$$
r=\rho / n=\gamma / J
$$

where J is number of rows in \mathbf{H}.

- The LDPC code given by the definition is called a (γ, ρ) - regular LDPC code, If all the columns or all the rows of the parity check matrix \mathbf{H} do not have the same weight, an LDPC code is then said to be irregular.

Let k be a positive integer greater than 1. For a given choice of ρ and γ, Gallager gave the following construction of a class of linear codes specified by their parity-check matrices. Form a $k \gamma \times k \rho$ matrix \mathbf{H} that consists of $\gamma k \times k \rho$ sub matrices, $\mathbf{H}_{1} \mathbf{H}_{2} \ldots \mathbf{H}_{\gamma}$. Each rows of submatrix has ρ 1's and each column of a submatrix contains a single 1. Therefore, each submatrix has a total of $k \rho 1$'s. For $1 \leq i \leq k$, the i th row of \mathbf{H}_{1} contains all its $\rho 1, \mathrm{~s}$ in colimns $(i-1) \rho+1$ toi ρ. The other submatrices are merely columnpermutations \mathbf{H}_{1}. Then,

$$
H=\left[\begin{array}{c}
\mathbf{H}_{1} \\
\mathbf{H}_{2} \\
\vdots \\
\mathbf{H}_{\gamma}
\end{array}\right]
$$

From the construction of \mathbf{H}, it is clear that:

1. No two rows in a submatrix of \mathbf{H} have any 1-component in common.
2. No two columns in a submatrix of \mathbf{H} have more than one 1 in common.

Because the total number of ones in \mathbf{H} is $k \rho \gamma$ and the total number of entries in \mathbf{H} is $k^{2} \rho \gamma$, the density of \mathbf{H} is $1 / k$. If k is chosen much greater than $1, \mathbf{H}$ has a very small density and is a sparse matrix.

CC Lab, EE, NCHU

A code bit v_{l} is said to be checked by the sum $v \cdot h_{j}$ if $h_{j, l}=1$. For $0 \leq l \leq n$, let $A_{l}=\left\{h_{1}^{(l)}, h_{2}^{(l)}, \ldots, h_{\gamma}^{(l)}\right\}$ denote the set of rows in \mathbf{H} that check on the code bit v_{l}. For $1 \leq j \leq \gamma$, let

$$
\mathbf{h}_{j}^{(l)}=\left(h_{j, 0}^{(l)}, h_{j, 1}^{(l)}, \ldots, h_{j, n-1}^{(l)}\right)
$$

Then, $h_{1, l}^{(l)}=h_{2, l}^{(l)}=\cdots=h_{\gamma, l}^{(l)}=1$
give a parity-check sum. There are a total of J such parity-check sums specified by the J rows of \mathbf{H}.

Any error patten with $\lfloor\gamma / 2\rfloor$ or fewer errors can be corrected.
Consequently, the minimum distance $d_{\text {min }}$ of the code is at least
$\gamma+1$; that is $d_{\text {min }} \geq \gamma+1$ If γ is too small, the one-step
A geometric construction of LDPC code
majority-logic decoding of an LDPC code will give very poor error performance.

LDPC Codes

We denote the points and lines in \mathbf{Q} with $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \cdots, \mathbf{p}_{n}\right\}$ and $\left\{L_{1}, L_{2}, \cdots, L_{J}\right\}$, respectively Let

$$
\mathbf{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)
$$

be an n-tuple over $G F(2)$ whose components correspond to the n points of geometry \mathbf{Q}, where the i th component v_{i} corresponds to the i th point \mathbf{p}_{i} of \mathbf{Q}. Let L be a line in \mathbf{Q}, we define a vector based on the points on L as follow:

$$
\mathbf{v}_{L}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)
$$

where:

$$
v_{i}= \begin{cases}1 & \text { if } \mathbf{p}_{i} \text { is a point on } L \\ 0 & \text { otherwise }\end{cases}
$$

We form a $J \times n$ matrix $\mathbf{H}_{\mathbf{Q}}^{(1)}$ whose rows are the incidence vectors of the J lines of the finite geometry \mathbf{Q} and whose columns correspond to the n points of \mathbf{Q}.
$\mathbf{H}_{\mathbf{Q}}^{(1)}$ has four properties :

1. Each row consists of ρ 1's.
2. Each column has γ 1's.
3. No two rows have more than one 1 in common.
4. No two column have more than one 1 in common

The null space of $\mathbf{H}_{\mathbf{Q}}^{(1)}$ gives an LDPC code of length n. This code is called the type $-I$ geometry - \mathbf{Q} LDPC code, denoted by $C_{\mathbf{Q}}^{(1)}$, which has a minimum distance of at least $\gamma+1$.

