Convolutional Codes

Communication and Coding Laboratory

Dept. of Electrical Engineering,
National Chung Hsing University

Chapter 7: Convolutional Codes

1. Preview of convolutional codes
2. Shift register representation
3. Scalar generator matrix in the time domain
4. Impulse response of MIMO LTI system
5. Polynomial generator matrix in the frequency domain
6. State diagram, tree, and trellis
7. Construction of minimal trellis
8. The algebraic theory of convolutional codes
9. Free distance and path enumerator
10. Termination, truncation, tailbiting, and puncturing
11. Optimal decoding: Viterbi and BCJR decoding
12. Suboptimal decoding: sequential and threshold decoding

Reference

1. Lin, Error control coding: chapter 11, 12, and 13
2. Johannesson, Fundamentals of convolutional coding
3. Lee, Convolutional coding
4. Dholakis, Introduction to convolutional codes
5. Adamek, Foundation of coding: chapter 14
6. Wicker, Error control systems for digital communication: chapter 11 and 12
7. Reed, Error Control coding for data networks: chapter 8
8. Blahut, Algebraic codes for data transmission: chapter 9
Convolutional Codes

- Block codes and convolutional codes are two major classes of codes for error correction.
- From a viewpoint, convolutional codes differ from block codes in that the encoder contains memory.
- For convolutional codes, the encoder outputs at any given time unit depend not only on the inputs at that time unit but also on some number of previous inputs:
  \[ v_t = f(u_{t-m}, \ldots, u_{t-1}, u_t), \]
  where \( v_t \in F_2^n \) and \( u_t \in F_2^k \).
- A rate \( R = \frac{k}{n} \) convolutional encoder with memory order \( m \) can be realized as a \( k \)-input, \( n \)-output linear sequential circuit with input memory \( m \).

Convolutional Codes

- Convolutional codes were first introduced by Elias in 1955.
- The information and codewords of convolutional codes are of infinite length, and therefore they are mostly referred to as information and code sequence.
- In practice, we have to truncate the convolutional codes by zero-biting, tailbiting, or puncturing.
- There are several methods to describe a convolutional code:
  2. MIMO LTI system: impulse response encoder.
  3. Algebraic description: scalar \( G \) matrix in time domain.
  4. Algebraic description: polynomial \( G \) matrix in \( Z \) domain.
  5. Combinatorial description: state diagram and trellis.

Convolutional Codes

We emphasize differences among the terms: code, generator matrix, and encoder.
1. Code: the set of all code sequences that can be created with a linear mapping.
2. Generator matrix: a rule for mapping information to code sequences.
3. Encoder: the realization of a generator matrix as a digital LTI system.
For example, one convolutional code can be generated by several different generator matrices and each generator matrix can be realized by a different encoder, e.g., controllable and observable encoders.

Summary

- \( \cdots u(i-1)u(i)\cdots \longrightarrow \text{Encoding} \rightarrow \cdots c(i-1)c(i)\cdots \)
  \( u(i) = (u_1(i), \ldots, u_k(i)), \ c(i) = (c_1(i), \ldots, c_n(i)) \)
- \( u(D) = \sum_i u(i)D^i \longrightarrow G(D) \rightarrow c(D) = \sum_i c(i)D^i \)
- \( c(D) = u(D)G(D) \)
- There are two types of codes in general
  - Block codes: \( G(D) = G \implies c(i) = u(i)G \)
  - Convolutional codes: \( G(D) = G_0 + G_1D + \cdots + G_mD^m \)
    \( \implies c(i) = u(i)G_0 + u(i-1)G_1 + \cdots u(i-m)G_m \)
Convolutional Codes

Figure 1: Encoder of block codes

\[ u(i) \xrightarrow{G} c(i) \]

Figure 2: Encoder of convolutional codes

\[ \begin{array}{c}
\text{D} \\
\text{D} \\
\text{D} \\
\text{D} \\
\hline
\text{G}_0 \\
\text{G}_1 \\
\text{G}_{M-1} \\
\hline
\end{array} \]

\[ u(i) \quad u(i-1) \quad \ldots \quad u(i-M) \]

\[ \uparrow \]

\[ c(i) \]

Shift register representation

Convolutional Codes

Figure 3: Encoder of block codes

- Use combinatorial logic to implement block codes.
- A information block \( u(i) \) of length \( k \) at time \( i \) is mapped to a codeword \( c(i) \) of length \( n \) at time \( i \) by a \( k \times n \) generator matrix for each \( i \), i.e., no memory.

\[ c(i) = u(i) \cdot G \]

- We denote this linear block code by \( C[n, k] \), usually, \( n \) and \( k \) are large.

Convolutional Codes

Figure 4: Encoder of convolutional codes

- Use sequential logic to implement convolutional codes.
- A information sequence \( u \) of infinite length is mapped to a codeword \( v \) of infinite length. In practice, we will output the convolutional codes by termination, truncation, or tailbiting.
• Assume we use feed forward encoder with memory \( m \), then the codeword \( c(i) \) of length \( n \) at time \( i \) is dependent on the current input \( u(i) \) and previous \( m \) inputs, \( u(i-1), \cdots, u(i-m) \).

• We need \( m + 1 \) matrices \( G_0, G_1, \cdots, G_m \) of size \( k \times n \):
  \[
  c(i) = u(i)G_0 + u(i-1)G_1 + u(i-2)G_2 + \cdots + u(i-m)G_m
  \]

• We denote this (linear) convolutional code by \( C[n, k, m] \), usually, \( n \) and \( k \) are small.

---

Relation between block and convolutional codes

• A Convolutional code maps information blocks of length \( k \) to code blocks of length \( n \). This linear mapping contains memory, because the code block depends on \( m \) previous information blocks.

• In this sense, block codes are a special case of convolutional codes, i.e., convolutional codes without memory.

---

• In practical application, convolutional codes have code sequences of finite length. When looking at the finite generator matrix of the created code in time domain, we find that it has a special structure.

• Because the generator matrix of a block code with corresponding dimension generally does not have a special structure, convolutional codes with finite length can be considered as a special case of block codes.

• The trellis structure of convolutional codes is time-invariant, but the trellis structure of block codes is usually time-varying.

---

Scalar generator matrix in the time domain
• Here, we assume that the initial values in the $m$ memories are all set to zeros.

• For example, the scalar matrix shows that

$$c(0) = u(0)G_0 + u(-1)G_1 + u(-2)G_2 + \cdots + u(-m)G_m$$

$$= u(0)G_0$$

since $u(-1) = u(-2) = \cdots u(-m) = 0$.

• Similarly

$$c(1) = u(1)G_0 + u(0)G_1 + u(-1)G_2 + \cdots + u(-m+1)G_m$$

$$= u(1)G_0 + u(0)G_1.$$

• In general, we have

$$c(i) = u(i)G_0 + u(i-1)G_1 + u(i-2)G_2 + \cdots + u(i-m)G_m$$

$$= u(i) \otimes G_i.$$
From the scalar \(G\) matrix representation, we have
\[
c(i) = u(i)G_0 + u(i - 1)G_1 + u(i - 2)G_2 + \cdots + u(i - m)G_m
= u(i) \otimes G_i
\]
This is the form of discrete time convolutional sum, i.e., the output \(c(i)\) is the convolutional sum of input sequence \(u(i)\) and the finite impulse response (FIR) \((G_0, \cdots, G_m)\).

In the undergraduate course of signal and system, we deal with SISO.

Here, we have MIMO LTI systems with \(k\) inputs and \(n\) outputs and thus we need \(k \times n\) impulse responses
\[
g_i^{(j)}(l) = g_i(l), \quad 0 \leq l \leq m, \quad 1 \leq i \leq k, \quad 1 \leq j \leq n,
\]
which can be obtained from \(m + 1\) matrices \(\{G_0, \cdots, G_M\}\).

Correspondingly, we can associate each \(g_i^{(j)}(l)\) with its Fourier transform \(G_i^{(j)}(D)\) and form a \(k \times n\) matrix \(G(D)\) by
\[
G(D) = [G_i^{(j)}(D)] = G_0 + G_1D + G_2D^2 + \cdots + G_mD^m
\]
This is the polynomial matrix representation of a convolutional code.

The \(k \times n\) matrix \(g(l)\) consisting of impulse responses \(g_i^{(j)}(l)\) and the \(k \times n\) matrix \(G(D)\) consisting of \(G_i^{(j)}(D)\) form a Fourier pair.

Example

A \((3, 2)\) convolutional code with impulse response \(g(l)\) and transfer function \(G(D)\):
\[
g(l) = \begin{pmatrix} 110 & 111 & 100 \\ 010 & 101 & 111 \end{pmatrix}
G(D) = \begin{pmatrix} 1 + D & 1 + D + D^2 & 1 \\ D & 1 + D^2 & 1 + D + D^2 \end{pmatrix}
\]

LTI system representation

Let us use \(u_i, c_i\) (instead of \(u(i), c(i)\)) to denote the information sequence, code sequence respectively, at time \(i\).

I.e., the infinite information and code sequence is
\[
\begin{align*}
u &= u_0u_1u_2 \cdots u_i \cdots \\
v &= v_0v_1v_2 \cdots v_i \cdots
\end{align*}
\]
The \(u_i\) consists of \(k\) bits and \(v_i\) consists of \(n\) bits denoted by
\[
\begin{align*}
u_i &= u_i^{(1)}u_i^{(2)}u_i^{(3)} \cdots u_i^{(k)} \\
v_i &= v_i^{(1)}v_i^{(2)}v_i^{(3)} \cdots v_i^{(n)}
\end{align*}
\]
• Define the input sequence due to the $i^{th}$ stream, $1 \leq i \leq k$, as
  
  \[ u^{(i)} = u_0^{(i)} u_1^{(i)} u_2^{(i)} u_3^{(i)} \ldots \]
  
  and the output sequence due to the $j^{th}$ stream, $1 \leq j \leq n$, as
  
  \[ v^{(j)} = v_0^{(j)} v_1^{(j)} v_2^{(j)} v_3^{(j)} \ldots \]

• A $[n, k, m]$ convolutional code can be represented as a MIMO LTI system with $k$ input streams
  
  \[(u^{(1)}, u^{(2)}, \ldots, u^{(k)}) ,\]
  
  and $n$ output streams
  
  \[(v^{(1)}, v^{(2)}, \ldots, v^{(n)}) ,\]

  and a $k \times n$ impulse response matrix $g(l) = \{g_i^{(j)}(l)\}$.

• The $j^{th}$ of the $n$ output sequence $v^{(j)}$ is obtained by convolving the input sequence with the corresponding system impulse response
  
  \[ v^{(j)} = u^{(1)} \otimes g^{(j)}_1 + u^{(2)} \otimes g^{(j)}_2 + \cdots + u^{(k)} \otimes g^{(j)}_k = \sum_{i=1}^{k} u^{(i)} \otimes g^{(j)}_i \]

• This is the origin of the name convolutional code.

• The impulse response $g^{(i)}_i$ of the $i^{th}$ input with the response to the $j^{th}$ output is found by stimulating the encoder with the discrete impulse $(1000 \cdots)$ at the $i^{th}$ input and by observing the $j^{th}$ output when all other inputs are set to $(0000 \cdots)$.

Now introduce the delay operator $D$ in the representation of input sequence, output sequence, and impulse response, i.e.,

1. Use $z$ transform

  \[ u^{(i)} = u_0^{(i)} u_1^{(i)} u_2^{(i)} u_3^{(i)} \ldots \quad \leftrightarrow \quad U_i(D) = \sum_{t=0}^{\infty} u_t^{(i)} D^t \]

  \[ v^{(j)} = v_0^{(j)} v_1^{(j)} v_2^{(j)} v_3^{(j)} \ldots \quad \leftrightarrow \quad V_i(D) = \sum_{t=0}^{\infty} v_t^{(j)} D^t \]

  \[ g_i^{(j)} = (g_i^{(j)}(0), \ldots, g_i^{(j)}(m)) \quad \leftrightarrow \quad G_i^{(j)}(D) = \sum_{l=0}^{m} g_i^{(j)}(l) D^l \]

2. $z \{u \ast g\} = U(D) G(D) = V(D)$

3. $V_j(D) = \sum_{i=1}^{k} U_i(D) \cdot G_i^{(j)}(D)$
We thus have
\[ V(D) = U(D) \cdot G(D) \]
where
\[
U(D) = (U_1(D), U_2(D), \ldots, U_k(D))
\]
\[
V(D) = (V_1(D), V_2(D), \ldots, V_n(D))
\]
\[
G(D) = \begin{pmatrix}
G_1^{(1)}(D) \\
G_2^{(2)}(D)
\end{pmatrix}
\]

Example 1

Figure 5: (2,1,2) convolutional code encoder

Example 2

Figure 6: (3,2,2) convolutional code encoder

Input: \( u = (1, 1, 1, 0, 1) \) in time domain
In z domain:
\[
G_1^{(1)}(D) = 1 + D + D^2
\]
\[
G_2^{(2)}(D) = 1 + D^2
\]
\[
G(D) = [1 + D + D^2, 1 + D^2]
\]
\[
U(D) = 1 + D + D^2 + D^4
\]
\[
V(D) = U(D) \cdot G(D)
\]
\[
V_1(D) = 1 + D^2 + D^5 + D^6
\]
\[
V_2(D) = 1 + D + D^3 + D^6
\]
In time domain:
\[
v_1 = (1, 0, 1, 0, 1, 1)
\]
\[
v_2 = (1, 1, 0, 1, 0, 1)
\]
\[
\begin{align*}
V_1(D) &= U_1(D) \\
V_2(D) &= U_2(D) \\
V_3(D) &= U_1(D) \cdot D + U_2(D) \cdot (D + D^2) \\
\begin{bmatrix} V_1(D) & V_2(D) & V_3(D) \end{bmatrix} &= \begin{bmatrix} U_1(D) & U_2(D) \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & D \\
0 & 1 & D + D^2 \end{bmatrix} \\
G_1(D) &= \begin{bmatrix} 1 & 0 & D \\
0 & 1 & D + D^2 \end{bmatrix} \\
U_1 &= 1 \\
U_2 &= 1 + D \\
V &= \begin{bmatrix} 1 & 1 + D \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & D \\
0 & 1 & D + D^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 + D & D^3 \end{bmatrix} \\
v_1 &= (1, 0, 0, 0) \\
v_2 &= (1, 1, 0, 0) \\
v_3 &= (0, 0, 0, 1)
\end{align*}
\]
**Code Tree of Convolutional code**

- 一個 (n,k,m) Convolutional code 的 codeword 可視為 code tree 上面的一個路徑。
- 輸入的長度為 h，code tree 會有 (h + m + 1) 個 level，最左邊的 node (level 0) 稱為 origin node。
- 在最先的 h levels，每個 node 存在 2^k 個 branch，位在 level (h+m)，最右邊的那 2^{hk} 個 nodes，稱為 terminal nodes。
- 從 origin node 到 terminal 的路徑稱為 code path，可用來表示一個 codeword。

**Trellises of Convolutional code**

- 將 code tree 上的 node，有結構性的合併在相同的 state，稱為 Convolutional code 的 code trellis。
- 對於一 (n,k,m) 的 Convolutional code，state 的數量在 level m 為 2^K，當 K = ∑_{j=1}^{K} K_j，K_j 為第 j 個輸入的長度，在此 level 上，存在 2^K 個 nodes。
- terminal node 只有一點，且會回到最初的狀態。
- 從 origin node 到 terminal node 的路徑，可用來表示一個 codeword。
Structural properties of Convolutional codes

Convolutional encoder is a linear sequential circuit, its operation can be described by a state diagram. The state of an encoder is defined as its shift register contents.

For an \((n,k,v)\) encoder

The encoder state \(\sigma_l\) at time unit \(l\) is the binary \(v\)-tuple

\[
\sigma_l = (s^{(1)}_{l-1}s^{(1)}_{l-2}\cdots s^{(1)}_{l-v}s^{(2)}_{l-1}s^{(2)}_{l-2}\cdots s^{(2)}_{l-v}\cdots s^{(k)}_{l-1}s^{(k)}_{l-2}\cdots s^{(k)}_{l-v})
\]

Each branch in the state diagram is labeled with the \(k\) inputs

\((u^{(1)}_l, u^{(2)}_l, \ldots, u^{(k)}_l)\)

causing the transition and the \(n\) corresponding output

\((v^{(1)}_l, v^{(2)}_l, \ldots, v^{(n-1)}_l)\)

\((2,1,3)\) encoder

State diagrams for \((2,1,3)\) encoder
Consider an \((n, k, m, d)\) Convolutional code. The trellis is principle infinite, but it has a very regular structure, consisting (after a short initial transient) of repeated copies of what we shall call the trellis module associated with \(G(D)\).

- The trellis module consists of \(2^m\) initial state and \(2^m\) final states, with each initial state being connected by a directed edge to exactly \(2^k\) final state. Thus the trellis module has \(2^{k+m}\) edge.
- Each edge is label with an \(n\)-symbol binary vector, namely the output produced by the encoder in response to the given state transition.
- Each edge has length \(n\), so the total edge length of the Convolutional trellis module is \(n \cdot 2^{k+m}\).
- Conventional trellis complexity of the trellis module can be defined as
  \[
  \frac{n}{k} \cdot 2^{m+k}
  \]

Ex: The \((3, 2, 2)\) Convolutional code with canonical generator matrix given by

\[
G_1(D) = \begin{pmatrix}
1 + D & 1 + D & 1 \\
D & 0 & 1 + D
\end{pmatrix}
\]
The total number of edge symbol is
\[ 3 \cdot 2^{2+2} = 48 \]
so that the Convolutional trellis complexity corresponding to the matrix \( G_1(D) \) is \( 48/2 = 24 \) symbols per bits.

We can do substantially better than this, if we use the punctured Convolutional code.

- Begin with a \((N, 1, m)\) Convolutional code, and block it to depth \( k \), i.e., group the input bit stream into blocks of \( k \) bits each, the result is an \((Nk, k, m)\) Convolutional code
- Delete, or puncture, all but \( n \) symbols form each \( Nk \)-symbol output block, the result is an \((n, k, m)\) Convolutional code.

The punctured code can be represented by a trellis whose trellis module is built from \( k \) copies of the trellis module from the parent \((N, 1, m)\) code, each of which has only \( 2^{m+1} \) symbols.

The total number of symbols on the trellis module is \( n \cdot 2^{m+1} \)
- the trellis complexity of an \((n, k, m)\) punctured code is
  \[ \frac{n}{k} \cdot 2^{m+1} \]
  which is a factor of \( 2^{k-1} \) smaller than the complexity of the conventional trellis.

Ex: The \((2, 1, 2, 5)\) Convolutional code defined by the canonical generator matrix
\[
G_2(D) = \begin{pmatrix} 1 + D + D^2 & 1 + D^2 \end{pmatrix}
\]
The trellis module:
If $G(D)$ is a canonical generator matrix for an $(n, k, m)$ Convolutional code $C$, then we can write $G(D)$ in the form

$$G(D) = G_0 + G_1 D + \cdots + G_L D^L$$

where $G_0, \ldots, G_L$ are $k \times n$ scalar matrices, and $L$ is the maximum degree of any entry of $G(D)$. The integer $L$ is called the memory of the code.

If we concatenate the $L + 1$ matrices $G_0 G_1 \cdots G_L$, we obtain a $k \times (L + 1)n$ scalar matrix

$$\tilde{G} = (G_0 G_1 \cdots G_L)$$

and its shifts can build a scalar generator matrix $G_{\text{scalar}}$ for the code $C$

$$G_{\text{scalar}} = \begin{pmatrix} G_0 & G_1 & G_2 \\ G_0 & G_1 & G_2 \\ \vdots & \vdots & \vdots \end{pmatrix}$$
The trellis module for the trellis associated with $G_{scalar}$ corresponds to the $(L + 1)k \times n$ matrix module

$$
\hat{G} = \begin{pmatrix}
G_L \\
G_{L-1} \\
\vdots \\
G_0
\end{pmatrix}
$$

which repeatedly appears as a vertical slice in $G_{scalar}$.

It is easy to show that the number of edge symbols in this trellis module is

$$\text{edge symbol count} = \sum_{j=1}^{n} 2^{a_j}$$

where $a_j$ is the number of active entries in the $j$th column of the matrix $\hat{G}$.

EX: consider the $(3,2,1)$ code with generator matrix

$$
G_3(D) = \begin{pmatrix}
1 & 0 & 1 \\
1 & 1 + D & 1 + D
\end{pmatrix}
$$

The scalar matrix $\tilde{G}_3$ corresponding to $G_3(D)$ is

$$
\tilde{G}_3 = \begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1
\end{pmatrix}
$$

The corresponding trellis module has $2^{3} + 2^{3} + 2^{3} = 24$ edge symbols. The resulting trellis complexity is $24/2 = 12$ symbols per bits.
If we add the first row of $G_3(D)$ to the second row, the resulting generator matrix, which is still canonical is

$$G'_3(D) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 + D & D \end{pmatrix}$$

The scalar matrix $\tilde{G}'_3$ corresponding to $G'_3(D)$ is

$$\tilde{G}'_3 = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

But we can do it still better. If we multiply the first row of $G'_3(D)$ by $D$ and add it to the second row, the resulting generator matrix, which is still canonical is

$$G''_3(D) = \begin{pmatrix} 1 & 0 & 1 \\ D & 1 + D & 0 \end{pmatrix}$$

The scalar matrix $\tilde{G}''_3$ corresponding to $G''_3(D)$ is

$$\tilde{G}''_3 = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \end{pmatrix}$$

The matrix module corresponding to $\tilde{G}'_3$ is

$$\hat{G}'_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Thus $a_1 = 2$, $a_2 = 3$, and $a_3 = 3$

The corresponding trellis module has $2^2 + 2^3 + 2^3 = 20$ edge symbols

The resulting trellis complexity is $20/2 = 12$ symbols per bits

The matrix module corresponding to $\tilde{G}''_3$ is

$$\hat{G}''_3 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Thus $a_1 = 2$, $a_2 = 3$, and $a_3 = 2$

The corresponding trellis module has $2^2 + 2^3 + 2^2 = 16$ edge symbols

The resulting trellis complexity is $16/2 = 8$ symbols per bits
In this sample, the ratio of the Convolutional trellis complexity to the minimal trellis complexity is $12/8 = 3/2$.

If this code were punctured, the ratio would be at least 2.

It is easy to see that there is no generator matrix for this code with spanlength less than 7, so that the trellis module shown below yields the minimal trellis for the code.

Alternatively, we can examine the scalar generator matrix for the code corresponding to $G_{3}^{\prime}$

\[
G_{\text{scalar}} = \begin{pmatrix}
1 & 0 & T & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & T & 0 \\
1 & 0 & T & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & T & 0 \\
1 & 0 & T & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & T & 0 \\
\vdots
\end{pmatrix}
\]

we see that the $G_{\text{scalar}}$ has the property that no column contains more than one underline entry, or more than one overline entry. Thus $G_{\text{scalar}}$ has the LR property.

$G_{\text{scalar}}$ is infinite, we can define the $Mth$ truncation of the code $C$, denoted by $C^{[M]}$, as the $[(M + L)n, MK]$ block code.

\[
G_{\text{scalar}}^{[M]} = \begin{pmatrix}
1 & 0 & T & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & T & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & T & 0 \\
1 & 0 & T & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & T & 0 \\
\vdots
\end{pmatrix}
\]
EX: $M = 3$ truncation, with corresponding scalar matrix

$$G_{\text{scalar}}^{[3]} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \end{pmatrix}$$

This is the generator matrix for a $[12,6]$ block code. The trellis of $G_{\text{scalar}}^{[3]}$ is shown below.

This trellis consists of two copies of the minimal trellis module of $G_{\text{scalar}}^{[3]}(D)$, glued together, plus initial and final transient sections.

Generator matrix $G(D)$ produces a minimal trellis if and only if $G(D)$ has the property that the spanlength of the corresponding $G$ cannot be reduced by an operation of the form

$$g_i(D) \leftarrow g_i(D) + D^l g_j(D)$$

Where $g_i(D)$ is the $i$th row of $G(D)$, and $l$ is an integer in the range $0 \leq l \leq L$.

The algebraic theory of Convolutional codes...
Abstract

We defined in \((n, k)\) Convolutional code \(C\) to be a \(k\)-dimensional subspace of \(F(D)^n\), and a generator matrix of \(C\) to be a \(k \times n\) matrix over \(F(D)\), whose rowspace is \(C\). We will discuss the various kinds of generator matrices that a Convolutional code can have, and settle on the canonical polynomial generator matrices as the preferred kind.

- **PGM:** If the entries of \(G(D)\) are polynomials, then \(G(D)\) is called a polynomial generator matrix.

- Any Convolutional code has a polynomial generator matrix, since if \(G\) is an arbitrary generator matrix for \(C\), the matrix obtained from \(G\) by multiplying each row by the least common multiple of the denominators of the entries in that row is a PGM for \(C\).

- **DEFINITION.** A \(k \times n\) polynomial matrix \(G(D)\) is called basic if, among all polynomial matrices of the form \(T(D)G(D)\), where \(T(D)\) is a nonsingular \(k \times k\) matrix over \(F(D)\), it has the minimum possible internal degree.

- **DEFINITION.** A \(k \times n\) polynomial matrix \(G(D)\) is called reduced if, among all polynomial matrices of the form \(T(D)G(D)\), where \(T(D)\) is unimodular, \(G(D)\) has the minimum possible external degree. Since any unimodular matrix is a product of elementary matrices, an equivalent definition is that a matrix is reduced if its external degree cannot be reduced by a sequence of elementary row operations.

Let \(G(D) = (g_{ij}(D))\) be a \(k \times n\) PGM for \(C\). We now define the internal degree and external degree of \(G(D)\) as follows:

- \(\text{intdeg } G(D) = \text{maximum degree of } G(D)\text{'s } k \times k\text{ minors.}\)
- \(\text{extdeg } G(D) = \text{sum of the row degrees of } G(D).\)

The following two definitions will be essential in our discussion of Convolutional codes.
• **THEOREM.** Let $G(D)$ be a $k \times n$ polynomial matrix.

1. If $T(D)$ is any nonsingular $k \times k$ polynomial matrix, then
   \[
   \text{intdeg} T(D) G(D) = \text{intdeg} G(D) + \deg \det T(D)
   \]
   In particular, $\text{indeg} T(D) G(D) \geq \text{indeg} G(D)$, with equality if and only if $T(D)$ is unimodular.

2. $\text{intdeg} G(D) \leq \text{extdeg} G(D)$.

• **THEOREM.** A $k \times n$ polynomial matrix $G(D)$ is basic if and only if any one of the following six conditions is satisfied.

1. The invariant factors of $G(D)$ are all 1.
2. The gcd of the $k \times k$ minors of $G(D)$ is 1.
3. $G(\alpha)$ has rank $k$ for any $\alpha$ in the algebraic closure of $F$.
4. $G(D)$ has a right $F[D]$ inverse, i.e. there exists an $n \times k$ polynomial matrix $H(D)$ such that $G(D) H(D) = I_k$.
5. If $x(D) = u(D) G(D)$, and if $x(D) \in F[D]^n$, then $u(D) \in F[D]^k$.
6. $G(D)$ is a submatrix of a unimodular matrix, i.e. there a $(n-k) \times n$ matrix $L(D)$ such that the determinant of the $n \times n$ matrix $(G(D) L(D))$ is a nonzeros element of $F$.

• **THEOREM.** A $k \times n$ polynomial matrix $G(D)$ is reduced if and only if any one of the following three conditions is satisfied.

1. If we define the "indicator matrix for the highest-degree terms in each row" $\overline{G}$ by
   \[
   \overline{G}_{ij} = \text{coeff}_{D^{e_i}} g_{ij}(D)
   \]
   where $e_i$ is the degree of $G(D)$’s $i$-th row, then $\overline{G}$ has rank $k$.

2. $\text{extdeg} G(D) = \text{intdeg} G(D)$

3. The "predictable degree property": For any $k$-dimensional polynomial vector, i.e. any $u(D) = (u_1(D), \ldots, u_k(D)) \in F[D]^k$
   \[
   \deg(u(D) G(D)) = \max_{1 \leq i \leq k} (\deg u_i(D) + \deg g_i(D))
   \]

**EXAMPLE.** Here are eight generator matrices for a $(4, 2)$ Convolutional code over $GF(2)$.

1. $G_1 = \begin{bmatrix}
\frac{1}{1+D+D^2} & 1 & \frac{1+D^2}{1+D+D^2} & \frac{1+D}{1+D+D^2}
\end{bmatrix}
\]
   Basic× Reduced× intdeg× extdeg×

2. $G_2 = \begin{bmatrix}
1 & 1+D+D^2 & 1+D^2 & 1+D
\end{bmatrix}
\]
   Basic× Reduced× intdeg3 extdeg4
3. \[ G_3 = \begin{bmatrix} 1 & 1 + D + D^2 & 1 + D^2 & 1 + D \\ 0 & 1 + D & D & 1 \end{bmatrix} \]

Basic ✓ Reduced × intdeg 1 extdeg 3

4. \[ G_4 = \begin{bmatrix} 1 & D & 1 + D & 0 \\ 0 & 1 + D & D & 1 \end{bmatrix} \]

Basic ✓ Reduced × intdeg 1 extdeg 2

5. \[ G_5 = \begin{bmatrix} 1 + D & 0 & 1 & D \\ D & 1 + D + D^2 & D^2 & 1 \end{bmatrix} \]

Basic × Reduced ✓ intdeg 3 extdeg 3

6. \[ G_6 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 + D & D & 1 \end{bmatrix} \]

Basic ✓ Reduced ✓ intdeg 1 extdeg 1

**DEFINITION.** Among all PGM's for a given Convolutional code \( C \), those for which the external degree is as small as possible are called canonical PGM's. This minimal external degree is called the degree of the code \( C \), and denoted \( \text{deg } C \).

**THEOREM.** A PGM \( G(D) \) for the Convolutional code \( C \) is canonical if and only if it is both basic and reduced.

**COROLLARY.** The minimal internal degree of any PGM for a given convolution code \( C \) is equal to the degree of \( C \).
• **COROLLARY.** If $G$ is any basic generator matrix for $C$ then \( \text{intdeg}G = \deg C \).

• **THEOREM.** If $e_1 \leq e_2 \leq \ldots \leq e_k$ are the row degrees of a canonical generator matrix $G(D)$ for a Convolutional code $C$, and if $f_1 \leq f_2 \leq \ldots \leq f_k$ are the row degrees of any other polynomial generator matrix, say $G'(D)$, for $C$, then $e_i \leq f_i$, for $i = 1, \ldots, k$.

• **THEOREM.** The set of row degrees is the same for all canonical PGM’s for a given code.

• Where $(e_1 \leq e_2 \leq \ldots \leq e_k)$ are called the **Forney indices** of the code.

• **The maximum of the Forney indices** is called the **memory** of the code.

• An $(n, k, m)$ code is called **optimal** if it has the maximum possible free distance among all codes with the same value of $n, k$ and $m$.

• **EXAMPLE**

1. \[ G_6 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 + D & D & 1 \end{bmatrix} \]

   Basic\(\checkmark\) Reduced\(\checkmark\) intdeg 1  extdeg 1

   Forney indices are (0,1)

---

• **The Smith form**

• The goal of the Smith algorithm (form), which is often called the **invariant-factor algorithm**, is to take an arbitrary $k \times n$ matrix $G$ (with $k \leq n$) over a Euclidean domain $R$, and by a sequence of elementary row and column operations, to reduce $G$ to a $k \times n$ diagonal matrix $\Gamma = \text{diag}(\gamma_1, \ldots, \gamma_r)$, whose diagonal entries are the invariant factors of $G$, i.e. \( \gamma_i = \Delta_i / \Delta_{i-1} \), where $\Delta_i$ is the gcd of the $i \times i$ minors of $G$. (We take $\Delta_0 = 1$ by convention)

• **Theorem:** Let $G(D)$ be a $b \times c$, $b \leq c$, binary polynomial matrix (i.e., $G(D)=\{g_{ij}(D)\}$, where $g_{ij}(D) \in \mathbb{F}_2[D]$, $1 \leq i \leq b$, $1 \leq j \leq c$) of rank $r$. Then $G(D)$ can be written in the following manner:

\[ G(D) = A(D)\Gamma(D)B(D) \]

where $A(D)$ and $B(D)$ are $b \times b$ and $c \times c$, respectively, binary polynomial matrices with unit determinants,
and where \( \Gamma(D) \) is the \( b \times c \) matrix

\[
\Gamma(D) = \begin{bmatrix}
\gamma_1(D) & \gamma_2(D) & \cdots & \gamma_r(D) \\
0 & \gamma_1(D) & \cdots & 0 \\
& \ddots & \ddots & \ddots \\
& & \ddots & \ddots & \ddots \\
\end{bmatrix}
\]

which is called the smith form of \( G(D) \), and whose nonzero elements \( \gamma_i(D) \in F_2[D] \), \( 1 \leq i \leq r \), called the invariant-factors of \( G(D) \), are unique polynomials that satisfy

\[
\gamma_i(D) | \gamma_{i+1}(D), \ i = 1, 2, \ldots, r - 1
\]

Moreover, if we let \( \Delta_i(D) \in F_2[D] \) be the determinantal divisor of \( G(D) \), that is, the greatest common divisor (gcd) of the \( i \times i \) subdeterminants (minors) of \( G(D) \), then

\[
\gamma_i(D) = \frac{\Delta_i(D)}{\Delta_{i-1}(D)}
\]

where \( \Delta_0(D) = 1 \) by convention and \( i = 1, 2, \ldots, r \).

- Two types of elementary operations:
  - Type I
    The interchange of two rows (or two columns).
  - Type II
    The addition to all elements in one row (or column) of the corresponding elements in another row (or column) multiplied by a fixed polynomial in \( D \).

Example: To obtain the Smith form of the polynomial encoder illustrated in Figure 1 we start with its encoding matrix.

Figure 11: A rate \( R = 2/3 \) Convolutional encoder.
\[
G(D) = \begin{bmatrix}
1 + D & D & 1 \\
D^2 & 1 & 1 + D + D^2
\end{bmatrix}
\]

and interchange columns 1 and 3:

\[
\begin{bmatrix}
1 + D & D & 1 + D \\
D^2 & 1 & 1 + D + D^2
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 + D & 1 + D \\
1 + D + D^2 & 1 + D + D^2 + D^3 & 1 + D^2 + D^3
\end{bmatrix}
\]

Now the element in the upper-left corner has minimum degree.

To clear the rest of the first row, we can proceed with two operations simultaneously:

\[
\begin{bmatrix}
1 + D & 1 + D \\
1 + D + D^2 & 1 + D + D^2 + D^3 & 1 + D^2 + D^3
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Next, we clear the rest of the first column:

\[
\begin{bmatrix}
1 & 0 & 0 \\
1 + D + D^2 & 1 & 1 + D + D^2 + D^3 & 1 + D^2 + D^3
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\]

Now we interchange column 2 and 3:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 + D + D^2 + D^3 & D
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 + D + D^2 + D^3 & D
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Repeating the previous step gives

\[
1 + D + D^2 + D^3 = D(1 + D + D^2) + 1
\]

and, hence, we multiply column 2 by \(1 + D + D^2\).
add the product to column 3, and obtain
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & D & 1 + D + D^2 + D^3 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 1 + D + D^2 \\
0 & 0 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 \\
0 & D & 1 \\
\end{bmatrix}
\]
Again we should interchange column 2 and 3:
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & D & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 & D \\
\end{bmatrix}
\]
and, finally, by adding $D$ times the column 2 to column 3 we obtain the Smith form:
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & D \\
0 & 0 & 1 \\
\end{bmatrix}
= \Gamma(D)
\]
All invariant factors for this encoding matrix are equal to 1.
By tracing these steps backward and multiplying $\Gamma(D)$ with the inverses of the elementary matrices (which are the matrices themselves), we obtain the matrix:
\[
G(D) = A(D)\Gamma(D)B(D)
\]
\[
= \begin{bmatrix}
1 & 0 & 0 \\
1 + D + D^2 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & D \\
0 & 0 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
Thus, we have the following decomposition of the encoding matrix $G(D)$:
\[
G(D) = \begin{bmatrix}
1 & 0 & 0 \\
1 + D + D^2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{bmatrix}
\times
\begin{bmatrix}
1 + D & D & 1 \\
1 + D^2 + D^3 & 1 + D + D^2 + D^3 & 0 \\
D + D^2 & 1 + D + D^2 & 0 \\
\end{bmatrix}
\]
The extension of the Smith form

Let $G(D)$ be a $b \times c$ rational function matrix, and let $q(D) \in \mathbb{F}_2[D]$ be the least common multiple (lcm) of all denominators in $G(D)$. Then $q(D)G(D)$ is a polynomial matrix with Smith form decomposition

$$q(D)G(D) = A(D)\Gamma_q(D)B(D)$$

Dividing through by $q(D)$, we obtain the so-called invariant-factor decomposition of the rational matrix $G(D)$:

$$G(D) = A(D)\Gamma(D)B(D)$$

where $\Gamma(D) = \Gamma_q(D)/q(D)$ with entries in $\mathbb{F}_2(D)$.

Example:

The rate $R = \frac{2}{3}$ rational encoding matrix

$$G(D) = \begin{bmatrix}
\frac{1}{1+D+D^2} & \frac{D}{1+D+D^2} & \frac{1}{1+D+D^2} \\
\frac{D}{1+D^2} & \frac{1}{1+D+D^2} & \frac{1}{1+D+D^2}
\end{bmatrix}$$

has

$$q(D) = \text{lcm}(1+D+D^2, 1+D^3, 1+D) = 1+D^3$$

Thus, we have

$$q(D)G(D) = \begin{bmatrix}
1+D & D & 1 \\
D^2 & 1 & 1+D+D^2
\end{bmatrix}$$
Hence
\[
G(D) = \begin{bmatrix}
1 & 0 \\
1 + D + D^2 & 1
\end{bmatrix}
\begin{bmatrix}
\frac{1}{1+D} & 0 & 0 \\
0 & \frac{1}{1+D^2} & 0
\end{bmatrix}
\times
\begin{bmatrix}
1 + D & D & 1 \\
1 + D^2 + D^3 & 1 + D + D^2 + D^3 & 0 \\
D + D^2 & 1 + D + D^2 & 0
\end{bmatrix}
\]

• The right-inverse of the generator matrix becomes
\[
G^{-1}(D) = B^{-1}(D) \cdot \Gamma^{-1}(D) \cdot A^{-1}(D)
\]

The inverted quadratic scrambler matrices \(A^{-1}(D)\) and \(B^{-1}(D)\) exist, since \(A(D)\) and \(B(D)\) have determinant 1.