- The $n \times J$ matrix: $\mathbf{H}_{\mathbf{Q}}^{(2)}$ is transpose of $\mathbf{H}_{\mathbf{Q}}^{(1)}$, denote: $\mathbf{H}_{\mathbf{Q}}^{(2)}=\left[\mathbf{H}_{\mathbf{Q}}^{(1)}\right]^{T}$
- The properties and rank of $\mathbf{H}_{\mathrm{Q}}^{(1)}$ and $\mathbf{H}_{\mathrm{Q}}^{(2)}$ are the same.
- The null space of $\mathbf{H}_{\mathbf{Q}}^{(2)}$ gives an LDPC code of length J with a minimum distance of at least $\rho+1$. This LDPC code is called the type - II geometry - Q LDPC code.

- A type-I EG-LDPC code based on $\operatorname{EG}\left(m, 2^{s}\right)$, we form the parity-checked matrix $\mathbf{H}_{E G}^{(1)}$, whose rows are the incidence vectors of all the lines in $E G\left(m, 2^{s}\right)$ and whose columns correspond to all the points in $\operatorname{EG}\left(m, 2^{s}\right)$. therefore, $\mathbf{H}_{E G}^{(1)}$ consist of

$$
J=\frac{2^{(m-1) s}\left(2^{m s}-1\right)}{2^{s}-1}
$$

consists rows and $n=2^{\text {ms }}$ columns.

- Because each line in $\mathrm{EG}\left(m, 2^{s}\right)$ consists of 2^{s} points, each row of $\mathbf{H}_{E G}^{(1)}$ has weigh $\rho=2^{s}$. Since each poi9nt in $\operatorname{EG}\left(m, 2^{s}\right)$ is interested by $\left(2^{m s}-1\right) /\left(2^{s}-1\right)$ lines, each column of $\mathbf{H}_{E G}^{(1)}$ has weight $\gamma=\left(2^{m s}-1\right) /\left(2^{s}-1\right)$. The density γ of $\mathbf{H}_{E G}^{(1)}$

$$
\gamma=\frac{\rho}{n}=\frac{2^{s}}{2^{m s}}=2^{-(m-1) s}
$$

- For $m \geq 2$ and $s \geq 2, r \leq 1 / 4$ and $\mathbf{H}_{E G}^{(1)}$ is a low-density parity-check matrix. The null space of $\mathbf{H}_{E G}^{(1)}$ hence give an LDPC code of length $n=2^{m s}$, which is called an m-dimensional type-I $(0, s)$ th order EG-LDPC code denoted by $C_{E G}^{(1)}(m, 0, s)$ The minimum distance of this code is lower bounded as follows:

$$
d_{\min } \geq \gamma+1=\frac{2^{m s}-1}{2^{s}-1}+1
$$

- To construct an m-dimensional type-II EG-LDPC code, we take the transpose of $\mathbf{H}_{E G}^{(1)}$, which gives the parity-checked matrix

$$
\mathbf{H}_{E G}^{(2)}=\left[\mathbf{H}_{E G}^{(1)}\right]^{T}
$$

Matrix $\mathbf{H}_{E G}^{(2)}$ consist of $J=2^{m s}$ rows and $n=2^{(m-1) s}\left(2^{m s}-1\right) /\left(2^{s}-1\right)$ columns.

LDPC Codes

- Let α be a primitive element of $G F\left(2^{m s}\right)$, Then
$\alpha^{0}=1, \alpha$, alpha ${ }^{2}, \ldots, \alpha^{2^{m s}-2}$ are all the $2^{m s}-1$ nonorigin points of $\operatorname{EG}\left(m, 2^{s}\right)$. Let

$$
v=\left(v_{0}, v_{1}, \ldots, v_{2^{m s}-2}\right)
$$

be a $\left(2^{m s}-1\right)$-tuple over $G F(2)$ whose components correspond to the $2^{m s}-1$ nonorigin points of $\operatorname{EG}\left(m, 2^{s}\right)$, where v_{i} corresponds to the point α^{j} with $0 \leq i<2^{m s}-1$

- Let L be a line in $\operatorname{EG}\left(m, 2^{s}\right)$, that does not pass through the origin, Based on L, we form ($2^{m s}-1$)-tuple over $\mathrm{GF}(2)$ as follow:

$$
V_{L}=\left(v_{0}, v_{2}, \ldots, v_{2}{ }^{m s}-2\right)
$$

whose i th component

$$
v_{i}= \begin{cases}1 & \text { if } \alpha^{i} \text { is a point on } L \\ 0 & \text { otherwise }\end{cases}
$$

The vector \mathbf{v}_{L} is the incidence vector on the line L.

$$
J_{0}=\frac{\left(2^{(m-1) s}-1\right)\left(2^{m s}-1\right)}{2^{s}-1}
$$

lines in $\mathrm{EG}\left(m, 2^{s}\right.$ that do not pass through the origin.

Let $\mathbf{H}_{E G, c}^{(1)}$ be a matrix whose rows are incidence vectors of all the J_{0} lines in $\mathrm{EG}\left(m, 2^{s}\right)$ and whose columns correspond to the $n=2^{m s}-1$ nonorigin points of $\mathrm{EG}\left(m, 2^{s}\right)$. The matrix has following properties:

1. Each rows has weight $\rho=2^{s}$.
2. Each columns has weight $\gamma=\left(2^{m s}-1\right) /\left(2^{s}-1\right)-1$.
3. No two columns have more than one 1's in common; that is $\lambda=0$ or 1
4. No two rows have more than one 1 in common.

The density of $H_{E G}^{(1)}$ is

$$
r=\frac{2^{s}}{2^{m s}-1}
$$

Again, for $m \geq 2$ and $s \geq 2, r$ is relatively small compared with 1 .
Therefore, $\mathbf{H}_{E G, c}^{(1)}$ is a low-density matrix.

Let α be a primitive element of $G F\left(2^{m s}\right)$. Let h be a nonnegative integer less than $2^{m s}-1$. For a nonnegative integer l, let $h^{(l)}$ be the remainder resulting from dividing $2^{l} h$ by $2^{m s}-1$. Then, $g_{E G, c}^{(1)}(X)$ has α^{h} as a root if and only if

$$
0<\max _{0 \leq l<s} W_{2^{s}}\left(h^{(l)}\right) \leq(m-1)\left(2^{s}-1\right)
$$

where $W_{2^{s}}\left(h^{(l)}\right)$ is the 2^{s}-weight of $h^{(l)}$.
Let h_{0} be the smallest integer that does not satisfy the condition. It can be shown that
$h_{0}=\left(2^{s}-1\right)+\left(2^{s}-1\right) 2^{s}+\cdots+\left(2^{s}-1\right) 2^{(m-3) s}+2^{(m-2) s}+2^{(m-1) s}$ $=2^{(m-1) s}+2^{(m-2) s+1}-1$
Therefore, $\mathrm{g}_{E G, c}^{(1)}(X)$ has following sequence of consecutive powers of

A special subclass of type-I cyclic EG-LDPC code is the class of two-dimensional type-I cyclic $(0, s)$ th-order EG-LDPC codes. $C_{E G, C}^{(1)}(2,0, s)$ has the following parameters:
as roots. It follows from the BCH bound that the $d_{\text {min }}$ of the

Length	$n=2^{2 s}-1$
Number of parity bits	$n-k=3^{s}-1$
Dimension	$k=2^{2 s}-3^{s}$
Minimum distance	$d_{\text {min }}=2^{s}+1$
Density	$r=\frac{2^{s}}{2^{s s}-1}$

Two-dimensional type-I cyclic ($0, \mathrm{~s}$)th-order EG-LDPC codes
The companion code of the m-dimensional type-I $(0, \mathrm{~s})$ th-order EG-LDPC code $C_{E G, C}^{(1)}$ is the null space of the parity-check matrix

$$
\mathbf{H}_{E G, q c}^{(2)}=\left[\mathbf{H}_{E G, c}^{(1)}\right]^{T}
$$

This LDPC code has length

$$
n=J_{0}=\frac{\left(2^{(m-1) s}-1\right)\left(2^{m s}-1\right)}{2^{s}-1}
$$

and a minimum distance $d_{\text {min }}$ of at least $2^{s}+1$. It is not cyclic but can be put in quasicyclic form. We call this code an m-dimensional type-II quasi-cyclic ($0, \mathrm{~s}$)th-order EG-LDPC code, denoted by $C_{E G, q c}^{(2)}(m, 0, s)$.