Another version of extended Smith form

• Beginning with the matrix \(G_0 = G\), it produces a sequence of \(k \times n\) matrices \(G_1, G_2, \ldots\), where \(G_{i+1}\) is derived from \(G_i\) by either an elementary row operation or an elementary column operation. We can represent this algebraically as
\[
G_{i+1} = E_{i+1} G F_{i+1},
\]

where \(E_{i+1}\) and \(F_{i+1}\) are \(k \times k\) and \(n \times n\) elementary matrices, respectively. If \(G_{i+1}\) is obtained from \(G_i\) via a row operation, then \(F_{i+1} = I_n\), but if \(G_{i+1}\) is obtained from \(G_i\) via a column operation, then \(E_{i+1} = I_k\). After a finite number \(N\) of steps, we obtain \(G_N = \Gamma\).

The extended Smith algorithm builds on the Smith algorithm. Whereas the Smith algorithm works only with the sequence \(G_0, G_1, \ldots, G_N\), the extended Smith algorithm also works with a sequence of unimodular \(k \times k\) matrices \(X_0, \ldots, X_N\), and a sequence of unimodular \(n \times n\) matrices \(Y_0, \ldots, Y_N\).

• The sequences \((X_i)\) and \((Y_i)\) are initialized as \(X_0 = I_k, Y_0 = I_n\), and updated via the rule
\[
X_{i+1} = E_{i+1} X_i \\
Y_{i+1} = Y_i F_{i+1}
\]

The following simple lemma is the key to the extended Smith algorithm.

Lemma:
\[
X_i Y_i = G_i \text{ for } i = 0, 1, \ldots, N
\]

• If we specialize above equation with \(i = N\), we get
\[
X_N Y_N = \Gamma
\]
which is the desired “extended Smith diagonalization” of \(G\).
A convenient way to implement the extended Smith algorithm is to extend $G$ to dimensions $(n + k) \times (n + k)$ as follows:

$$G' = \begin{bmatrix} G & I_k \\ I_n & 0_{n \times k} \end{bmatrix}$$

Then if the sequence of elementary row and column operations generated by the Smith algorithm applied to $G$ are performed on the extended matrix $G'$, after $i$ iterations, the resulting matrix $G'_i$ has the form

$$G'_i = \begin{bmatrix} G_i & X_i \\ Y_i & 0_{n \times k} \end{bmatrix}$$

**Example:**

$G = G_0 = \begin{bmatrix} 1 + D + D^2 & 1 + D^2 & 1 + D \\ D & 1 + D + D^2 & D^2 \end{bmatrix}$

Then the corresponding matrix $G'$ is

$$G' = G'_0 = \begin{bmatrix} 1 & 1 + D + D^2 & 1 + D^2 & 1 + D & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

we obtained $G'_1$, $G'_2$, and $G'_3$ from $G'_0$ by successively adding $(1 + D + D^2)$ times column 1 to column 2, $(1 + D^2)$ times column 1 to column 3, and $(1 + D)$ times column 1 to column 4.

$$G'_1 = \begin{bmatrix} 1 & 0 & 1 + D^2 & 1 + D & 1 & 0 \\ 1 & 0 & 1 + D^2 & D^2 & 1 & 0 \\ 1 & 1 + D + D^2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$G'_2 = \begin{bmatrix} 1 & 0 & 0 & 1 + D & 1 & 0 \\ D & 1 + D^3 & D + D^2 + D^3 & 1 & 0 & 1 \\ 1 & 1 + D + D^2 & 1 + D^2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$G'_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ D & 1 + D^3 & D + D^2 + D^3 & 1 + D + D^2 & 0 & 1 \\ 1 & 1 + D + D^2 & 1 + D^2 & 1 + D & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
Next, adding $D$ times row 1 to row 2, we obtain
\[
G'_{4} = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 + D & D + D^2 + D^3 & 1 + D + D^2 & 0 & 1 \\
1 & 1 + D + D^2 & 1 + D^2 & 1 + D & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
\]
Interchanging columns 2 and 4, we obtain
\[
G'_{5} = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 + D & D + D^2 + D^3 & 1 + D^3 & 0 & 1 \\
1 & 1 + D & 1 + D^2 & 1 + D + D^2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
Finally, adding $D$ times column 2 to column 3 and $(1 + D)$ times column 2 to column 4, we compute successively
\[
G'_{6} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 + D & 0 & 0 & 1 + D + D^2 & 0 & 0 \\
1 & 1 + D & 1 + D & 1 + D + D^2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & D & 1 + D & 0 & 0 \\
\end{bmatrix}
\]
\[
G'_{7} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 + D & 0 & 0 & 1 & 0 & 0 \\
1 & 1 + D & 1 + D & D & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & D & 1 + D & 0 & 0 \\
\end{bmatrix}
\]
Thus the extended Smith decomposition of the original matrix $G$ is given by
\[
\begin{bmatrix}
1 & 0 \\
D & 1 \\
\end{bmatrix} \cdot \begin{bmatrix}
1 & 1 + D & 1 + D & D \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & D & 1 + D \\
\end{bmatrix} \cdot \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 + D + D^2 & 0 & 0 \\
\end{bmatrix}
\]
• The matrices $X$, $Y$, and $\Gamma$, contain much valuable information about the code $C$ and the generator matrix $G$. To extract this information, however, we need to define several useful “pieces” of these matrices, which we call $\Gamma_k$, $\bar{\Gamma}_k$, $K$, and $H$:
\[
\Gamma_k = \text{leftmost } k \text{ columns of } \Gamma \\
= \text{diag}(\Gamma_1, \ldots, \Gamma_k) \text{ (dimensions: } k \times k). \\
\bar{\Gamma}_k = \gamma_k \cdot \Gamma_k^{-1} = \text{diag}(\gamma_k/\gamma_1, \ldots, \gamma_k/\gamma_k) \text{ (dimensions: } k \times k). \\
K = \text{leftmost } k \text{ columns of } Y. \text{ (dimensions: } n \times k). \\
H = \text{rightmost } r \text{ columns of } Y. \text{ (dimensions: } n \times r).
• **Theorem:** With the matrices $\Gamma_r, \tilde{\Gamma}_r, K,$ and $H$ define as in above equations, we have the following:

1. A basic encoder for $C$: $G_{\text{basic}} = \Gamma^{-1}_k XG$. (That is, $G_{\text{basic}}$ is obtained by dividing the $i$-th row of $XG$ by the invariant factor $\gamma_i$, for $i = 1, \ldots, k.$)

2. A polynomial inverse for $G_{\text{basic}}$: $K$.

3. A polynomial pseudo-inverse for $G$, with factor $\gamma_k$: $\tilde{\Gamma}X$. (In particular, if $G$ is already basic, i.e. if $\Gamma_k = I_k$, then $KX$ is a polynomial inverse for $G$.)

4. A basic encoder for $C^\perp$ (parity-check matrix for $C$) $H^T$.

**Example:** To illustrate the results of this appendix, we consider the following generator matrix $G$ for a (4,2) binary Convolutional code:

$$G = \begin{bmatrix} 1 & 1 + D + D^2 & 1 + D^2 & 1 + D \\ D & 1 + D + D^2 & D^2 & 1 \end{bmatrix}. $$

We found the extended invariant-factor decomposition of $G$ to be $XGY = \Gamma$, where

$$\Gamma = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 + D + D^2 & 0 & 0 \\ 0 & 0 & 1 + D & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & D & 1 + D \end{bmatrix}, X = \begin{bmatrix} 1 \\ 0 \\ D \end{bmatrix}, $$$$Y = \begin{bmatrix} 1 & 1 + D & 1 + D & D \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & D & 1 + D \end{bmatrix}.$$
Outline

• Distance measures
  – Row and column distance
  – Extended distance measures

Column distance

• Definition (Column distance):
The column distance $d_c^j$ of order $j$ of a generator matrix $G(D)$ is the minimum Hamming distance of the first $j+1$ code blocks of two codewords $v_{[j+1]} = (v_0, v_1, ..., v_j)$ and $v_{[j+1]}' = (v_0', v_1', ..., v_j')$, where the information sequences used for encoding $u_{[j+1]} = (u_0, u_1, ..., u_j)$ and $u_{[j+1]}' = (u_0', u_1', ..., u_j')$ differ in the first information block, i.e. $u_0 \neq u_0'$.

Because of the linearity of Convolutional codes, the column distance is equal to the minimum Hamming weight of all sequences $v_{[j+1]}$:

$$d_c^j = \min_{u_0 \neq 0} wt(v_{[j+1]})$$

where $v_{[j+1]} = (v_0, v_1, ..., v_j)$ are the first $j+1$ code blocks of all possible code sequences with $u_0 \neq 0$.

• When we considering the semi-infinite generator matrix $G$ of the code, we obtain

$$d_c^j = \min_{u_0 \neq 0} wt(u_{[j+1]} \cdot G_{[j+1]}^c)$$
with the \((k(j + 1) \times n(j + 1))\) generator matrix

\[
G_{c[j+1]} = \begin{bmatrix}
G_0 & G_1 & \ldots & G_j \\
G_0 & G_{j-1} & & \\
\vdots & & \ddots & \\
G_0 & & & \\
\end{bmatrix}
\]

- **Definition (Distance profile of the generator matrix):**
  The first \(m + 1\) values of the column distance \(d = (d_{c0}, d_{c1}, \ldots, d_{cm})\) of a given generator matrix \(G(D)\) with memory \(m\) are referred to as the distance profile of the generator matrix.

- **Definition (Minimum distance):**
  The column distance \(d_{cm}\) of order \(m\) of a given generator matrix \(G(D)\) with memory \(m\) is called the minimum distance \(d_m\).

- **Consider the state diagram of the generator matrix \(G(D)\).** The paths of length \(j + 1\) that are used for the calculation of \(d_{cj}\) leave the zero state \(\sigma_0\) at time \(t = 0\) and are in an arbitrary state \(\sigma_{j+1} \in (0, 1, \ldots, 2^n - 1)\) after \(j + 1\) state transition. Consequently, the path relevant for \(j=0\) are a part of the paths relevant for \(j=1\), and so on. Therefore the column distance is a monotonically increasing function in \(j\),

\[
d_{c0} \leq d_{c1} \leq \ldots \leq d_{cj} \leq \ldots \leq d_{c\infty}
\]

where a finite limit \(d_{c\infty}\) for \(j \to \infty\) exist.

- **Definition (Row distance):**
  The row distance \(d_{rj}\) of order \(j\) of a generator matrix \(G(D)\) with memory \(m\) is the minimum Hamming distance of the \(j+m+1\) code blocks of two codewords \(v_{[j+m+1]} = (v_0, v_1, \ldots, v_{j+m})\) and \(v'_{[j+m+1]} = (v'_0, v'_1, \ldots, v'_{j+m})\), where the two information sequences used for encoding \(u_{[j+m+1]} = (u_0, u_1, \ldots, u_{j+m})\) and \(u'_{[j+m+1]} = (u'_0, u'_1, \ldots, u'_{j+m})\) with \((u_{j+1}, \ldots, u_{j+m}) = (u'_{j+1}, \ldots, u'_{j+m})\) are different in at least the first coordinate of the \(j+1\) information blocks.
• The row distance can also be calculated as the minimum of the Hamming weights of all sequences $v_{j+m+1}$, in analogy with the column distance:

$$d_r^j = \min_{u_0 \neq 0} \text{wt}(v_{j+m+1})$$

where $v_{j+m+1} = (v_0, ..., v_j, ..., v_{j+m})$ are terminated code sequences of length $j+m+1$.

• We obtain

$$d_r^j = \min_{u_0 \neq 0} \text{wt}(u_{j+m+1}G_{r}^j_{j+m+1})$$

with the information sequence $u_{j+m+1} = (u_0, ..., u_j, u_{j+1}, ..., u_{j+m})$, where $(u_{j+1}, ..., u_{j+m})$ is equal to the termination sequence.

• There is one sequence that diverges from zero state at time $t = 0$ and returns to the zero state at time $t = m$ and that has a specific weight $d_r^0$.

• Increasing the sequence length to $j = 1$ corresponds to increasing the number of valid code sequences that must be considered in finding the minimum-weight sequence. If a code sequence is found for $j = 1$ that has a hamming weight less than $d_r^0$ then it is selected. Otherwise, we choose the original code sequence, and remain in the zero loop of zero state for the required number of $j$ transitions without increasing the Hamming weight $d_r^0$.

• Therefore the row distance is a monotonically decreasing function in $j$, and we can write

$$d_r^0 \geq d_r^1 \geq ... \geq d_r^j \geq ... \geq d_r^\infty$$

where the limit $j \to \infty$ gives $d_r^\infty > 0$.
In the derivation of equation
\[ d_0^c \leq d_1^c \leq ... \leq d_j^c \leq ... \leq d_{\infty}^c \]
it was shown that the path \( d_{\infty}^c \) returns to the zero loop of the state diagram and remains there. Only one zero loop, namely from zero directly to zero, exists for non-catastrophic generator matrices. Therefore \( d_{\infty}^c \) is the minimum Hamming weight of a path leaving from and returning to zero. It is equal to the row distance \( d_{\infty}^r \), as shown in the derivation of equation
\[ d_0^r \geq d_1^r \geq ... \geq d_j^r \geq ... \geq d_{\infty}^r \]

**Free distance**

- **Definition (Free distance):**
  The free distance \( d_f \) of a Convolutional code \( C \) with rate \( R = \frac{k}{n} \) is defined as the minimum distance between two arbitrary codewords of \( C \):
  \[ d_f = \min_{v \neq v'} \text{dist}(v, v') \]
  Due to linearity, the problem of calculating distances can be interpreted as the problem of calculating Hamming weight.

- **Theorem (Row, column and free distance):**
  If \( G(D) \) is a non-catastrophic generator matrix then the following equation holds for the limits of the row and column distances:
  \[ d_{\infty}^c = d_{\infty}^r = d_f \]

**Example (Row and column distance):**

Figure 1 shows the column and row distances of the generator matrix \( G(D) = (1 + D + D^2 + D^3 1 + D^2 + D^3) \) of a Convolutional code with rate \( R = \frac{1}{2} \) and m=3.

- For \( j = 0 \):
  \[ G_{[1]}^c = [11] \Rightarrow d_0^c = \min_{u_0 \neq 0} \text{wt}(u_{[j+1]} \cdot G_{[j+1]}^c) = 2 \]

- For \( j = 1 \):
  \[ G_{[2]}^c = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \Rightarrow d_1^c = 3 \]
**Row distance** 

\( j = 0, 1, 2, \ldots \)

\[ G'_{[j+m+1=0+3+1=4]} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \]

\[
\Rightarrow \quad d'_0 = \min_{u_0 \neq 0} wt(u_{j+m+1} \cdot G'_{[j+m+1]}) = 7
\]

\[\therefore \quad (u_{j+1}, \ldots, u_{j+m}) = (u_1, u_2, u_3) = (000)\]

---

**Extended distance measures**

- **Definition (Extended column distance):**

  Let the generator matrix \( G \) of a Convolutional code \( C \) with rate \( R = \frac{k}{n} \) be given. Then the extended column distance of order \( j \) is

  \[ d_{j}^c = \min_{\sigma_0 = 0, \sigma_t \neq 0, 0 \leq t \leq j} \{ \text{wt}((u_0, u_1, \ldots, u_j)G_{[j+1]}^c) \} \]

  where

  \[ G_{[j+1]}^c = \begin{bmatrix} \sigma_0 & \sigma_1 & \ldots & \sigma_m \\ \sigma_0 & \sigma_1 & \ldots & \sigma_m \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_0 & \sigma_1 & \ldots & \sigma_{m-1} & \sigma_0 \end{bmatrix} \]

  is the \( k(j+1) \times n(j+1) \) truncated generator matrix.

---

**Extended row distance**

The state sequence \( S = (\sigma_0, \sigma_1, \ldots, \sigma_t, \ldots, \sigma_j, \sigma_{j+1}, \ldots, \sigma_{j+m+1}) \) used to define the code segments starts and ends in the zero state, i.e. \( \sigma_0 = 0 \) and \( \sigma_{j+m+1} = 0 \).

- **Definition (Extended row distance):**

  Let the generator matrix \( G \) of a Convolutional code \( C \) with rate \( R = \frac{k}{n} \) be given. Then the extended row distance of order \( j \) is

  \[ d_{j}^r = \min_{u_j \neq 0, \sigma_0 = 0, \sigma_t \neq 0, 0 \leq t \leq j} \{ \text{wt}((u_0, u_1, \ldots, u_j)G_{[j+m+1]}^r) \} \]

  where

  \[ G_{[j+m+1]}^r = \begin{bmatrix} \sigma_0 & \sigma_1 & \ldots & \sigma_m \\ \sigma_0 & \sigma_1 & \ldots & \sigma_m \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_0 & \sigma_1 & \ldots & \sigma_m \end{bmatrix} \]

  is a \( k(j+m+1) \times n(j+1) \) truncated generator matrix.
The extended segment distance is defined by the state sequences
$S = (\sigma_0, \sigma_1, ..., \sigma_m, \sigma_{m+1}, ..., \sigma_{j+m+1})$ with $\sigma_m$ and $\sigma_{j+m+1}$ can
assume arbitrary values. The state in between are not equal to the
zero state.

- **Definition (Extended segment distance):**
  Let the generator matrix $G$ of a Convolutional code $C$ with rate
  $R = \frac{k}{n}$ be given. The extended segment distance of order $j$ is
  
  \[ d_{es}^j = \min_{\sigma_j \neq 0, m < t \leq j+m} \{ wt((u_0, u_1, ..., u_{j+m})G_{[j+1]}^{t+m}) \} \]

  is a $k(j+1+m) \times n(j+1)$ truncated generator matrix.

**Figure 13:** Graphical representation of the generator matrices cor-
responding to the extended distance properties of $G^{c}_{[j+1]}$, $G^r_{[j+1]}$ and
$G^s_{[j+1]}$ (from left to right)

**Figure 14:** Diagrams showing the calculation of the extended distance
measurements in trellis form: column, row and segment distances (from
top to bottom). $j = 5, G(D) = (1 + D + D^2 \ 1 + D), m = 2.$
Weight Enumerating Function (WEF)

The state diagram can be modified to provide a complete description of the Hamming weights of all nonzero codewords, that is a codeword Weight Enumerating Function.

- Zero weight branch around state \( S_0 \) is deleted.
- Each branch is labeled with a branch gain \( X^d \), where \( d \) is the weight of the \( n \) encoded bits on the branch.
- The path gain is the product of the branch gains along a path, and the weight of the associated codeword is the power of \( X \) in the path gain.

To determine the codeword WEF of a code by considering the modified state diagram of the encoder as a signal flow graph and applying Mason’s gain formula to compute its transfer function:

\[
A(X) = \sum_d A_d X^d
\]

\( A_d \) is the number of codewords of weight \( d \).

- In a signal flow graph, a path connecting the initial state to the final state that does not go through any state twice is called a forward path (Let \( F_i \) be the gain of the \( i \)th forward path).
- A closed path starting at any state and returning to that state without going through any other state twice is called a cycle (Let \( C_i \) be the gain of the \( i \)th cycle).
let $C_i$ be the gain of $i$th cycle. A set of cycles is nontouching if no state belongs to more than one cycle in the set.