- To put $C_{E G, q c}^{(2)}(m, 0, s)$ artition the J_{0} incidence vectors of the lines in $\mathrm{EG}\left(\mathrm{m}, 2^{s}\right)$ not pass through origin into $K=\frac{2^{(m-1) s}-1}{2^{s}-1}$ cyclic classes.
- Each of these K cyclic classes contains $2^{m s}-1$ incidence vectors, which are obtained by cyclically shifting any incidence vectors in the class $2^{m s}-1$ times
- The $\left(2^{m s}-1\right) \times \mathrm{K}$ matrix \mathbf{H}_{0} whose K columns are the K
representative incidence vectors of K cyclic class. The
$\mathbf{H}_{\mathbf{E G}, \mathbf{q c}}^{(2)}=\left[\mathbf{H}_{0}, \mathbf{H}_{1} \ldots . . \mathbf{H}_{2^{m s}-2}\right], \mathbf{H}_{i}$ is the a $\left(2^{m s}-1\right) \times \mathrm{K}$ matrix whose columns are the i th downward cyclic shift of the column of \mathbf{H}_{0}.
- The null space of $\mathbf{H}_{\mathbf{E G}, \mathbf{q c}}^{(2)}$ gives the type-II EG-LDPC code $\mathrm{C}_{E G, q c}^{(2)}(\mathrm{m}, 0, \mathrm{~s})$ in quasi-cyclic form.

Let α be a primitive element of $G F\left(2^{(m+1) s}\right)$, which is considered as an extension field of $G F\left(2^{s}\right)$. Let

$$
n=\frac{2^{(m+1) s}-1}{2^{s}-1}
$$

Then, the n elements,

$$
\left(\alpha^{0}\right)\left(\alpha^{1}\right)\left(\alpha^{2}\right), \ldots,\left(\alpha^{n-1}\right)
$$

form an m-dimensional projective geometry over $G F\left(2^{s}\right), P G\left(m, 2^{s}\right)$. The element $\left(\alpha^{0}\right)\left(\alpha^{1}\right)\left(\alpha^{2}\right), \ldots,\left(\alpha^{n-1}\right)$ are the point of $P G\left(m, 2^{s}\right)$. A line in $P G\left(m, 2^{s}\right)$ consists of $2^{s}+1$ points. There are

$$
J=\frac{\left(1+2^{s}+\ldots+2^{m s}\right)\left(1+2^{s}+\ldots+2^{(m-1) s}\right)}{1+2^{s}}
$$

lines in $\mathrm{PG}\left(m, 2^{s}\right)$.

- Every point $\left(\alpha^{i}\right)$ in $\operatorname{PG}\left(m, 2^{s}\right)$ is intersected by

$$
\gamma=\frac{2^{m s}-1}{2^{s}-1}
$$

lines. Two lines in $\mathrm{PG}\left(m, 2^{s}\right)$ are either disjoint or intersect at one and only one point.

- We form a matrix $\mathbf{H}_{\mathbf{P G}}^{(1)}$ whose rows are the incidence vectors of lines in $\mathrm{PG}\left(m, 2^{s}\right)$ and whose columns correspond to the points of $\operatorname{PG}\left(m, 2^{s}\right)$. Then, $\mathbf{H}_{P G}^{(1)}$ has

$$
J=\frac{\left(2^{(m-1) s}+\cdots+2^{s}+1\right)\left(2^{m s}+\cdots+2^{s}+1\right)}{2^{s}+1}
$$

and $n=2^{(m+1) s}-1 / 2^{s}-1$

The code $\mathrm{C}_{P G}^{(1)}(\mathrm{m}, 0, \mathrm{~s})$ is the null space of $\mathbf{H}_{\mathbf{P G}}^{(1)}$ has $d_{\min } \geq \gamma+1$ and it is called m-dimensional type-I $(0, s)$ th order PG-LDPC code.

Specified generator polynomial

Let h be a nonegative integer less than $2^{(m+1) s_{-}} 1$, and $2^{l} h=\mathrm{q}\left(2^{(m+1) s}-1\right)+h^{(l)}$,
α^{h} as roots if and only if $0<\max \mathrm{W}_{2^{s}}\left(h^{(l)}\right) \leqq j\left(2^{s}-1\right)$.
Let $\xi=\alpha^{2^{s}-1}$.The order of ξ is then $\mathrm{n}=\frac{2^{(m+1) s}-1}{2^{s}-1}$.
$\mathrm{g}_{P G}^{(1)}(\mathrm{X})$ has the following consecutive powers of $\xi: \xi, \xi^{2} \ldots . . \xi^{\frac{2^{m s}-1}{2^{s}-1}}$

Special subclass is 2-dimensional type-I cyclic ($0, \mathrm{~s}$)th-order
PG-LDPC code,whose null space is $\mathrm{C}_{P G}^{(1)}(2,0, \mathrm{~s})$ of length $\mathrm{n}=2^{2 s}-1$
$\mathrm{C}_{P G}^{(1)}(2,0, \mathrm{~s})$ has parameter:

Length	$n=2^{2 s}+2^{s}+1$
Number of parity bits	$n-k=3^{s}+1$
Dimension	$k=2^{2 s}+2^{s}-3^{s}$
Minimum distance	$d=2^{s}+2$
Density	$r=\frac{2^{s}+1}{2^{2 s}+2^{s}+1}$

Two-dimensional type-I PG-LDPC codes

s	n	k	$d_{\min }$	ρ	γ	r
2	21	11	6	5	5	0.2381
3	73	45	10	9	9	0.1233
4	273	191	18	17	17	0.0623
5	1057	813	34	33	33	0.0312
6	4161	3431	66	65	65	0.0156
7	16513	14326	130	129	129	0.0078

LDPC Codes

To construct a parity check matrix, to choose an appropriate column weight γ and a appropriate number J rows, J must be close to equal $n-k$. If the rows of \mathbf{H} weight is ρ, the number of 1 is

$$
\gamma \times n=\rho \times(n-k)
$$

If n is divisible by $(n-k)$,

$$
\rho=\frac{\gamma n}{n-k}
$$

this case can be constructed as a regular LDPC code.
If n is not divisible by $(n-k)$,

$$
\gamma \times n=\rho(n-k)+b
$$

b is constant.

CC Lab, EE, NCHU
CC Lab, EE, NCHU

A $n-k$ tuple column \mathbf{h}_{i} has weight γ,and add to partial of the parity check matrix:

$$
\mathbf{H}_{i-1}=\left\{\mathbf{h}_{1}, \mathbf{h}_{i}, \ldots, \mathbf{h}_{i-1}\right\}
$$

There are 3 steps:

1. Chosen \mathbf{h}_{i} at random from the remaining binary $(n-k)$-tuples that are not being used in \mathbf{H}_{i-1} and that were not reject earlier
2. Check whether \mathbf{h}_{i} has more than one 1-component with any column, if it is not go to 3 , reject \mathbf{h}_{i}, go back 1 step.
3. Add \mathbf{h}_{i} to \mathbf{H}_{i-1} form a temporary partial parity check matrix, If all the top b rows weight $\leq \rho+1$ and bottom $(n-k-b)$ rows weight $\leq \rho$,then permanently add \mathbf{h}_{i} to \mathbf{H}_{i-1} to form \mathbf{H}_{i} and go to step 1 continue construction process, else reject \mathbf{h}_{i} and choose a new column.

$$
\gamma \times n=\rho(n-k-b)+b(\rho+1)
$$

Suggest the parity check matrix has two row weights, top b rows weight $=\rho+1$, bottom $(n-k-b)$ rows weight $=\rho$.

An LDPC code can be decoded in various ways namely: Let $\mathbf{y}=\left(y_{0}, y_{1}, \cdots, y_{n-1}\right)$ at at the output of the receiver matched filter. For $0 \leq l \leq n-1$,

- Bit-flipping decoding algorithm $y_{l}= \pm 1+n_{l}$, where n_{l} is a Gaussian random variable with zero
- The sum-product algorithm mean and variance $N_{0} / 2$.
- $\mathbf{z}=\left(z_{0}, z_{1}, \cdots, z_{n-1}\right)$ be the binary hard-decision sequence obtained from textbfy as follow:

$$
z_{l}= \begin{cases}1 & \text { for } y_{l}>0 \\ 0 & \text { for } y_{l} \leq 0\end{cases}
$$