- $\{i\}$ be the set of all cycles
- $\{i', j'\}$ be the set of all pairs of nontouching cycles
- $\{i'', j'', k''\}$ be the set of all triple of nontouching cycles, and so on

Define

$$\Delta = 1 - \sum_i C_i + \sum_{i', j'} C_{i'} C_{j'} - \sum_{i'', j'', k''} C_{i''} C_{j''} C_{k''} + \cdots$$

$\Delta_i$ is defined exactly like $\Delta$ but only for that portion of the graph not touching the $i$th forward path

$$A(X) = \frac{\sum F_i \Delta_i}{\Delta}$$

Example: Computing the WEF of a (2,1,3) code

Cycle 1: $s_1 s_8 s_7 s_6 s_5 s_2 s_4 s_8 s_1$ ($c_1 = X^8$)
Cycle 2: $s_1 s_8 s_7 s_6 s_4 s_1$ ($c_2 = X^3$)
Cycle 3: $s_1 s_8 s_6 s_5 s_2 s_4 s_8 s_1$ ($c_3 = X^7$)
Cycle 4: $s_1 s_8 s_6 s_4 s_1$ ($c_4 = X^2$)
Cycle 5: $s_1 s_8 s_5 s_7 s_6 s_8 s_4 s_8 s_1$ ($c_5 = X^4$)
Cycle 6: $s_1 s_8 s_5 s_3 s_6 s_4 s_1$ ($c_6 = X^3$)
Cycle 7: $s_1 s_8 s_4 s_8 s_1$ ($c_7 = X^3$)
Cycle 8: $s_2 s_8 s_2$ ($c_8 = X$)
Cycle 9: $s_3 s_7 s_6 s_5 s_3$ ($c_9 = X^5$)
Cycle 10: $s_3 s_6 s_5 s_3$ ($c_{10} = X^4$)
Cycle 11: $s_7 s_8$ ($c_{11} = X$)

There are 11 cycles

Cycle Pair 1: (Cycle 2, Cycle 8) ($c_2 c_8 = X^4$)
Cycle Pair 2: (Cycle 3, Cycle 11) ($c_3 c_{11} = X^8$)
Cycle Pair 3: (Cycle 4, Cycle 8) ($c_4 c_8 = X^3$)
Cycle Pair 4: (Cycle 4, Cycle 11) ($c_4 c_{11} = X^3$)
Cycle Pair 5: (Cycle 6, Cycle 11) ($c_6 c_{11} = X^4$)
Cycle Pair 6: (Cycle 7, Cycle 9) ($c_7 c_9 = X^5$)
Cycle Pair 7: (Cycle 7, Cycle 10) ($c_7 c_{10} = X^7$)
Cycle Pair 8: (Cycle 7, Cycle 11) ($c_7 c_{11} = X^4$)
Cycle Pair 9: (Cycle 8, Cycle 11) ($c_8 c_{11} = X^2$)
Cycle Pair 10: (Cycle 10, Cycle 11) ($c_{10} c_{11} = X^5$)

There are 10 pairs of nontouching cycles
Cycle Triple 1: (Cycle 4, Cycle 8, Cycle 11) \((C_4, C_8, C_{11} = X^4)\)
Cycle Triple 2: (Cycle 7, Cycle 10, Cycle 11) \((C_7, C_{10}, C_{11} = X^8)\)
There are 2 triples of nontouching cycles

There are no other sets of nontouching cycles. Therefore
\[ \Delta = 1 - (x^8 + x^3 + x^7 + x^2 + x^4 + x^3 + x + x^5 + x^4 + x) + (x^4 + x^8 + x^3 + x^4 + x^7 + x^4 + x^2 + x^5) - (x^4 + x^8) = 1 - 2x - x^3 \]

Forward Path 1: \( s_0 s_1 s_3 s_7 s_5 s_2 s_4 s_0 \) \((F_1 = X^{12})\)
Forward Path 2: \( s_0 s_1 s_3 s_7 s_6 s_4 s_0 \) \((F_2 = X^7)\)
Forward Path 3: \( s_0 s_1 s_3 s_6 s_2 s_4 s_0 \) \((F_3 = X^{11})\)
Forward Path 4: \( s_0 s_1 s_3 s_6 s_4 s_0 \) \((F_4 = X^6)\)
Forward Path 5: \( s_0 s_1 s_2 s_3 s_7 s_8 s_4 s_0 \) \((F_5 = X^8)\)
Forward Path 6: \( s_0 s_1 s_2 s_3 s_6 s_4 s_0 \) \((F_6 = X^7)\)
Forward Path 7: \( s_0 s_1 s_2 s_4 s_0 \) \((F_7 = X^7)\)

There are 7 forward path

Forward path 1 and 5 touch all states
\[ \Delta_1 = \Delta_5 = 1 \]
The subgraph not touching forward path 3 and 6 shown in (a)
\[ \Delta_3 = \Delta_6 = 1 - X \]
The subgraph not touching forward path 2 shown in (b)
\[ \Delta_2 = 1 - X \]
The subgraph not touching forward path 4 shown in (c)
\[ \Delta_4 = 1 - (X + X) + (X^2) = 1 - 2X + X^2 \]
The subgraph not touching forward path 7 shown in (d)
\[ \Delta_7 = 1 - (X + X^4 + X^5) + (X^5) = 1 - X - X^4 \]
\[ A(X) = \frac{\sum_{i} F_{i} \Delta_{i}}{\Delta} \]
\[ = \frac{X^6 + X^7 - X^8}{1 - 2X - X^3} \]
\[ = X^6 + 3X^7 + 5X^8 + 11X^9 + 25X^{10} + \ldots \]

The codeword WEF \( A(X) \) provides a complete description of the weight distribution of all nonzero codewords.

In this case, there is one such codeword of weight 6, three of weight 7, five of weight 8, and so on.

\[ A(W, X, L) = \sum_{w,d,l} A_{w,d,l} W^{w} X^{d} L^{l} \]

This implies that the codeword of weight 6 has length-5 branches and an information weight of 2, one codeword of weight 7 has length-4 branches and information weight 1, another has length-6 branches and information weight 3, the third has length-7 branches and information weight 3, and so on.
Termination, tailbiting, and puncturing

Punctured Convolutional Codes

1. Punctured convolutional codes are derived from the mother code by periodically deleting certain code bits in the code sequence of the mother code:

\[ (n_m, k_m, m_m) \xrightarrow{P} (n_p, k_p, m_p) \]

where \( P \) is an \( n_m \times k_p/k_m \) puncturing matrix with elements \( p_{ij} \in \{0, 1\} \)

2. A 0 in \( P \) means the deletion of a bit and a 1 means that this position is remained the same in the puncture sequence

3. Let \( p = n_m k_p/k_m \) be the puncture period (the number of all element in \( P \)) and \( w \leq p \) be the number of 1 elements in \( P \)

Example of the Punctured Convolutional Code

1. Consider the \((2,1,2)\) code with the generator matrix

\[
G = \begin{pmatrix}
1 & 10 & 11 \\
11 & 11 & 10 & 11 \\
\vdots & \ddots & \ddots & \ddots
\end{pmatrix}
\]

2. Let

\[
P = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0
\end{pmatrix}
\]

be the punctured matrix

3. The code rate of the punctured code is \( \frac{k_p}{n_p} = \frac{6}{7} \)
4. If $l$th code bit is removed then the respective column of the generator matrix of the mother code must be deleted.

5.

6. We can obtain the generator matrix of the punctured code by deleting those un-bold columns in the above matrix.

$$G_p = \begin{pmatrix}
1 & 1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
\vdots & \vdots & \vdots & \vdots \\
\end{pmatrix}$$

7. The above punctured code has $m_p = 2$

8. Punctured convolutional codes are very important in practical applications, and are used in many areas.

Optimal decoding: Viterbi and BCJR decoding.
We will discuss three decoding algorithms:
1. Viterbi decoding: 1967 by Viterbi
2. SOVA decoding: 1989 by Hagenauer
3. BCJR decoding: 1974 by Bahl et al.

These algorithms are operated on the trellis of the codes and the complexity depends on the number of states in the trellis.

We can apply these algorithms on block and convolutional codes since the former has the regular trellis and the latter has the irregular trellis.

Viterbi and SOVA decoding minimize the codeword error probability and BCJR minimize the information bit error probability.

The Viterbi algorithm

Assume that an information sequence \( u = (u_0, u_1, \ldots, u_{h-1}) \) of the length \( K^* = kh \) is encoded.

Then a codeword \( v = (v_0, v_1, \ldots, v_{h+m-1}) \) of length \( N = n(h + m) \) is generated after the convolutional encoder.

Thus, with zero-biting of \( mk \) zero bits, we have a \([n(h + m), kh]\) linear block code.

After the discrete memoryless channel (DMC), a sequence \( r = (r_0, r_1, \ldots, r_{h+m-1}) \) is received. We will focus on a BSC, a binary-input/Q-ary output, and AWGN channels.

A (ML) decoder for a DMC chooses \( \hat{v} \) as the codeword \( v \) that maximizes the log-likelihood function \( \log p(r|v) \).

Since the channel is memoryless, we have
\[
p(r|v) = \prod_{l=0}^{h+m-1} p(r_l|v_l) = \prod_{l=0}^{N-1} p(r_l|v_l)
\]

\[
\log p(r|v) = \sum_{l=0}^{h+m-1} \log p(r_l|v_l) = \sum_{l=0}^{N-1} \log p(r_l|v_l)
\]

We define the bit metric, branch metric, and path metric as the log-likelihood function of the corresponding conditional probability functions as follows:
\[
M(r_l|v_l) = \log p(r_l|v_l),
\]
\[
M(r_l|v_l) = \log p(r_l|v_l),
\]
\[
M(r|v) = \log p(r|v).
\]
• The basic operations of the Viterbi algorithm is the addition, comparison, and selection (ACS).

• At each time unit $t$, considering each state $s_t$ and $2^k$ previous state $s_{t-1}$ connecting to $s_t$, we compute the (optimal) partial metric of $s_t$ by adding the branch metric connecting between $s_t$ and $s_{t-1}$ to the partial metric of $s_{t-1}$ and selecting the largest metric.

• We store the optimum path (survivor) with the partial metric for each state $s_t$ at time $t$.

• In other words, we have to store $2^\nu$ survivor pathes along with its optimal partial metric from time $m$ to time $h$.

• The above algorithm, when applied to the received sequence $r$ from a DMC, find the path through the trellis with the largest metric, that is the maximum likelihood path (codeword).

• The final survivor $\hat{v}$ in the Viterbi algorithm is the maximum likelihood path; that is

\[ M(r|\hat{v}) \geq M(r|v), \text{ all } v \neq \hat{v} \]

• Consider a (3, 1, 2) convolutional code with

\[ G(D) = [1 + D, 1 + D^2, 1 + D + D^2] \]

with $m = 2$ and $h = 5$.

• With zero-biting, we have a $[3(5 + 2), 5] = [21, 5]$ linear block code.

• The first $m = 2$ unit and the last $m = 2$ unit of the trellis correspond to the departure of the initial state $s_0$ and the return of the final state $s_0$.

• The central units correspond to the replica of the state diagram with $2^k = 2$ branches leaving and entering each state.

• Each branch is labelled with $u_i/v_i$ of $k$-bit input $u_i$ and $n$-bit output $v_i$.
Viterbi Algorithm for a Binary-input, Quaternary-Output DMC

Consider the binary-input, quaternary-output (Q=4) DMC

The quaternary received sequence is

\[ r = (1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1) \]

The final survivor is

\[ \hat{v} = (1, 1, 0, 1, 0, 0, 0, 0, 0, 0) \]

The decoded information sequence is

\[ \hat{u} = (1, 1, 0, 0, 0) \]
Viterbi Algorithm for a BSC

- In BSC with transition probability $p < 1/2$, the received sequence $r$ is binary and the log-likelihood function becomes
  \[
  \log p(r|v) = d(r, v) \log \frac{p}{1-p} + N \log(1-p),
  \]
  where $d(r, v)$ is the Hamming distance between $r$ and $v$.
- Because $\log \frac{p}{1-p} < 0$ and $N \log(1-p)$ is a constant for all $v$, an MLD for a BSC chooses $v$ as the codeword $\hat{v}$ that minimizes the Hamming distance
  \[
  d(r, v) = \sum_{l=0}^{h+m-1} d(r_l, v_l) = \sum_{l=0}^{N-1} d(r_l, v_l)
  \]

The received sequence is 

\[ r = (110, 110, 110, 010, 101, 101) \]

The final survivor is 

\[ \hat{v} = (111, 010, 110, 011, 111, 011) \]

The decoded information sequence is 

\[ \hat{u} = (1, 1, 0, 0, 1) \]

That final survivor has a metric of 7 means that no other path through the trellis differs from $r$ in fewer than seven positions.

- In the BSC case, maximizing the log-likelihood function is equivalent to finding the codeword $v$ that is closest to the received sequence $r$ in Hamming distance.
- In the AWGN case, maximizing the log-likelihood function is equivalent to finding the codeword $v$ that is closest to the received sequence $r$ in Euclidean distance.
**Viterbi Algorithm for an AWGN**

- Consider the AWGN channel with binary input, i.e.,
  \[ v = (v_0, v_1, \ldots, v_{N-1}) , \]
  where \( v_i \in \{1, -1\} \).
- The bit metric \( M(r|v_l) \) for an AWGN with binary input of unit energy and PSD \( \frac{N_0}{2E_s} \) is
  \[
  p(r_l|v_l) = \sqrt{\frac{E_s}{\pi N_0}} e^{-\frac{E_s}{N_0} (r_l-v_l)^2}
  \]
- A codeword \( v \) minimize the Euclidean distance \( \sum_{l=0}^{N-1} (r_l - v_l)^2 \) also maximize the log-likelihood function \( \log p(r|v) \).
- We can define a new path metric of \( v \) as
  \[
  M(r|v) = \sum_{l=0}^{N-1} r_l \cdot v_l
  \]
  and the Viterbi algorithm finds the optimal path \( v \) with maximum correlation from \( r \).

**The Soft-Output Viterbi Algorithm**

- In a series or parallel concatenated decoding system, usually one decoder passes reliability information about its decoded outputs to the other decoder, which refer to the soft in/soft out decoding.
- The combination of the hard-decision output and the reliability indicator is called a soft output.
- At time unit \( t = t + 1 \), the partial path metric that must be maximized by the Viterbi algorithm for a binary-input, continuous-output AWGN channel given the partial received sequence \([r]_{t+1} = (r_0, r_1, \ldots, r_t)\) is given as

\[
M([r|v]_{t+1}) = \ln\{p([r|v]_{t+1})p([v]_{t+1})\}
\]

- A priori probability \(p([v]_{t+1})\) is included since these will not be equally likely when a priori probability of the information bits are not equally likely

\[M([r|v]_{t+1}) = \ln\{p([r|v]_{t+1})p([v]_{t+1})\}\]

Similarly, we modify the first sum by the same way and obtain the modified partial path metric \(M^*[([r|v]_t]_t)\) as

\[
M^*[([r|v]_{t+1}) = M^*[([r|v]_t)] + \sum_{j=0}^{n-1} \{2 \log[p(r^{(j)}_t|v^{(j)}_t)] - C^{(j)}_r\}
\]

\[+ \{2 \log[p(u_t)] - C_u\}\]

\[= M^*[([r|v]_{t+1}) + \sum_{j=0}^{n-1} v^{(j)}_t \log[p(r^{(j)}_t|v^{(j)}_t)] + \{2 \log[p(u_t)] - C_u\}\]

\[+ u_t \log[p(u_t)] + u_{t+1}]\]

\[= M^*[([r|v]_{t+1}) + \{2 \log[p(r^{(j)}_t|v^{(j)}_t)] - C^{(j)}_r\}]\]

\[+ \{2 \log[p(u_t)] - C_u\} + \{2 \log[p(u_t)] - C_u\}\]

\[= M^*[([r|v]_{t+1}) + \{2 \log[p(r^{(j)}_t|v^{(j)}_t)] - C^{(j)}_r\}]\]

\[+ \{2 \log[p(u_t)] - C_u\} + \{2 \log[p(u_t)] - C_u\}\]

\[M([r|v]_{t+1}) = \log\{\prod_{l=0}^{t-1} p(r_l|v_l)p(r_l|v_l)p(u_l)\}
\]

\[= \log\{\prod_{l=0}^{t-1} p(r_l|v_l)\} + \sum_{j=0}^{n-1} \{2 \log[p(r^{(j)}_t|v^{(j)}_t)] + \log[p(u_t)]\}\]

By multiplying each term in the second sum by 2 and introducing constants \(C^{(j)}_r\) and \(C_u\) as follows:

\[\{\sum_{j=0}^{n-1} [2 \log[p(r^{(j)}_t|v^{(j)}_t)] - C^{(j)}_r] + [2 \log[p(u_t)] - C_u]\}\]

where the constants

\[C^{(j)}_r \equiv \log[p(r^{(j)}_t|v^{(j)}_t) + 1] + \log[p(r^{(j)}_t|v^{(j)}_t) = -1], j = 0, 1, \ldots, n-1\]

\[C_u \equiv \log[p(u_t = 1] + \log[p(u_t = -1]\]

- The log-likelihood ratio, or L-value, of a received symbol \(r\) at the output with binary inputs \(v = \pm 1\) is defined as

\[L(r) = \log[p(r|v) + 1] / p(r|v - 1]\]

- The L-value of an information bit \(u\) is define as

\[L(u) = \log[p(u = 1] / p(u = -1]\]

- A large positive \(L(r)\) indicates a high reliability that \(v = 1\) and a large negative \(L(r)\) indicates a high reliability that \(v = -1\).
Since the bit metric $M(r|v_l)$ for an AWGN with binary input of unit energy and PSD $N_0/(2E_s)$ (SNR=$1/(N_0/E_s) = E_s/N_0$) is
\[ p(r|v_l) = \frac{E_s}{\pi N_0} e^{-\frac{E_s}{N_0}(r-v_l)^2}, \]
the L-value of $r$ is thus
\[ L(r) = \log\left(\frac{p(r|v_l = +1)}{p(r|v_l = -1)}\right) = (4E_s/N_0)r \]

- Defining $L_C \equiv 4E_s/N_0$ as the channel reliability factor, the modified metric for SOVA decoding can be written by
\[ M^*(r|v) = L_C M^*(r|v|t) + \sum_{j=0}^{n-1} L_C \epsilon_t^{(j)} r_t^{(j)} + u_t L(u_t) \]

Assume that a comparison is being made at state
\[ s_i, i = 0, 1, \ldots, 2^r - 1, \]
between the maximum likelihood (ML) path $[v]_t$ and an incorrect path $[v']_t$ at time $l = t$
- Define the metric difference between $[v]_t$ and $[v']_t$ as
\[ \Delta_{l-1}(S_i) = \frac{1}{2}(M^*(r|v) - M^*(r|v')) \]
- The probability $P(C)$ that the ML path is correctly selected at time $t$ is given by
\[ P(C) = \frac{p([v]_t)}{p([v]_t) + p([v']_t)} \]

A reliability vector at time $l = m + 1$ for state $S_i$ as follows:
\[ L_{m+1}(S_i) = [L_0(S_i), L_1(S_i), \ldots, L_m(S_i)] \]
\[ L_t(S_i) \equiv \begin{cases} \Delta_{m}(S_i), & u_t \neq u'_t \\ \infty, & u_t \neq u'_t \end{cases} \]
\[ l = 0, 1, \ldots, m \]
the reliability of a bit position is either $\infty$, if it is not affected by the path decision.
The above SOVA decoding is one-way version since we have to store the optimal survivor, the optimal partial metric, and reliability vector for each state $s_t$ in time unit $t$.

- We can have two-way version for Viterbi and SOVA algorithm.
- In two-way version, we have to do forward recursion and backward recursion simultaneously and store the optimal forward metric and optimal backward metric, but we do not have to store the optimal path.
- We make the final decision on each information bit by adding the optimal forward metric, optimal backward metric, and the branch metric.