LDPC Codes

A non zero syndrome component s_{j} indicates a parityfailure. The number of parity failure is equal to the number of nonzero syndrome components in s Let

$$
\begin{aligned}
\mathbf{e} & =\left(e_{0}, e_{1}, \cdots, e_{n-1}\right) \\
& =\left(v_{0}, v_{1}, \cdots, v_{n-1}\right)+\left(z_{0}, z_{1}, \cdots, z_{n-1}\right)
\end{aligned}
$$

Then, \mathbf{e} is the error pattern in \mathbf{z}. This error pattern \mathbf{e} and the syndrome s satisfy the condition

$$
\mathbf{s}=\left(s_{1}, s_{2}, \cdots, s_{J}\right)=\mathbf{e} \cdot \mathbf{H}^{T}
$$

where

$$
s_{j}=\mathbf{e} \cdot \mathbf{h}_{j}=\sum_{l=0}^{n-1} e_{l} h_{j, l}
$$

The received vector \mathbf{z} is a codeword if and only if $\mathbf{s}=\mathbf{0}$. If $\mathbf{s} \neq \mathbf{0}$, error in \mathbf{z} are detected

Bit-flipping decoding algorithm

- Bit-flipping decoding was devised by Gallager in 1960 .
- A very simple BF decoding algorithm is given here:

1. Compute the parity-check sum. If all parity-check sums are zero, stop the decoding.
2. Find the number of failed parity-check equations for each bit, denoted by $f_{i}, i=0,1, \ldots, n-1$.
3. Identify the set S of bits for which f_{i} is the largest
4. Flip the bits in the set S
5. Repeat step 1 to 4 until all parity-check sum are zero, or a preset maximum number of iterations is reached

- If preset maximum number of iterations is reached and not all parity-check sum are zero, we may simply declare a decoding failure or decode the unmodified received sequence \mathbf{z} with MLG decoding to obtain a decoded sequence, which may not be a codeword in C
- The parameter δ called threshold, is a design parameter that should be chosen to optimize the error performance while minimizing the number of computations of parity-check sums.
- The value of δ depend on the code parameters $\rho, \gamma, d_{\text {min }}$ and SNR
- If decoding fails for a given value of δ, then the value of δ should be reduced to allow further decoding iterations.

LDPC Codes

The implementation of the sum-product algorithm bases on the computation of the marginal a posteriori probabilities

$$
P\left(v_{l} \mid \mathbf{y}\right)
$$

for $0 \leq l<n$, where \mathbf{y} is the soft-decision received sequence. Then, the LLR for each code bit is given by

$$
L\left(v_{l}\right)=\log \frac{p\left(v_{l}=1 \mid y\right)}{p\left(v_{l}=0 \mid y\right)}
$$

Let $p_{l}^{0}=P\left(v_{l}=0\right)$ and $p_{l}^{1}=P\left(v_{l}=1\right)$ be the prior probabilities of $v_{l}=0$ and $v_{l}=1$.
which is called the sopport of \mathbf{h}_{j}

For $0 \leq l<n, 1 \leq j \leq n$, and each $\mathbf{h}_{j} \in \mathbf{A}_{l}$, let $q_{j, l}^{x,(i)}$ be the conditional probability that the transmitted code bit v_{l} has value x, given the check-sums computed based on the check vectors in A_{l} / \mathbf{h}_{j} at the i th decoding iteration.
For $0 \leq l<n, 1 \leq j \leq n$, and $\mathbf{h}_{j} \in \mathbf{A}_{l}$, let $\sigma_{j, l}^{x,(i)}$ be the conditional probability that the check-sum s_{j} is satisfied (i.e., $s_{j}=0$), given $v_{l}=x(0$ or 1$)$ and the other code bits in $\mathbf{B}\left(\mathbf{h}_{j}\right)$ have a separable distribution $\left\{q_{j, t}^{v_{t},(i)}: t \in B\left(\mathbf{h}_{j}\right) \backslash l\right\}$; that is:

$$
\sigma_{j, l}^{x,(i)}=\sum_{\left\{v_{t}: t \in B\left(\mathbf{h}_{j}\right) \backslash l\right\}} P\left(s_{j}=0 \mid v_{l}=x,\left\{v_{t}: t \in B\left(\mathbf{h}_{j}\right) \backslash l\right\}\right) \cdot \prod_{t \in B\left(\mathbf{h}_{j}\right) \backslash l} q_{j, t}^{v_{t},(i)}
$$