### Step 1: Forward recursion
- **step 1-1:**
  - $i = 0$;
  - partial path metric $\mu_f(s_0^0) = 0$; $\mu_f(s_0^1) = \mu_f(s_0^2) = \mu_f(s_0^3) = \infty$
- **step 1-2:**
  - $i = i + 1$
  - for $l = 0, 1, 2, 3$
  $$
  \mu_f(s_i^l) = \min \{ \mu_f(s_{i-1}^l) + \text{Branch}(s_{i-1}^l, s_i^l), \\
  \mu_f(s_i^0) + \text{Branch}(s_i^0, s_i^l), \\
  \mu_f(s_i^1) + \text{Branch}(s_i^1, s_i^l), \\
  \mu_f(s_i^2) + \text{Branch}(s_i^2, s_i^l) \} 
  $$
  where $\text{Branch}(\cdot, \cdot)$ is the branch metric.
- **step 1-3:** Go to step 2 until $i = h + m$.

### Step 2: Backward recursion
- **step 2-1:**
  - $i = h + m$;
  - partial path metric $\mu_{h+m}(s_0^0) = 0$;
  $$
  \mu_{h+m}(s_1^1) = \mu_{h+m}(s_2^2) = \mu_{h+m}(s_3^3) = \infty 
  $$
- **step 2-2:**
  - $i = i - 1$
  - for $l = 0, 1, 2, 3$
  $$
  \mu_r(s_i^l) = \min \{ \mu_r(s_0^{i+1}) + \text{Branch}(s_0^{i+1}, s_i^l), \\
  \mu_r(s_1^{i+1}) + \text{Branch}(s_1^{i+1}, s_i^l), \\
  \mu_r(s_2^{i+1}) + \text{Branch}(s_2^{i+1}, s_i^l), \\
  \mu_r(s_3^{i+1}) + \text{Branch}(s_3^{i+1}, s_i^l) \} 
  $$
  where $\text{Branch}(\cdot, \cdot)$ is the branch metric.
- **step 2-3:** Go to step 2 until $i = 0$. 
Step 3: Soft decision
- step 3-1: \( i = 0 \)
- step 3-2:
  - \( i = i + 1 \)
  - \( \lambda^0_i = \min_{s, \bar{s}} \{ \mu_f(S_i^{s-1}) + \text{Branch}_0(S_i^{s-1}, S_i) + \mu_r(S_i^s) \} \)
  where \( \text{Branch}_0(S_i^{s-1}, S_i) \) is the branch metric from node \( S_i^{s-1} \) to \( S_i^s \) which corresponds to \( c_i = 0 \) (if no such branch exists, the branch metric is assigned infinity)
  - \( \lambda^1_i = \min_{s, \bar{s}} \{ \mu_f(S_i^{s-1}) + \text{Branch}_1(S_i^{s-1}, S_i) + \mu_r(S_i^s) \} \)
  where \( \text{Branch}_1(S_i^{s-1}, S_i) \) is the branch metric from node \( S_i^{s-1} \) to \( S_i^s \) which corresponds to \( c_i = 1 \)
- step 3-3: \( \Lambda(i) = \lambda^0_i - \lambda^1_i \)

The complexity of SOVA
- We can modify the SOVA algorithm to reduce the decoding complexity.
- The computational complexity of the SOVA is upper-bounded by twice of the VA.
- In fact, the computational complexity of the SOVA is about 1.5 times of the VA.

The BCJR Algorithm
- In 1974 Bahl, Cocke, Jelinek, and Ravi introduced a MAP decoder, called the BCJR algorithm
- The computation complexity of the BCJR algorithm is greater than the Viterbi algorithm
- Viterbi decoding is preferred in the case of equally likely information bits. When the information bits are not equally, however better performance is achieved with MAP decoding.

We describe the BCJR algorithm for the case of rate \( R = 1/n \) convolutional codes used on a binary-input, continuous-output AWGN channel and on a DMC.

Our presentation is based on the log-likelihood ratios, or L-values. The decoder input are the received sequence \( r \) and a priori L-value of the information bits \( L_a(u_l), l = 0, 1, \ldots, h - 1 \).
As in the case of the SOVA, we do not assume that the information bits are equally likely. The algorithm calculates the a posteriori L-values

\[ L(ul) \equiv \log \frac{P(u_l = +1|r)}{P(u_l = -1|r)} \]

called the APP L-values, of each information bits, and the decoder output is given by

\[
\hat{u}_l = \begin{cases} 
+1 & \text{if } L(u_l) > 0 \\
-1 & \text{if } L(u_l) < 0 
\end{cases}
\]

In iterative decoding, the APP L-values can be taken as the decoder outputs, resulting in a SISO decoding algorithm.

We begin our development of the BCJR algorithm by rewriting the APP value \( P(u_l = +1|r) \) as follows:

\[
P(u_l = +1|r) = \frac{\sum_{u \in U^+_l} p(r|v) P(u)}{\sum_u p(r|v) P(u)}
\]

where \( U^+_l \) is the set of all information sequence \( u \) such that \( u_l = +1 \), \( v \) is the transmitted codeword corresponding to the information sequence \( u \), and \( p(r|v) \) is the pdf of the received sequence \( r \) given \( v \).

First, making use of the trellis structure of the code, we can reformulate \( P(u_l = +1|r) \) as follow:

\[
P(u_l = +1|r) = \frac{\sum_{(s,s') \in \Sigma^+_l} p(s_l = s', s_{l+1} = s, r)}{P(r)}
\]

where \( \Sigma^+_l \) is the set of all state pairs \( s_l = s' \) and \( s_{l+1} = s \) that correspond to the input bit \( u_l = +1 \) at time \( l \). Reformulating the expression \( p(u_l = -1|r) \) in the same way, we can now write the APP L-value as

\[
L(u_l) = \ln \left\{ \frac{\sum_{(s,s') \in \Sigma^+_l} p(s_l = s', s_{l+1} = s, r)}{\sum_{(s,s') \in \Sigma^-_l} p(s_l = s', s_{l+1} = s, r)} \right\}
\]

where \( \Sigma^-_l \) is the set of all state pairs \( s_l = s' \) and \( s_{l+1} = s \) that correspond to the input bit \( u_l = -1 \) at time \( l \).
The joint pdf’s \( p(s', s, r) \) can be evaluated recursively.

\[
p(s', s, r) = p(s', s, r_{t<l}, r_t, r_{t,l})
\]

where \( r_{t<l} \) represents the portion of the received sequence \( r \) before time \( l \), and \( r_{t,l} \) represents the portion of the received sequence \( r \) after time \( l \). Application of Bayes’ rule yields

\[
p(s', s, r) = p(r_{t|l}|s', s, r_{t<l}, r_l)p(s', s, r_{t<l}, r_l)
\]

\[
= p(r_{t|l}|s', s, r_{t<l}, r_l)p(s, r_t|s', r_{t<l})p(s', r_{t<l})
\]

\[
= p(r_{t|l}|s')P(s, r_t|s')p(s', r_{t<l})
\]

\[
P(s', s, r) = \sum_{s' \in \sigma_l} \gamma(s', s) \alpha_l(s')
\]

where the last equality follows from the fact that probability of the received branch at time \( l \) depend only on the state and input bit at time \( l \).

Define:

\[
\alpha_l(s') \equiv p(s', r_{t<l})
\]

\[
\gamma_l(s', s) \equiv p(s, r_t|s')
\]

\[
\beta_{l+1}(s) \equiv p(r_{t,l}|s)
\]

\[
P(s', s, r) = \beta_{l+1}(s) \gamma_l(s', s) \alpha_l(s')
\]
We can write the branch matrix $\gamma_l(s', s)$ as

$$\gamma_l(s, s') = P(s, r_l|s') = \frac{p(s', s, r_l)}{p(s')} = \left[ \frac{p(s', s, r_l)}{p(s')} \right]$$

For a continuous-output AWGN channel, if $s' \rightarrow s$ is a valid state transition,

$$\gamma_l(s', s) = P(u_l)p(r_l|v_l) = P(u_l) \left( \sqrt{\frac{E_s}{N_0}} \right)^n e^{-\frac{E_s}{N_0}||r_l-v_l||^2}$$

where $||r_l-v_l||^2$ is the squared Euclidean distance between the received branch $r_l$ and the transmitted branch $v_l$ at time $l$.

The constant term $\left( \sqrt{\frac{E_s}{N_0}} \right)^n$ always appears raised to the power $h$ in the expression for the pdf $p(s', s, r)$. Thus, $\left( \sqrt{\frac{E_s}{N_0}} \right)^n$ will be a factor of every term in the numerator and denominator summations of $L(u_l)$, and its effect will cancel. The result in the modified branch metric:

$$\gamma_l(s', s) = P(u_l)e^{-\frac{E_s}{N_0}||r_l-v_l||^2}$$

then

$$\gamma_l(s, s') = A_l e^{u_lL_{e}(u_l)/2} e^{-(E_s/N_0)||r_l-v_l||^2}$$

where $B_l \equiv ||r_l||^2 + n$ is a constant independent of the codeword $v_l$, and $L_e = 4E_s/N_0$ is the channel reliability factor.
Using the log-domain metric:

\[
\gamma_l^*(s', s) \equiv \ln \gamma_l(s', s) = \begin{cases} 
\frac{u_l L_0(u_l)}{2} + \frac{L}{r_l} r_l \cdot v_l & l = 0, 1, \ldots, h - 1 \\
\frac{L}{r_l} r_l \cdot v_l & l = h, h + 1, \ldots, K - 1
\end{cases}
\]

We define a max calculate function:

\[
\max^*(x, y) = \ln(e^x + e^y) = \max(x, y) + \ln(1 + e^{-|x-y|})
\]

\[
\alpha_{l+1}^*(s) \equiv \ln \alpha_{l+1}(s) = \ln \sum_{s' \in \sigma_l} \gamma_l(s', s) \alpha_l(s') = \ln \sum_{s' \in \sigma_l} e^{[\gamma_l^*(s', s) + \alpha_l^*(s')]} = \max_{s' \in \sigma_l} [\gamma_l^*(s', s) + \alpha_l^*(s')]
\]

\[
\beta_l^*(s) \equiv \ln \beta_l(s) = \ln \sum_{s' \in \sigma_l+1} \gamma_l(s', s) \beta_{l+1}(s) = \ln \sum_{s' \in \sigma_l+1} e^{[\gamma_l^*(s', s) + \beta_{l+1}^*(s)]} = \max_{s' \in \sigma_l+1} [\gamma_l^*(s', s) + \beta_{l+1}^*(s)]
\]

\[
\alpha_0^*(s) \equiv \ln \alpha_0(s) = \begin{cases} 
0, & s = 0 \\
-\infty, & s \neq 0
\end{cases}
\]

\[
\beta_K^*(s) \equiv \ln \beta_K(s) = \begin{cases} 
0, & s = 0 \\
-\infty, & s \neq 0
\end{cases}
\]
Termination using MAX-LOG

\[ P(s', s, r) = e^{b_{i+1}(s)} + \gamma_i'(s', s) + \alpha_i(s') \]

and

\[ L(u_l) = \ln \left\{ \sum_{(s', s) \in \Sigma_i^+} e^{b_{i+1}(s)} + \gamma'_i(s', s) + \alpha'_i(s') \right\} - \ln \left\{ \sum_{(s', s) \in \Sigma_i^-} e^{b_{i+1}(s)} + \gamma'_i(s', s) + \alpha'_i(s') \right\} \]

**Log-Domain BCJR Algorithm**

1. Initial the forward and backward metrics \( \alpha_0^*(s) \) and \( \beta_K^*(s) \)
2. Compute the branch metrics \( \gamma_i(s', s), l = 0, 1, \ldots, K - 1 \)
3. Compute the forward metrics \( \alpha_{l+1}^*(s), l = 0, 1, \ldots, K - 1 \)
4. Compute the backward metrics \( \beta_i^*(s'), l = K - 1, K - 2, \ldots, 0 \)
5. Compute the APP L-values \( L(u_l), l = 0, 1, \ldots, h - 1 \)
6. (Optional) Compute the hard decisions \( \hat{u}_l, l = 0, 1, \ldots, h - 1 \)

**Ex: BCJR decoding of a (2,1,1) systematic recursive Convolutional code on an AWGN channel**

Figure 16: (2,1,1) systematic feedback encoder

Figure 17: decoding trellis for the (2,1,1) encoder
\[
\begin{align*}
\gamma_0^*(S_0, S_0) &= -\frac{1}{2} L_o(u_0) + \frac{1}{2} r_0 \cdot v_0 \\
&= \frac{1}{2} (-0.8 - 0.1) = -0.45 \\
\gamma_0^*(S_0, S_1) &= +\frac{1}{2} L_o(u_0) + \frac{1}{2} r_0 \cdot v_0 \\
&= \frac{1}{2} (0.8 + 0.1) = 0.45 \\
\gamma_1^*(S_0, S_0) &= -\frac{1}{2} L_o(u_0) + \frac{1}{2} r_0 \cdot v_0 \\
&= \frac{1}{2} (-1.0 + 0.5) = -0.25 \\
\gamma_1^*(S_0, S_1) &= +\frac{1}{2} L_o(u_0) + \frac{1}{2} r_0 \cdot v_0 \\
&= \frac{1}{2} (1.0 - 0.5) = 0.25 \\
\gamma_2^*(S_1, S_1) &= -\frac{1}{2} L_o(u_0) + \frac{1}{2} r_0 \cdot v_0 \\
&= \frac{1}{2} (1.8 + 0.1) = 1.45 \\
\gamma_2^*(S_1, S_0) &= +\frac{1}{2} L_o(u_0) + \frac{1}{2} r_0 \cdot v_0 \\
&= \frac{1}{2} (-1.8 - 1.1) = -1.45 \\
\gamma_3^*(S_0, S_0) &= +\frac{1}{2} r_3 \cdot v_3 \\
&= \frac{1}{2} (-1.6 + 1.6) = 0 \\
\gamma_3^*(S_1, S_0) &= +\frac{1}{2} r_3 \cdot v_3 \\
&= \frac{1}{2} (1.6 + 1.6) = 1.6 \\
\end{align*}
\]
compute the log-domain backward metrics

\[
\beta_2^* (S_0) = \left[ \gamma_2^* (S_0, S_0) + \beta_2^* (S_0) \right] = 0 + 0 = 0
\]

\[
\beta_2^* (S_1) = \left[ \gamma_2^* (S_1, S_0) + \beta_2^* (S_0) \right] = 1.60 + 0 = 1.60
\]

\[
\beta_2^* (S_0) = \max* \left\{ \left[ \gamma_2^* (S_0, S_0) + \beta_2^* (S_0) \right], \left[ \gamma_2^* (S_0, S_1) + \beta_2^* (S_1) \right] \right\}
= \max* \left\{ \left[ 0.35 + (0) \right], \left[ (-0.35) + (1.60) \right] \right\}
= \max* (0.35, 1.25) = 1.25 + \ln (1 + e^{-|0.9|}) = 1.59
\]

\[
\beta_2^* (S_1) = \max* \left\{ \left[ \gamma_2^* (S_1, S_0) + \beta_2^* (S_0) \right], \left[ \gamma_2^* (S_1, S_1) + \beta_2^* (S_1) \right] \right\}
= \max* (-1.45, 3.05) = 3.05 + \ln (1 + e^{-4.5}) = 3.06
\]

\[
\beta_1^* (S_0) = \max* \left\{ \left[ \gamma_1^* (S_0, S_0) + \beta_1^* (S_0) \right], \left[ \gamma_1^* (S_0, S_1) + \beta_1^* (S_1) \right] \right\}
= \max* (1.34, 3.31) = 3.44
\]

\[
\beta_1^* (S_1) = \max* \left\{ \left[ \gamma_1^* (S_1, S_0) + \beta_1^* (S_0) \right], \left[ \gamma_1^* (S_1, S_1) + \beta_1^* (S_1) \right] \right\}
= \max* (2.34, 2.31) = 3.02
\]

**EX: BCJR decoding of a (2,1,2) Nonsystematic Convolutional code on a DMC**

Assume a binary-input, 8-ary output DMC with transition probabilities \( p(r_j^{(j)}|v_i^{(j)}) \) given by the following table:

<table>
<thead>
<tr>
<th>( v_i^{(j)} ) ( r_j^{(j)} )</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.434</td>
<td>0.197</td>
<td>0.167</td>
<td>0.111</td>
<td>0.058</td>
<td>0.023</td>
<td>0.008</td>
<td>0.002</td>
</tr>
<tr>
<td>1</td>
<td>0.002</td>
<td>0.008</td>
<td>0.023</td>
<td>0.058</td>
<td>0.111</td>
<td>0.167</td>
<td>0.197</td>
<td>0.434</td>
</tr>
</tbody>
</table>

Finally compute the APP L-values for the three information bits:

\[
L(u_0) = [\gamma_0^* (S_0) + \gamma_0^* (S_0, S_0)] + \alpha_0^* (S_0) - [\beta_2^* (S_0) + \gamma_0^* (S_0, S_0)]
= (3.47) - (2.99) = 0.48
\]

\[
L(u_1) = \max* \{ (\alpha_1^* (S_1) + \gamma_1^* (S_1, S_1)), (\gamma_1^* (S_1, S_0) + \gamma_1^* (S_1, S_1)) \}
\]

\[
L(u_2) = \max* \{ (\beta_2^* (S_0) + \gamma_2^* (S_0, S_0)), (\gamma_2^* (S_0, S_1) + \alpha_2^* (S_0)) \}
\]

The hard-decision outputs of the BCJR decoder for the three information bits:

\( \hat{u} = (+1,+1,-1) \)
compute the (probability-domain) branch metrics
\[ \gamma_0(S_0, S_0) = p(u_0 = 0)p(1_4|00) = (2/3)p(1_4|0)p(0_1|0) = (2/3)(0.058)(0.434) = 0.01678 \]
\[ \gamma_0(S_0, S_1) = p(u_0 = 1)p(1_4|11) = (1/3)p(1_4|1)p(0_1|1) = (1/3)(0.111)(0.002) = 0.000074 \]

compute the (probability-domain) normalized forward metrics
\[ \alpha_1(S_0) = \gamma_0(S_0, S_0)\alpha_0(S_0) = (0.01678)(1) = 0.01678 \]
\[ \alpha_1(S_1) = \gamma_0(S_0, S_1)\alpha_0(S_0) = (0.000074)(1) = 0.000074 \]
\[ a_1 = \alpha_0(S_0) + \alpha_1(S_1) = 0.01678 + 0.000074 = 0.016854 \]
\[ A_1(S_0) = \alpha_1(S_0)/a_1 = (0.01678)/(0.016854) = 0.9956 \]
\[ A_1(S_1) = 1 - A_1(S_0) = 1 - 0.9956 = 0.0044 \]

... = ...
compute the (probability-domain) normalized backward metrics

\[
\begin{align*}
\beta_0(S_0) &= \gamma_5(S_0, S_0) \beta_0(S_0) = (0.0855)(1) = 0.0855 \\
\beta_5(S_2) &= \gamma_5(S_2, S_0) \beta_0(S_0) = (0.000016)(1) = 0.00016 \\
b_5 &= \beta_5(S_0) + \beta_5(S_2) = 0.0855 + 0.00016 = 0.085616 \\
B_5(S_0) &= \beta_5(S_0)/b_5 = (0.0855)/(0.085516) = 0.9998 \\
B_5(S_2) &= 1 - B_5(S_0) = 1 - 0.9998 = 0.0002 \\
\vdots &= \vdots
\end{align*}
\]

compute the APP L-value

\[
\begin{align*}
L(u_0) &= \ln\left\{ \frac{B_1(S_1) \gamma_0(S_0, S_1) A_0(S_0)}{B_2(S_0) \gamma_0(S_0, S_0) A_0(S_0)} \right\} \\
&= \ln\left\{ \frac{(0.8162)(0.000074)(1)}{(0.1838)(0.01678)(1)} \right\} = -3.933 \\
L(u_1) &= \ln\left\{ \frac{B_2(S_1) \gamma_1(S_0, S_1) A_1(S_1) + B_3(S_2) \gamma_1(S_1, S_2) A_1(S_1)}{B_2(S_0) \gamma_1(S_0, S_0) A_1(S_0) + B_2(S_2) \gamma_1(S_1, S_2) A_1(S_1)} \right\} \\
&= \ln\left\{ \frac{(0.2028)(0.003229)(0.9956) + (0.5851)(0.006179)(0.9956)}{(0.1060)(0.001702)(0.9956) + (0.1060)(0.008893)(0.9956)} \right\} = +1.311 \\
L(u_2) &= -1.234 \\
L(u_3) &= -8.817
\end{align*}
\]

\[\hat{u} = (\hat{u}_0, \hat{u}_1, \hat{u}_2, \hat{u}_3) = (0, 1, 1, 0)\]
Suboptimal decoding: sequential decoding

Suboptimum Decoding Of Convolutional Code

The Viterbi and BCJR decoding are not achievable in practice at rates close to capacity. This is because the decoding effort is fixed and grows exponentially with constraint length, and thus only short constraint length codes can be used.