[^13]To computed values of $\sigma_{j, l}^{x,(i)}$, and then used to update the value $q_{j, l}^{x,(i+1)}$ as follows:

$$
q_{j, l}^{x,(i+1)}=\alpha_{j, l}^{(i+1)} \cdot{ }_{l}^{x} \prod_{\mathbf{h}_{t} \in A_{l} \backslash \mathbf{h}_{j}} \sigma_{t, l}^{x,(i)}
$$

where $\alpha_{j, l}^{i+1}$ is chosen such that

$$
q_{j, l}^{0,(i+1)}+q_{j, l}^{1,(i+1)}=1
$$

At the i th step, the pseudo-prior probabilities are given by

$$
P^{i}\left(v_{l}=x \mid y\right)=\alpha_{l}^{(i)} p_{l}^{x} \prod_{\mathbf{h}_{j} \in A_{l}} \sigma_{j, l}^{x,(i-1)}
$$

where α_{l}^{i} is chosen such that $P^{(i)}\left(v_{l}=0 \mid \mathbf{y}\right)+P^{(i)}\left(v_{l}=1 \mid y\right)=1$

LDPC Codes
The sum-product algorithm decoding in terms of probability consist of the following steps :
Initialization: Set $i=0$ and maximum number of iterations to $I_{\max }$ For every pair (j, l) such that $h_{j, l}=1$ with $1 \leq j \leq J$ and $0 \leq l \leq n$, set $q_{j, l}^{0,(0)}=p_{l}^{0}$ and $q_{j, l}^{1,(0)}=p_{l}^{1}$.

1. For $0 \leq l \leq n, 1 \leq j \leq J$, and each $\mathbf{h}_{j} \in A_{l}$, compute the probabilities of $\sigma_{j, l}^{0,(i)}$ and $\sigma_{j, l}^{1,(i)}$. Go to step 2
2. For $0 \leq l \leq n, 1 \leq j \leq J$, and each $\mathbf{h}_{j} \in A_{l}$, compute the values of $q_{j, l}^{0,(i+1)}$ and $q_{j, l}^{1,(i+1)}$ and the values of $P^{(i+1)}\left(v_{l}=0 \mid \mathbf{y}\right)$ and $P^{(i+1)}\left(v_{l}=1 \mid \mathbf{y}\right)$. Form $\mathbf{z}^{(i+1)}$ and test $\mathbf{Z}^{(i+1)} \cdot \mathbf{H}^{T}$. If $\mathbf{Z}^{(i+1)} \cdot \mathbf{H}^{T}=0$ or the maximum iteration number $I_{\max }$ is reached, go to step 3. Otherwise, set $i \doteq i+1$ and go to step 1 .
3. Output $z^{(i+1)}$ as the decoded codeword and stop the decoding process

[^0]: CC Lab, EE, NCHU

[^1]: CC Lab, EE, NCHU

[^2]: CC Lab, EE, NCHU

[^3]: CC Lab, EE, NCHU

[^4]: CC Lab, EE, NCHU

[^5]: CC Lab, EE, NCHU

[^6]: CC Lab, EE, NCHU

[^7]: ${ }^{\text {a }}$ The parameter ρ_{i} is the dimension of the state space $\sum_{i}(C)$.
 ${ }^{\mathrm{b}}$ The set A_{i}^{s} is called the state defining information set at time- i

[^8]: Theorem can be applied repeatedly until either the desired level of decompo-
 ${ }^{a}$ sition is achieved or no row in the generator matrix can be found to satisfy
 the condition in Theorem.

[^9]: The forward and backward recursions do not interact

[^10]: Benedetto, S., and Montorsi, G., "Unveiling Turbo Codes: Some Results on b Parallel Concatenated Coding Schemes," IEEE Transactions on Information Theory, Vol. 42, No. 2, pp. 409-428, March 1996.
 Berrou, C., and Glavieux, A., "Near Optimum Error Correcting Coding and Decoding: Turbo-Codes," IEEE Transactions on Communications, Vol. 44, No. 10, pp. 1261-1271, Oct. 10, 1996.

[^11]: ${ }^{a}$ The second encoder may or may not be transmitted

[^12]: CC Lab, EE, NCHU

[^13]: CC Lab, EE, NCHU