The ZJ Algorithm

1. Load the stack with the origin node in the tree, whose metric is taken to be zero
2. Compute the metric of the successors of the top path in the stack
3. Delete the top path from the stack
4. Insert the new paths from the stack and rearrange the stack in order of decreasing metric values
5. If the top in the stack ends at a terminal node in the tree, stop. Otherwise, return to step 2

ex:
The code tree for the \((3, 1, 2)\) feed forward encoder with

\[
G(D) = \left( 1 + D, 1 + D^2, 1 + D + D^2 \right)
\]

is shown below, and the information sequence of length \(h = 5\).
Bit Metric For BSC

For a BSC with transition probability $p$, $p(r_l = 0) = p(r_l = 1) = 1/2$ for all $l$, and the bit metrics are given by

$$M(r_l | v_l) = \begin{cases} 
\log_2 2p - R & r_l \neq v_l \\
\log_2 (1 - p) - R & r_l = v_l 
\end{cases}$$

ex: For $R=1/3$ and $p=0.1$,

$$M(r_l | v_l) = \begin{cases} 
-2.65 & r_l \neq v_l \\
+0.52 & r_l = v_l 
\end{cases}$$

Consider the application of the ZJ algorithm to the code tree, assume a codeword is transmitted from this code over a BSC with $p = 0.10$, and the sequence

$r = (010, 010, 001, 110, 100, 101, 011)$

is received Using the integer metric table, we shown the contents of the stack after each step of the algorithm and decoding process in next slide
The final decoding path is

\[ \hat{v} = (111, 010, 001, 110, 100, 101, 011) \]

corresponding to the information sequence \( \hat{u} = (11101) \)

Note that \( \hat{v} \) disagrees with \( r \) in only 2 positions, the fraction of error in \( r \) is \( \frac{2}{21} = 0.095 \) which is roughly equal to the channel transition probability of \( p = 0.10 \).

The situation is somewhat different when the received sequence \( r \) is very noisy.

From the same code, channel, matric table assume that the sequence

\[ r = (110, 110, 110, 010, 101, 101) \]

is received. The contents of the stack after each step of the algorithm are shown:

The algorithm terminates after 20 decoding steps, and the final decoded path is

\[ v = (111, 010, 110, 011, 111, 101, 011) \]

corresponding to the information sequence

\[ \hat{u} = (11001) \]
In this example, the sequence decoder performs 20 computations, whereas the Viterbi algorithm would again require only 15 computations. This is because the number of computations performed by a sequential decoder is a random variable, the computation load of the Viterbi algorithm is fixed. The fraction of errors in the received sequence $r$ is $\frac{7}{21} = 0.333$, which is much greater than the channel transition probability of $p = 0.10$.

---

**Chapter 8: Trellises of Codes**

1. Introduction
2. Finite-state machine model and trellis representation of a code
3. Bit-level trellises for binary linear block codes
4. State labeling
5. Structural properties of bit-level trellises
6. State labeling and trellis construction based on the parity-check matrix
7. Trellis complexity and symmetry
8. Trellis sectionalization and parallel decomposition
9. Cartesian product

Constructing and representing codes with graphs have long been interesting problems to many coding theorists. The most commonly known graphical representation of a code is the trellis representation.

A code trellis diagram is simply an edge-labeled directed graph in which every path represents a codeword (or a code sequence for a convolutional code).

This representation makes it possible to implement maximum likelihood decoding (MLD) of a code with a significant reduction in decoding complexity.
The history of trellis representation

- Trellis representation was first introduced by Forney in 1973 as a means of explaining the decoding algorithm for convolutional codes devised by Viterbi.
- Trellis representation of linear block codes was first presented by Bahl, Cocke, Jelinek, and Raviv in 1974.
- In 1988, Forney showed that some block codes, such as RM codes and some lattice codes, have relatively simple trellis structures.

Finite-state machine model

- Let $\Gamma = 0,1,2,...$ denote the entire encoding interval (or span) that consists of a sequence of encoding time instants.
- A unit encoding interval:
  The interval between two consecutive time instants.
- During this unit encoding interval, code symbols are generated at the output of the encoder based on
  \[
  \begin{align*}
    & \text{The current input information symbols} \\
    & \text{The past information symbols that are stored in the memory}
  \end{align*}
  \]
  according to a certain encoding rule.

- With these definitions of a state and a state transition, the encoder can be modeled as a finite-state machine, as shown in Figure 1.

Figure 1: A finite-state machine model for an encoder with finite memory.
Trellis diagram

- The dynamic behavior of the encoder can be graphically represented by a state diagram in time.
- It consists of levels of nodes and edges connecting the nodes of one level to the nodes of the next level.

Trellis representation of a code

- This state transition, in the trellis diagram, is represented by a directed edge (commonly called a branch). Each branch has a label.
- The set of allowable states at a given time instant $i$ is called the state space of the encoder at time-$i$, denoted by $\Sigma_i(C)$.
- A state $s_i \in \Sigma_i(C)$ is said to be reachable if there exists an information sequence that takes (drives) the encoder from the initial state $s_0$ to the state $s_i$ at time-$i$.
- In the trellis, every node at level-$i$ for $i \in \Gamma$ is connected by a path (defined as a sequence of connected branches) from the initial node.
- Every node in the trellis has at least one incoming branch except for the initial node and at least one outgoing branch except for a node that represents the final state of the encoder at the end of the entire encoding interval.
- In this graphical representation of a code, there is a one-to-one correspondence between a codeword (or code sequence) and a path in the code trellis.
- Every path in the code trellis represents a codeword.
• For \( i \in \Gamma \), let
  
  \[ I_i: \text{ The input information block} \]
  \[ O_i: \text{ The output code block} \]
  
  during the interval from time-\( i \) to time-\( (i + 1) \).

• The dynamic behavior of the encoder for a linear code is governed by two functions:
  1. Output function:
     
     \[ O_i = f_i(s_i, I_i), \]
     
     where \( f_i(s_i, I_i) \neq f_i(s_i, I_i') \) for \( I_i \neq I_i' \).
  2. State transition function:
     
     \[ s_{i+1} = g_i(s_i, I_i), \]
     
     where \( s_i \in \Sigma_i(C) \) and \( s_{i+1} \in \Sigma_{i+1}(C) \) are called the current and next states, respectively.

A code trellis is said to be time-invariant if there exists a finite period \( \{0, 1, \ldots, v\} \subset \Gamma \) and a state space \( \Sigma(C) \) such that

1. \( \Sigma_i(C) \subset \Sigma(C) \) for \( 0 < i < v \), and \( \Sigma_i(C) = \Sigma(C) \) for \( i \geq v \)

2. \( f_i = f \) and \( g_i = g \) for all \( i \in \Gamma \).

In general:

<table>
<thead>
<tr>
<th>Block code</th>
<th>A trellis diagram is time-varying.</th>
</tr>
</thead>
<tbody>
<tr>
<td>convolutional code</td>
<td>A trellis diagram is usually time-invariant.</td>
</tr>
</tbody>
</table>

Figure 3: A time-varying trellis diagram for a block code.

Figure 4: A time-invariant trellis diagram for a convolutional code.
-bit-level trellis for binary block codes

- Definition:
  An \( n \)-section bit-level trellis diagram for a binary linear block code \( C \) of length \( n \), denote by \( T \), is a directed graph consisting of \( n + 1 \) levels of nodes (called \( \text{states} \)) and branches (also called \( \text{edges} \)) such that:

1. For \( 0 \leq i \leq n \), the nodes at the \( i \)th level represent the states in the state space \( \sum_i(C) \) of the encoder \( E(C) \) at time-\( i \).
   - At time-0 (or the zeroth level) there is only one node, denoted by \( s_0 \), called the initial node (or state).
   - At time-\( n \) (or the \( n \)th level), there is only one node, denoted by \( s_f \) (or \( s_n \)), called the final node (or state).
2. For \( 0 \leq i < n \), a branch in the section of the trellis \( T \) between the \( i \)th level and the \((i+1)\)th level (or time-\( i \) and time-\((i+1)) \) connects a state \( s_i \in \sum_i(C) \) to a state \( s_{i+1} \in \sum_{i+1}(C) \) and is labeled with a code bit \( v_i \) that represents the encoder output in the bit interval from time-\( i \) to time-\((i+1) \). A branch represents a state transition.

- To Define
  \( \rho_i(C) \triangleq \log_2 |\sum_i(C)| \), which is called the \( \text{state space dimension at time-}i \).

- We simply use \( \rho_i \) for \( \rho_i(C) \) for simplicity. The sequence \( (\rho_0, \rho_1, \ldots, \rho_n) \) is called the state space dimension profile.

- Example:
  From Figure 3 we find that the state space complexity profile and the state space dimension profile for the (8, 4) RM code are \((1, 2, 4, 8, 4, 8, 4, 2, 1)\) and \((0, 1, 2, 3, 2, 3, 2, 1, 0)\), respectively.

- To facilitate the code trellis construction, we arrange the generator matrix \( G \) in a special form.
  Let \( v = (v_0, v_1, \ldots, v_{n-1}) \) be a nonzero binary \( n \)-tuple.

- The first nonzero component of \( v \) is called the leading 1 of \( v \), and the last nonzero component of \( v \) is called the trailing 1 of \( v \).

- A generator matrix \( G \) for \( C \) is said to be in trellis oriented form (TOF) if the following two conditions hold:
  1. The leading 1 of each row of \( G \) appears in a column before the leading 1 of any row below it.
  2. No two rows have their trailing 1’s in the same column.
• Any generator matrix for $C$ can be put in TOF by two steps of Gaussian elimination.\(^a\)

• Example:
Consider the first-order RM code of length 8, RM(1,3). It is an (8,4) code with the following generator matrix \(^b\):

$$G = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{bmatrix}.$$ 

\(^a\)Note that a generate matrix in TOF is not necessarily in systematic form.

\(^b\)It is not in TOF.

By interchanging the second and the fourth rows, we have

$$G' = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}.$$

We add the fourth row of the matrix to the first, second, and third rows. These additions result in the following matrix in TOF:

$$G_{TOF} = \begin{bmatrix}
g_0 \\
g_1 \\
g_2 \\
g_3
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}$$

where TOGM stands for trellis oriented generator matrix.

Let $g = (g_0, g_1, \ldots, g_{n-1})$ be a row in $G_{TOF}$ for code $C$.

1. Let $\mathcal{O}(g) = (i, i+1, \ldots, j)$ denote the smallest index interval that contains all the nonzero components of $g$.

2. This say that $g_i = 1$ and $g_j = 1$, and they are the leading and trailing 1’s of $g$, respectively.

3. This interval $\mathcal{O}(g) = (i, i+1, \ldots, j)$ is called the digit (or bit) span of $g$.

4. We define the time span of $g$, denoted by $\tau(g)$, as the following time interval: $\tau(g) \triangleq (i, i+1, \ldots, j+1)$.

5. For simplicity, we write $\mathcal{O}(g) = [i, j]$, and $\tau(g) = [i, j + 1]$, we define the active time span of $g$, denoted by $\tau_a(g)$, as the time interval. $\tau_a(g) \triangleq [i + 1, j]$, for $j > i$.

\(\triangleq\)
• **Example**: To consider the TOGM of the (8, 4) RM code

\[
G_{TOGM} = \begin{bmatrix}
g_0 \\
g_1 \\
g_2 \\
g_3 \\
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]

- We can find that the bit spans of the rows are \(\emptyset(g_0) = [0, 3]\), \(\emptyset(g_1) = [1, 6]\), \(\emptyset(g_2) = [2, 5]\), \(\emptyset(g_3) = [4, 7]\).
- The time spans of the rows are \(\tau(g_0) = [0, 4]\), \(\tau(g_1) = [1, 7]\), \(\tau(g_2) = [2, 6]\), \(\tau(g_3) = [4, 8]\).
- The active time spans of the rows are \(\tau_a(g_0) = [1, 3]\), \(\tau_a(g_1) = [2, 6]\), \(\tau_a(g_2) = [3, 5]\), \(\tau_a(g_3) = [5, 7]\).

Now, we give a mathematical formulation of the state space of the \(n\)-section bit-level trellis for an \((n, k)\) linear code \(C\) over \(GF(2)\) with a TOGM \(G_{TOGM}\).

- At time-\(i\), \(0 \leq i \leq n\), we divide the rows of \(G_{TOGM}\) into three disjoint subsets:
  1. \(G_i^0\) consists of those rows of \(G_{TOGM}\) whose bit spans are contained in the interval \([0, i - 1]\).
  2. \(G_i^1\) consists of those rows of \(G_{TOGM}\) whose bit spans are contained in the interval \([i, n - 1]\).
  3. \(G_i^s\) consists of those rows of \(G_{TOGM}\) whose active time spans contain time-\(i\).

\(\begin{align*}
G_i^0 &= \{\text{rows in } G_{TOGM} \text{ with bit spans in } [0, i - 1]\} \\
G_i^1 &= \{\text{rows in } G_{TOGM} \text{ with bit spans in } [i, n - 1]\} \\
G_i^s &= \{\text{rows in } G_{TOGM} \text{ with active time spans containing } i\}
\end{align*}\)

Let \(A_i^p\), \(A_i^f\), and \(A_i^s\) denote the subsets of information bits, \(a_0, a_1, \ldots, a_{k-1}\), that correspond to the rows of \(G_i^p\), \(G_i^f\), and \(G_i^s\), respectively.

- The bits in \(A_i^f\) are the information bits stored in the encoder memory that affect the current output code bit \(v_i\) and the future output code bits beyond time-\(i\). These information bits in \(A_i^s\) hence define a state of the encoder \(E(C)\) for the code \(C\) at time-\(i\).

- Let \(\rho_i \triangleq |A_i^s| = |G_i^s|\).

Then, there are \(2^{\rho_i}\) distinct states in which the encoder \(E(C)\) can reside at time-\(i\); each state is defined by a specific combination of the \(\rho_i\) information bits in \(A_i^s\).

\(\rho_i\) is the dimension of the state space \(\sum_i(C)\).

\(A_i^s\) is the state defining information set at time-\(i\).
Table 1: Partition of the TOGM of the (8, 4) RM code

<table>
<thead>
<tr>
<th>Time $i$</th>
<th>$G_i^0$</th>
<th>$G_i^1$</th>
<th>$G_i^2$</th>
<th>$\rho_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\phi$</td>
<td>${g_0, g_1, g_2}$</td>
<td>$\phi$</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>$\phi$</td>
<td>${g_1, g_2, g_3}$</td>
<td>${g_0}$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$\phi$</td>
<td>${g_2, g_3}$</td>
<td>${g_0, g_1}$</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>$\phi$</td>
<td>${g_3}$</td>
<td>${g_0, g_1, g_2}$</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>${g_0}$</td>
<td>${g_3}$</td>
<td>${g_1, g_2}$</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>${g_0}$</td>
<td>$\phi$</td>
<td>${g_1, g_2, g_3}$</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>${g_0, g_2}$</td>
<td>$\phi$</td>
<td>${g_1, g_3}$</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>${g_0, g_1, g_2}$</td>
<td>$\phi$</td>
<td>${g_3}$</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>${g_0, g_1, g_2, g_3}$</td>
<td>$\phi$</td>
<td>$\phi$</td>
<td>0</td>
</tr>
</tbody>
</table>

- For $0 \leq i < n$, suppose the encoder $E(C)$ is in state $s_i \in \Sigma_i(C)$.
  From time-$i$ to time-$(i + 1)$, $E(C)$ generates a code bit $v_i$ and moves from state $s_i$ to a state $s_{i+1} \in \Sigma_{i+1}(C)$.

- Let $G_i^s = g_1^{(i)}, g_2^{(i)}, \ldots, g_{\rho_i}^{(i)}$.
  and
  $A_i^s = a_1^{(i)}, a_2^{(i)}, \ldots, a_{\rho_i}^{(i)}$,
  where $\rho_i = |A_i^s| = |G_i^s|$. The current state $s_i$ of the encoder is defined by a specific combination of the information bits in $A_i^s$.

- Let $g^*$ denote the row in $G_i^f$ whose leading 1 is at bit position $i$.
  Let $g^*_i$ denote the $i$th component of $g^*$. Then, $g^*_i = 1$.

- Let $a^*$ denote the information bit that corresponds to row $g^*$.

- The output code bit $v_i$ generated during the bit interval between time-$i$ and time-$(i + 1)$ is given by
  $$v_i = a^* + \sum_{l=1}^{\rho_i} a_l^{(i)} \cdot g_l^{(i)}$$
  where $g_l^{(i)}$ is the $i$th component of $g_l^{(i)}$ in $G_i^s$.

- Note that the information bit $a^*$ begins to affect the output of the encoder $E(C)$ at time-$i$. For this reason, bit $a^*$ is regarded as the current input information bit.

- The output code bit $v_i$ can have two possible values depending on the current input information bit $a^*$.

- Suppose there is no such row $g^*$ in $G_i^f$. Then, the output code bit $v_i$ at time-$i$ is given by
  $$v_i = \sum_{l=1}^{\rho_i} a_l^{(i)} \cdot g_l^{(i)}$$
  that is, $a^* = 0$ (this is called a dummy information bit).
• Example: To consider the TOGM of the (8, 4) RM code

\[ G_{\text{TOGM}} = \begin{bmatrix} g_0 \\ g_1 \\ g_2 \\ g_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \]

- From Table 1 we find that at time–2, \( G_{\text{TOGM}}^2 = \{g_0, g_1\} \). Therefore, \( A_2 = \{a_0, a_1\} \), the information bit \( a_0 \) and \( a_1 \) define the state of the encoder at time–2, and there are four distinct state defined by four combinations of values of \( a_0 \) and \( a_1 \), \( \{00, 01, 10, 11\} \).

- We also find that \( g^* = g_2 \). Hence, the current input information bit at time–2 is \( a^* = a_2 \). The current output code bit \( v_2 \) is given by

\[ v_2 = a_2 + a_0 \cdot g_2 + a_1 \cdot g_{12} = a_2 + a_0 \cdot 1 + a_1 \cdot 1 = a_2 + a_0, \]

where \( a_2 \) denotes the current input.

- For every state defined by \( a_0 \) and \( a_1 \), \( v_2 \) has two possible values depending on \( a_2 \). In the trellis there are two branches diverging from each state at time–2, as shown in Figure 3.

Now, consider time–3. For \( i = 3 \), we find that \( G_{\text{TOGM}}^3 = \{g_0\} \), \( G_{\text{TOGM}}' = \{g_3\} \), and \( G_3^* = \{g_0, g_1, g_2\} \). Therefore, \( A_3^* = \{a_0, a_1, a_2\} \), and the information bits in \( A_3^* \) define eight states at time–3, as shown in Figure 3.

- There is no row \( g^* \) in \( G_4^* \) with leading 1 at bit position \( i = 3 \).

Hence, we set the current input information bit \( a^* = 0 \). The output code bit \( v_3 \) is given by

\[ v_3 = \sum_{l=1}^{\rho} a_{i}^{(l)} \cdot g_{i}^{l} \]

\[ v_3 = a_0 \cdot g_{03} + a_1 \cdot g_{13} + a_2 \cdot g_{23} \]

\[ v_3 = a_0 \cdot 1 + a_1 \cdot 1 + a_2 \cdot 1 \]

\[ = a_0 + a_1 + a_2 \]

- In the trellis, there is only one branch diverging from each of the eight states, as shown in Figure 3.

---

*Note that this row \( g^0 \) may not exist.
\* Example: To consider the TOGM of the \((8, 4)\) RM code

\[
G_{\text{TOGM}} = \begin{bmatrix}
g_0 \\
g_1 \\
g_2 \\
g_3
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}
\]

- Suppose the trellis for this code has been constructed up to time–4. At this point, we find from Table 1 that \(G_{\text{TOGM}} = \{g_1, g_2\}\). The state space \(\Sigma_i(C)\) is defined by \(A_i^+ = \{a_1, a_2\}\). There are four states at time–4, which are determined by the four combinations of \(a_1\) and \(a_2\) : \(\{(0, 0), (0, 1), (1, 0), (1, 1)\}\).

- To construct the trellis section from time–4 to time–5, we find that there is no row \(g^*\) in \(G_i^+ = \{g_1, g_2\}\), but there is a row \(g^*\) in \(G_5 = \{g_3\}\), which is \(g_3\).
The two connecting branches are labeled with

\[ v_5 = 0 + a_1 \cdot 0 + (a_2 = 0) \cdot 1 + a_3 \cdot 1, \]

and

\[ v_5 = 0 + a_1 \cdot 0 + (a_2 = 1) \cdot 1 + a_3 \cdot 1, \]

respectively, where \( 0 \) denotes the dummy input. This completes the construction of the trellis section from time–5 to time–6. Continue with this construction process until the trellis terminates at time–8.

State labeling

- In a code trellis, each state is labeled by a fixed sequence (or a given name).
- This labeling can be accomplished by using a \( k \)-tuple \( l(s) \) with components corresponding to the \( k \) information bits, \( a_0, a_1, \ldots, a_{k-1} \), in a message.
- At time–\( i \), all the components of \( l(s) \) are set to zero except for the components at the positions corresponding to the information bits in \( A_s^* = \{a_1^{(i)}, a_2^{(i)}, \ldots, a_{\rho_i}^{(i)}\} \).

Example:
Consider the \((8,4)\) code given in Example. At time–4, the state-defining information set is \( A_s^4 = \{a_1, a_2\} \).
- There are four states corresponding to four combinations of \( a_1 \) and \( a_2 \). Therefore, the label for each of these four states is given by \( (0, a_1, a_2, 0) \).
- At time–5, \( A_s^5 = \{a_1, a_2, a_3\} \), and there are eight states. The label for each of these eight states is given by \( (0, a_1, a_2, a_3) \).

The trellis construction procedure:
Suppose the trellis \( T \) has been constructed up to section–\( i \). At this point, \( G_i^*, A_i^* \) and \( \sum_i(C) \) are known. The \((i + 1)\)th section is constructed as follows:
1. Determine \( G_{i+1}^* \) and \( A_{i+1}^* \) from \( G_i^* \) and \( \sum_i(C) \).
2. Form the state space \( \sum_{i+1}(C) \) at time–\( i+1 \) and label each state in \( \sum_{i+1}(C) \) based on \( A_{i+1}^* \). The state in \( \sum_{i+1}(C) \) forms the nodes of the code trellis \( T \) at the \((i + 1)\)th level.
3. For each state \( s_i \) in \( \sum_i(C) \) at time–\( i \), determined its transition \( s_{i+1} \) to the state \( s_{i+1} \) in \( \sum_{i+1}(C) \) based on the information bits \( a^* \) and \( a^0 \). For each transition from a state \( s_i \) in \( \sum_i(C) \) to a state \( s_{i+1} \) in \( \sum_{i+1}(C) \), connect the state \( s_i \) to the state \( s_{i+1} \) by a branch \( (s_i, s_{i+1}) \).
4. For each state transition \( (s_i, s_{i+1}) \), determine the output code bit \( v_i \) and label the branch \( (s_i, s_{i+1}) \) with \( v_i \).
• **Example:** To consider the TOGM of the (8, 4) RM code

\[
G_{\text{TOGM}} = \begin{bmatrix}
g_0 \\
g_1 \\
g_2 \\
g_3 \\
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]

- For \(0 \leq i \leq 8\), we determined the submatrix \(G_i^*\) and the state-defining information set \(A_i^*\) as listed in Table 2.

- From \(A_i^*\) we form the label for each state in \(\sum_i(C)\) as shown in Table 2. The state transitions from time–\(i\) to time–\((i + 1)\) are determined by change from \(A_i^*\) to \(A_{i+1}^*\).

- Following the trellis construction procedure given described, we obtain the 8-section trellis diagram for the (8, 4) RM code as shown in Figure 5. Each state in the trellis is labeled by a 4-tuple.

\[
\begin{array}{|c|c|c|c|c|}
\hline
i & G_i^* & a^* & a^0 & A_i^* & \text{State label} \\
\hline
0 & \phi & a_0 & \phi & (0000) \\
1 & \{g_0\} & a_1 & \{a_0\} & (a_000) \\
2 & \{g_0, g_1\} & a_2 & \{a_0, a_1\} & (a_0a_100) \\
3 & \{g_0, g_1, g_2\} & \rho_i & \{a_0, a_1, a_2\} & (a_0a_1a_20) \\
4 & \{g_1, g_2\} & a_3 & \{a_1, a_2\} & (0a_1a_20) \\
5 & \{g_1, g_2, g_3\} & a_3 & \{a_1, a_2, a_3\} & (0a_1a_2a_3) \\
6 & \{g_1, g_3\} & a_3 & \{a_1, a_3\} & (0a_0a_3) \\
7 & \{g_3\} & a_3 & \{a_3\} & (000a_3) \\
8 & \phi & \phi & \phi & (0000) \\
\hline
\end{array}
\]

Table 2: State-defining sets and labels for the 8-section trellis for (8, 4) RM code.

- Let \((\rho_0, \rho_1, \ldots, \rho_n)\) be the state space dimension profile of the trellis. We define

\[
\rho_{\text{max}}(C) \triangleq \max_{0 \leq i \leq n} \rho_i
\]

which is simply the maximum state dimension of the trellis.

- Because \(\rho_i = |G_i^*| = |A_i^*|\) for \(0 \leq i \leq n\), and \(G_i^*\) is a submatrix of the generator matrix of \(C\), we have

\[
\rho_{\text{max}}(C) \leq k.
\]

- For each state \(s_i \in \sum_i(C)\), we form a \(\rho_{\text{max}}(C)\)-tuple, denote by \(l(s_i)\), in which the first \(\rho_i\) components are simply \(a_1^{(i)}, a_2^{(i)}, \ldots, a_{\rho_i}^{(i)}\), and the remaining \(\rho_{\text{max}}(C) - \rho_i\) components are set to 0; that is,

\[
l(s_i) \triangleq (a_1^{(i)}, a_2^{(i)}, \ldots, a_{\rho_i}^{(i)}, 0, 0, \ldots, 0).
\]

Then, \(l(s_i)\) is the label for the state \(s_i\).
Example:
For the $(8, 4)$ RM code, the state space dimension profile of its 8–section trellis is $(0, 1, 2, 3, 2, 3, 2, 1, 0)$.
- Hence, $\rho_{\text{max}}(C) = 3$. Using 3 bits for labeling the states as described previously, we give the state labels in Table 3.
- Compared with the state labeling given in before example, 1 bit is saved.

<table>
<thead>
<tr>
<th>$i$</th>
<th>$A_i^*$</th>
<th>State label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\phi$</td>
<td>(000)</td>
</tr>
<tr>
<td>1</td>
<td>${a_0}$</td>
<td>(a0, 00)</td>
</tr>
<tr>
<td>2</td>
<td>${a_0, a_1}$</td>
<td>(a0a10)</td>
</tr>
<tr>
<td>3</td>
<td>${a_0, a_1, a_2}$</td>
<td>(a0a1a2)</td>
</tr>
<tr>
<td>4</td>
<td>${a_1, a_2}$</td>
<td>(a1a20)</td>
</tr>
<tr>
<td>5</td>
<td>${a_1, a_2, a_3}$</td>
<td>(a1a2a3)</td>
</tr>
<tr>
<td>6</td>
<td>${a_1, a_3}$</td>
<td>(a1a30)</td>
</tr>
<tr>
<td>7</td>
<td>${a_3}$</td>
<td>(a3, 00)</td>
</tr>
<tr>
<td>8</td>
<td>$\phi$</td>
<td>(000)</td>
</tr>
</tbody>
</table>

Table 3: State labeling for the $(8, 4)$ RM code using $\rho_{\text{max}}(C) = 3$ bits.

Example:
Consider the second-order RM code of length 16.
It is a $(16, 11)$ code with a minimum distance of 4. We obtain the following TOGM:

$$G_{\text{TOGM}} = \begin{bmatrix}
g_0 \\
g_1 \\
g_2 \\
g_3 \\
g_4 \\
g_5 \\
g_6 \\
g_7 \\
g_8 \\
g_9 \\
g_{10}
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

- From this TOGM, we easily find the state space dimension profile, $(0, 1, 2, 3, 3, 4, 4, 3, 3, 3, 2, 1, 0)$.
- The maximum state space dimension is $\rho_{\text{max}}(C) = 4$.
- We can use 4 bits to label the trellis states.

The state-defining information sets and state labels at each time instant are given in Table 4, shown in Figure 6.
Trellises for Linear Block Codes

Structure properties of trellises

- For $0 \leq i < j < n$, let $C_{i,j}$ denote the subcode of $C$ consisting of those codewords in $C$ whose nonzero components are confined to the span of $j - i$ consecutive positions in the set \{i, i + 1, ..., j - 1\}.

- Clearly, every codeword in $C_{i,j}$ is of the form

$$\begin{align*}
(0, &0, \ldots, 0, v_i, v_{i+1}, \ldots, v_{j-1}, 0, 0, \ldots, 0), \\
&i \leq n - j
\end{align*}$$

and $C_{i,j}$ is a subcode of $C$.

Department of Electrical Engineering, National Chung Hsing University
• The direct–sum of $C_{0,i}$ and $C_{i,n}$, denote by $C_{0,i} \oplus C_{i,n}$, is a 
subcode of $C$ with dimension $k(C_{0,i}) + k(C_{i,n})$. The partition 
$C/(C_{0,i} \oplus C_{i,n})$ consists of 
$$|C/(C_{0,i} \oplus C_{i,n})| = 2^{k(C_{0,i}) - k(C_{i,n})} = 2^{\rho_i}.$$ 

• Let $S_i$ denote the subspace of $C$ that is spanned by the rows in 
the submatrix $G^s_i$. Then, each codeword in $S_i$ is given by 
$$v = (a_1^{(i)}, a_2^{(i)}, \ldots, a_{\rho_i}^{(i)}) \cdot G^s_i$$ 
where $a_l^{(i)} \in A^s_i$ for $1 \leq l \leq \rho_i$. 

\*Note that $C_{0,i}$ and $C_{i,n}$ have only the all zero codeword $0$ in common. 
\*We see that there is one-to-one correspondence between $v$ and the state $s_i \in 
\sum_i(C)$ defined by $(a_1^{(i)}, a_2^{(i)}, \ldots, a_{\rho_i}^{(i)})$.

It follows from the definitions of $C_{i,j}^p$, $C_{i,j}^t$, and $C_{i,j}^s$ that 
$$C = S_i \oplus (C_{0,i} \oplus C_{i,n})$$ 
The $2^{\rho_i}$ codewords in $S_i$ can be used as the representatives for 
the cosets in the partition $C/(C_{0,i} \oplus C_{i,n})$. Therefore, $S_i$ is the 
coset representative space for the partition $C/(C_{0,i} \oplus C_{i,n})$.

• For $0 \leq i < j < n$, let $p_{i,j}(C)$ denote the linear code of length 
$j - i$ obtained from $C$ by removing the first $i$ and last $n - j$ 
components of each codeword in $C$. Every codeword in $p_{i,j}(C)$ is 
of the form 
$$(v_i, v_{i+1}, \ldots, v_{j-1}).$$ 
This code is called a punctured(or truncated) code of $C$.

• Let $C_{i,j}^{tr}$ denote the punctured code of the subcode $C_{i,j}$; that is, 
$$C_{i,j}^{tr} \triangleq p_{i,j}(C_{i,j}).$$

State labeling and trellis construction 
based on the parity-check matrix

• Consider a binary $(n, k)$ linear block code $C$ with a parity-check matrix 
$$H = [h_0, h_1, \ldots, h_j, \ldots, h_{n-1}],$$ 
where, for $0 \leq j < n$, $h_j$ denotes the $j$th column of $H$ and is a 
binary $(n - k)$-tuple.

• A binary $n$-tuple $v = (v_0, v_1, \ldots, v_{n-1})$ is a codeword in $C$ if and only if 
$$v \cdot H^T = (0, 0, \ldots, 0).$$
• Let \( 0_{n-k} \) denote the all-zero \((n-k)\)-tuple \((0, 0, \ldots, 0)\).

For \(0 \leq i < n\), let \( H_i \) denote the submatrix that consists of the first \( i \) columns of \( H \); that is,
\[
H_i = [h_0, h_1, \ldots, h_{i-1}].
\]
• It is clear that the rank of \( H_i \) is at most \( n-k \); that is,
\[
\text{Rank}(H_i) \leq n-k.
\]
• For each codeword \( c \in C^r_{0,i} \),
\[
c \cdot H_i^T = 0_{n-k}.
\]
Therefore, \( C^r_{0,i} \) is the null space of \( H_i \).

For every path \((v_0, v_1, \ldots, v_{i-1}) \in L(s_0, s_i)\), the path \((v_0, v_1, \ldots, v_{i-1}, v_i) \) obtained by concatenating \((v_0, v_1, \ldots, v_{i-1})\) with the branch \( v_i \) is a path that connects the initial state \( s_0 \) to the state \( s_{i+1} \) through the state \( s_i \).

Hence, \((v_0, v_1, \ldots, v_{i-1}, v_i) \in L(s_0, s_{i+1})\). Then, it follows from the preceding definition of a state label that
\[
l(s_{i+1}) = (v_0, v_1, \ldots, v_{i-1}, v_i) \cdot H_{i+1}^T
\]
\[
= (v_0, v_1, \ldots, v_{i-1}) \cdot H_i^T + v_i \cdot h_i^T
\]
\[
= l(s_i) + v_i \cdot h_i^T
\]
• The foregoing expression simply says that given the label of the starting state \( s_i \), and the output code bit \( v_i \) during the interval between time \( i \) and time \((i + 1)\), the label of the destination state \( s_{i+1} \) is uniquely determined.

\[
L(s_0, s_i) \text{ denote the set of paths in the trellis } T \text{ for } C \text{ that connect the initial state } s_0 \text{ to a state } s_i \text{ in the state space } \sum_i(C) \text{ at time } i.
\]

**Definition:** For \(0 \leq i < n\), the label of a state \( s_i \in \sum_i(C) \) based on a parity-check matrix \( H \) of \( C \), denoted by \( l(s_i) \), is defined as the binary \((n-k)\)-tuple
\[
l(s_i) \triangleq a \cdot H_i^T,
\]
for any \( a \in L(s_0, s_i) \).

- For \( i = 0 \), \( H_i = \phi \), and the initial state \( s_0 \) is labeled with the all-zero \((n-k)\)-tuple, \( 0_{n-k} \).
- For \( i = n \), \( L(s_0, s_f) = C \), and the final state \( s_f \) is also labeled with \( 0_{n-k} \).

A procedure for constructing the \( n \)-section bit-level trellis diagram for a binary \((n,k)\) linear block code \( C \) by state labeling using the parity-check matrix of the code.

The \((i+1)\)-section of the code trellis is constructed by taking the following four steps:

1. Identify the special row \( g^* \) in the submatrix \( G_i^r \) and its corresponding information bit \( a^* \). Identify the special row \( g^0 \) in the submatrix \( G_i^s \). Form the submatrix \( G_i^{rs} \) by including \( g^* \) in \( G_i^r \) and excluding \( g^0 \) from \( G_i^s \).
2. Determine the set of information bits
\[
A_{i+1}^s = (a_1^{(i+1)}, a_2^{(i+1)}, \ldots, a_{k+i}^{(i+1)})
\]
that correspond to the rows in \( G_{i+1}^s \). Define and label the states in \( \sum_{i+1}(C) \).
3. For each state $s_i \in \sum_i(C)$, form the next output $v_i$ code bit from either $v_i = a^* + \sum_{l=1}^{n_t} a_l^{(i)} \cdot g_{l,i}^*$ (if there is such a row $g^*$ in $G^T_i$ at time-$i$) or $v_i = \sum_{l=1}^{n_t} a_l^{(i)} \cdot g_{l,i}^*$ (if there is such no row $g^*$ in $G^T_i$ at time-$i$).

4. For each possible value of $v_i$, connect the state $s_i$ to the state $s_{i+1} \in \sum_{i+1}(C)$ with label

$$l(s_{i+1}) = l(s_i) + v_i \cdot h^T_i.$$  

Label the connecting branch, denoted by $L(s_i, s_{i+1})$, with $v_i$. This completes the construction of the $(i + 1)$th section of the trellis.

Repeat the preceding steps until the entire code trellis is constructed.

- Example:

Suppose we choose the parity-check matrix as follows:

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}. $$

Using this parity-check matrix for state labeling and following the foregoing trellis construction steps, we obtain the 8–section trellis with state label shown in Figure 7.

- To illustrate the construction process, we assume that the trellis has been completed up to time-3.

- At this instant, $G^T_3 = \{g_0, g_1, g_2\}$ and $A^T_3 = \{a_0, a_1, a_2\}$ are known. The eight states in $\sum_3(C)$ are defined by the eight combinations of $a_0, a_1, \text{and} a_2$.

- These eight states and their labels are given in Table 5.

Figure 7: An 8–section trellis for the (8, 4) RM code with state labeling by the parity–check matrix.
The submatrix $H_4$ is

$$
H_4 = \begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{bmatrix}.
$$

From $p_{0,4}(v_j)$, with $0 \leq j \leq 3$ and $H_4$, we can determine the labels of the four states, $s^{(0)}_4$, $s^{(1)}_4$, $s^{(2)}_4$, and $s^{(3)}_4$, in $\sum_4(C)$, which are given in Table 6.

Now, suppose the encoder is in the state $s^{(2)}_3$ with label $l(s^{(2)}_3) = (1001)$ at time 3.

- Because no such row $g^*$ exists at time $i = 3$, the output code bit $v_3$ is computed as follows:

$$
v_3 = a_0 \cdot g_{03} + a_1 \cdot g_{13} + a_2 \cdot g_{23} = 0 \cdot 1 + 1 \cdot 1 + 0 \cdot 1 = 1.
$$

- The state $s^{(2)}_3$ is connected to the state in $\sum_4(C)$ with label $l(s^{(2)}_3) + v_3 \cdot h_3^T = (1001) + 1 \cdot (1011) = (0010)$, which is state $s^{(2)}_4$, as shown in Figure 8.
State labeling based on the parity-check matrix requires \(n-k\) bits to label each state of the trellis. Therefore, we show that
\[
\rho_{\text{max}}(C) \leq \min\{k, n-k\}.
\]

State labeling using \(\rho_{\text{max}}(C)\) bits to label each state in the trellis is the most economical labeling method.

For example:
- To consider the \((8, 4)\) RM code. For this code, \(k = n-k = 4\); however, \(\rho_{\text{max}}(C) = 3\).
- The third-order RM code \(\text{RM}(3, 6)\) of length 64 is a \((64, 42)\) linear code. For this code, \(\min\{k, n-k\} = 22\); however \(\rho_{\text{max}}(C) = 14\).

We see that there is a big gap between the bound and \(\rho_{\text{max}}(C)\); however, for cyclic (or shortened cyclic) codes, the bound \(\min\{k, n-k\}\) gives the exact state complexity.
• Let $C^\perp$ denote the dual code of $C$. $C^\perp$ is an $(n, n-k)$ linear block code. For $0 \leq i < n$, let $\sum_i(C^\perp)$ denote the state space of $C^\perp$ at time-$i$.

• There is a one-to-one correspondence between the state in $\sum_i(C^\perp)$ and the cosets in the partition $p_{0,i}(C^\perp)/C^\perp_{0,i}$, where $C^\perp_{0,i}$ denotes the truncation of $C^\perp$ in the interval $[0, i - 1]$. Therefore, the dimension of $\sum_i(C^\perp)$ is given by

$$\rho_i(C^\perp) = k(p_{0,i}(C^\perp) - k(C^\perp_{0,i})),$$

where $k(C^\perp_{0,i}) = k(C^\perp) - k(C^\perp_{0,i})$, we have

$$\rho_i(C^\perp) = k - k(C^\perp_{0,i} - k(C^\perp_{0,i})).$$

Because $k(p_{0,i}(C^\perp)) = k - k(C^\perp_{0,i})$, we have

$$\rho_i(C^\perp) = k - k(C^\perp_{0,i} - k(C^\perp_{0,i})).$$

• From

$$\rho_i(C) = k - k(C_{0,i}) - k(C_{i,n}) \quad \text{and} \quad \rho_i(C^\perp) = k - k(C_{0,i}) - k(C_{i,n}),$$

we find that for $0 \leq i \leq n$,

$$\rho_i(C^\perp) = \rho_i(C).$$

$\Rightarrow$This expression says that $C$ and its dual code $C^\perp$ have the same state complexity.

• We can analyze the state complexity of a code trellis from either the code or its dual code.
  - In general, they have different branch complexities
  - They have the same state complexity.

• Note that $p_{0,i}(C^\perp)$ is the dual code of $C^\perp_{0,i}$, and $C^\perp_{0,i}$ is the dual code of $p_{0,i}(C)$. Therefore

$$k(p_{0,i}(C^\perp)) = i - k(C^\perp_{0,i})$$

and $k(C^\perp_{0,i}) = i - k(p_{0,i}(C))$.

• It follows that $\rho_i(C^\perp) = k(p_{0,i}(C^\perp) - k(C^\perp_{0,i})$ through

$$k(C^\perp_{0,i}) = i - k(p_{0,i}(C))$$

Because $k(p_{0,i}(C)) = k - k(C^\perp_{0,i})$, we have

$$\rho_i(C^\perp) = k - k(C^\perp_{0,i} - k(C^\perp_{0,i})).$$

**Example:**

The dual code of this the first-order code RM code RM(1, 4) of length 16. It is a $(16, 5)$ code with a minimum distance of 8. Its TOGM is

$$G_{TOGM} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}.$$ 

- From this matrix, we find the state space dimension profile of the code,

$$(0, 1, 2, 3, 4, 4, 4, 3, 4, 4, 4, 3, 2, 1, 0),$$

which is exactly the same as the state space dimension profile of the trellis of the $(16, 11)$ RM code.
− The state-defining information sets and state labels are given in Table 7.
− The 16–section trellis for the code is shown in Figure 9.
− State labeling is done based on the state-defining information sets.
− State labeling based on the parity–check matrix of the code would require 11 bits.

<table>
<thead>
<tr>
<th>$i$</th>
<th>$G_i^*$</th>
<th>$s^<em>_{A_i^</em>}$</th>
<th>$s_{A_i^*}$</th>
<th>State label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\phi$</td>
<td>$s_0$</td>
<td>$s_0$</td>
<td>$\phi$</td>
</tr>
<tr>
<td>1</td>
<td>$(q_1)$</td>
<td>$s_1$</td>
<td>$s_0$</td>
<td>$(0000)$</td>
</tr>
<tr>
<td>2</td>
<td>$(q_0, q_1)$</td>
<td>$s_2$</td>
<td>$(q_0)$</td>
<td>$(0000)$</td>
</tr>
<tr>
<td>3</td>
<td>$(q_0, q_1, q_2)$</td>
<td>$s_3$</td>
<td>$(q_0, q_1)$</td>
<td>$(0010)$</td>
</tr>
<tr>
<td>4</td>
<td>$(q_0, q_1, q_2)$</td>
<td>$s_4$</td>
<td>$(q_0, q_1)$</td>
<td>$(0010)$</td>
</tr>
<tr>
<td>5</td>
<td>$(q_0, q_1, q_2)$</td>
<td>$s_5$</td>
<td>$(q_0, q_1)$</td>
<td>$(0010)$</td>
</tr>
<tr>
<td>6</td>
<td>$(q_0, q_1, q_2)$</td>
<td>$s_6$</td>
<td>$(q_0, q_1)$</td>
<td>$(0010)$</td>
</tr>
<tr>
<td>7</td>
<td>$(q_0, q_1, q_2)$</td>
<td>$s_7$</td>
<td>$(q_0, q_1)$</td>
<td>$(0010)$</td>
</tr>
<tr>
<td>8</td>
<td>$(q_0, q_1, q_2)$</td>
<td>$s_8$</td>
<td>$(q_0, q_1)$</td>
<td>$(0010)$</td>
</tr>
<tr>
<td>9</td>
<td>$(q_0, q_1, q_2)$</td>
<td>$s_9$</td>
<td>$(q_0, q_1)$</td>
<td>$(0010)$</td>
</tr>
<tr>
<td>10</td>
<td>$(q_0, q_1, q_2)$</td>
<td>$s_{10}$</td>
<td>$(q_0, q_1)$</td>
<td>$(0010)$</td>
</tr>
<tr>
<td>11</td>
<td>$(q_0, q_1, q_2)$</td>
<td>$s_{11}$</td>
<td>$(q_0, q_1)$</td>
<td>$(0010)$</td>
</tr>
<tr>
<td>12</td>
<td>$(q_0, q_1, q_2)$</td>
<td>$s_{12}$</td>
<td>$(q_0, q_1)$</td>
<td>$(0010)$</td>
</tr>
<tr>
<td>13</td>
<td>$(q_0, q_1, q_2)$</td>
<td>$s_{13}$</td>
<td>$(q_0, q_1)$</td>
<td>$(0010)$</td>
</tr>
<tr>
<td>14</td>
<td>$(q_0, q_1, q_2)$</td>
<td>$s_{14}$</td>
<td>$(q_0, q_1)$</td>
<td>$(0010)$</td>
</tr>
<tr>
<td>15</td>
<td>$(q_0, q_1, q_2)$</td>
<td>$s_{15}$</td>
<td>$(q_0, q_1)$</td>
<td>$(0010)$</td>
</tr>
</tbody>
</table>

Table 7: State-defining sets and labels for the 16–section trellis for (16, 5) RM code.

Let $T$ be an $n$–section trellis for an $(n, k)$ code $C$ with state space dimension profile $(\rho_0, \rho_1, \ldots, \rho_n)$. The trellis $T$ is said to be minimal if for any other $n$–section trellis $T'$ for $C$ with state space dimension profile $(\rho'_0, \rho'_1, \ldots, \rho'_n)$ the following inequality holds:

$$\rho_i \leq \rho'_i,$$

for $0 \leq i \leq n$.

A minimal trellis is unique within isomorphism.

A minimal trellis results in a minimal total number of states in the trellis. In fact, the inverse is also true: a trellis with a minimum total number of states in a minimal trellis.
From $\rho_i(C) = k - |G_i^p| - |G_i^f|$ we see that the state space dimension $\rho_i$ at time-i depends on the dimensions of the past and future codes $C_0,i$ and $C_{i,n}$.

⇒ For a given code $C$, $k(C_0,i)$ and $k(C_{i,n})$ are fixed.

• Given an $(n,k)$ linear code $C$, a permutation of the orders of the bit (or symbol) positions result in an equivalent code $C'$ with the same weight distribution and the same error performance; however, different permutations of bit positions may result in different dimensions for $C_0,i$, $C_{i,n}$ and $\rho_i$ at time-i.

The branch complexity of an $n$-section trellis diagram for an $(n,k)$ linear code $C$ is defined as the total number of branches in the trellis.

An $n$-section trellis diagram for an $(n,k)$ linear block code is said to be a minimal branch (or edge) trellis diagram if it has the smallest branch complexity.

A minimal trellis diagram has the smallest branch complexity.

• We define

$$I_i(a^*) = \begin{cases} 1, & \text{if } a^* \not\subseteq A_i^f \\ 2, & \text{if } a^* \subseteq A_i^f \end{cases}$$

Let $\varepsilon$ denote the total number of branches in $T$.

• Then

$$\varepsilon = \sum_{i=0}^{n-1} |\sum_i (C)| \cdot I_i(a^*)$$

$$= \sum_{i=0}^{n-1} 2^{n_i} \cdot I_i(a^*).$$

For $0 \leq i < n$, $2^{n_i} \cdot I_i(a^*)$ is simply the number of branches in the $i$th section of trellis $T$. 
• Example:
  To consider the TOGM of the (8, 4) RM code

\[ G_{\text{TOGM}} = \left[ \begin{array}{ccccccc}
g_0 & 1 & 1 & 1 & 0 & 0 & 0 \\
g_1 & 0 & 1 & 0 & 1 & 1 & 0 \\
g_2 & 0 & 0 & 1 & 1 & 1 & 0 \\
g_3 & 0 & 0 & 0 & 0 & 1 & 1 \\
\end{array} \right] \]

From Table 2 we find that

- \( I_0(a^*) = I_1(a^*) = I_2(a^*) = I_4(a^*) = 2 \)
- \( I_3(a^*) = I_5(a^*) = I_6(a^*) = I_7(a^*) = 1 \).

The state space dimension profile of the 8–section trellis for the code is \((0, 1, 2, 3, 2, 3, 2, 1, 0)\).

For convenience, we reproduce it here

\[ G = \left[ \begin{array}{cccccccc}
g_0 & g_1 & g_2 & \cdots & g_{n-k-1} & 0 & \cdots & 0 \\
0 & g_0 & g_1 & \cdots & g_{n-k-1} & 0 & \cdots & 0 \\
0 & 0 & g_0 & \cdots & g_{n-k-1} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & g_{n-k} \\
\end{array} \right] \]

For convenience, we reproduce it here

\[ G = \left[ \begin{array}{cccccccc}
g_0 & g_1 & g_2 & \cdots & g_{n-k-1} & 1 & 0 & 0 & \cdots & 0 \\
0 & g_0 & g_1 & g_2 & \cdots & g_{n-k-1} & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & g_0 & g_1 & g_2 & \cdots & g_{n-k-1} & 1 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots \\
0 & 0 & \cdots & g_{n-k-1} & 1 \\
\end{array} \right] \]

We readily see that the generator matrix is already in trellis–oriented form.

\[ \varepsilon = \sum_{i=0}^{n-1} 2^i \cdot I_i(a^*) \]

\[ \varepsilon = 2^3 \cdot 2 + 2^2 \cdot 2 + 2^1 \cdot 1 + 2^2 \cdot 1 + 2^3 \cdot 1 + 2^4 \cdot 1 + 2^5 \cdot 1 \]

\[ \varepsilon = 2 + 4 + 8 + 8 + 8 + 8 + 4 + 2 \]

\[ \varepsilon = 44. \]
• For $0 \leq i < k$, the time span of the $i$-row $g_i$ is
\[ \tau(g_i) = [i, n - k + 1 + i]. \]
(or the bit span $\phi(g_i) = [i, n - k + i]$). The active time spans of all the rows have the same length, $n - k$.

• Now, we consider the $n$-section bit-level trellis for this $(n, k)$ cyclic code. There are two cases to be considered:
  1. $k > n - k$.
  2. $k \leq n - k$.

Consider the case $k > n - k$, we see that the maximum state space dimension is $\rho_{\text{max}}(C) = n - k$, and the state space profile is
\[ (0, 1, \ldots, n - k - 1, n - k, \ldots, n - k, n - k - 1, \ldots, 1, 0) \]
Consider the case $k \leq n - k$, we see that the maximum state space dimension is $\rho_{\text{max}}(C) = k$, and the state space profile is
\[ (0, 1, \ldots, k - 1, k, \ldots, k, k - 1, \ldots, 1, 0) \]

• Combining the results of the preceding two cases, we conclude that for an $(n, k)$ cyclic code, the maximum state space dimension is
\[ \rho_{\text{max}}(C) = \min[k, n - k]. \]

This is to say that a code in cyclic form has the worst state complexity; that is, it meets the upper bound on the state complexity.

To reduce the state complexity of a cyclic code, a proper permutation on the bit position is needed.

• Example:
Consider the $(7, 4)$ cyclic hamming code generated by $g(x) = 1 + X + x^3$.
Its generator matrix in TOF is
\[ G = \begin{bmatrix} g_0 \\ g_1 \\ g_2 \\ g_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}. \]

− By examining the generator matrix, we find that the trellis state space dimension profile is $(0, 1, 2, 3, 3, 2, 1, 0)$. Therefore, $\rho_{\text{max}}(C) = 3$.
− The 7-section trellis for this code is shown in Figure 10, the state-defining information sets and the state labels are given in Table 8.
Next, we derive a special symmetry structure for trellises of some linear block codes. This structure is quite useful for implementing a trellis-based decoder, especially in gaining decoding speed.

- Consider the TOGM of a binary \((n,k)\) linear block code of even length \(n\),

\[
G = \begin{bmatrix}
  g_0 \\
g_1 \\
\vdots \\
g_{k-1}
\end{bmatrix} = \begin{bmatrix}
  g_{00} & g_{01} & \cdots & g_{0,n-1} \\
g_{10} & g_{11} & \cdots & g_{1,n-1} \\
\vdots & \vdots & \ddots & \vdots \\
g_{k-1,0} & g_{k-1,1} & \cdots & g_{k-1,n-1}
\end{bmatrix}.
\]

Table 8: State–defining sets and state labels for the 8 section trellis for \((8,4)\) RM code.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(G_i^*)</th>
<th>(a^*)</th>
<th>(a^0)</th>
<th>(A_i^*)</th>
<th>State label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\phi)</td>
<td>(a_0)</td>
<td>(\phi)</td>
<td>(000)</td>
<td>(000)</td>
</tr>
<tr>
<td>1</td>
<td>({g_0})</td>
<td>(a_1)</td>
<td>({a_0})</td>
<td>(a_0)</td>
<td>(000)</td>
</tr>
<tr>
<td>2</td>
<td>({g_0, g_1})</td>
<td>(a_2)</td>
<td>({a_0, a_1})</td>
<td>(a_0a_1)</td>
<td>(000)</td>
</tr>
<tr>
<td>3</td>
<td>({g_0, g_1, g_2})</td>
<td>(a_3)</td>
<td>({a_0, a_1, a_2})</td>
<td>(a_0a_1a_2)</td>
<td>(000)</td>
</tr>
<tr>
<td>4</td>
<td>({g_1, g_2, g_3})</td>
<td>(a_4)</td>
<td>({a_1, a_2, a_3})</td>
<td>(a_1a_2a_3)</td>
<td>(000)</td>
</tr>
<tr>
<td>5</td>
<td>({g_2, g_3})</td>
<td>(a_5)</td>
<td>({a_2, a_3})</td>
<td>(a_2a_3)</td>
<td>(000)</td>
</tr>
<tr>
<td>6</td>
<td>({g_3})</td>
<td>(a_6)</td>
<td>({a_3})</td>
<td>(a_3)</td>
<td>(000)</td>
</tr>
<tr>
<td>7</td>
<td>(\phi)</td>
<td>(\phi)</td>
<td>(\phi)</td>
<td>(000)</td>
<td>(000)</td>
</tr>
</tbody>
</table>

- Suppose the TOGM \(G\) has the following symmetry property:
  - For each row \(g\) in \(G\) with bit span \(\phi(g) = [a, b]\), there exists a row \(g'\) in \(G\) with bit span \(\phi(g') = [n-1-b, n-1-a]\).
  - With this symmetry in \(G\), we can readily see that for \(0 \leq i \leq n/2\), the number of rows in \(G\) that are active at time-\(n-i\) is equal to the number of rows in \(G\) that are active at time-\(i\).

This implies that

\[
\sum_{n-i} (C) = \sum_{i} (C) \quad \text{or} \quad \rho_{n-i} = \rho_i
\]

for \(0 \leq i \leq n/2\).
• We can permute the rows of $G$ such that the resultant matrix, denoted by $G'$, is in a reverse trellis-oriented form:
  1. The trailing 1 of each row appears in a column before the trailing 1 of any row below it.
  2. No two rows have their leading 1's in the same column.

• If we rotate the matrix $G'$ 180° counterclockwise, we obtain a matrix $G''$ in which the $i$th row $g_i''$ is simply the $(k - 1 - i)$th row $g_{k-1-i}'$ of $G'$ in reverse order.a

• From the foregoing, we see that $G''$ and $G$ are structurally identical in the sense that $\phi(g_i'') = \phi(g_i)$ for $0 \leq i < k$.

• Consequently, the $n$-section trellis $T$ for $C$ has the following mirror symmetry:
  The last $n/2$ sections of $T$ form the mirror image of the first $n/2$ sections of $T$ (not including the path labels).

---

**Example:**
To consider the TOGM of the $(8,4)$ RM code

$$G_{\text{TOGM}} = \begin{bmatrix} g_0 \\ g_1 \\ g_2 \\ g_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

- Examining the rows of $G_{\text{TOGM}}$, we find that $\phi(g_0) = [0,3]$, $\phi(g_3) = [4,7]$, and $g_0$ and $g_3$ are symmetrical with each other.
- Row $g_1$ has bit span [1,6] and is symmetrical with itself. Row $g_2$ has bit span [2,5] and is also symmetrical with itself.

---

We obtain the following matrix in reverse trellis-oriented form:

$$G' = \begin{bmatrix} g'_0 \\ g'_1 \\ g'_2 \\ g'_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

- Rotating $G'$ 180° counterclockwise, we obtain the following matrix:

$$G'' = \begin{bmatrix} g''_0 \\ g''_1 \\ g''_2 \\ g''_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}.$$
• For the case in which \( n \) is odd, if the TOGM \( G_{TOGM} \) of a binary \((n, k)\) code \( C \) has the mirror symmetry property, then the last \((n - 1)/2\) sections of the \( n \)-section trellis \( T \) for \( C \) form the mirror image of the first \((n - 1)/2\) sections of \( T \).
• The trellises of all cyclic codes have mirror-image symmetry.

### Trellis sectionalization and parallel decomposition

• In a bit-level trellis diagram, every time instant in the encoding interval \( \Gamma = \{0, 1, 2, \ldots, n\} \).
• It is possible to sectionalize a bit-level trellis with section boundary locations at selected instants in \( \Gamma \).

• This sectionalization result in a trellis in which a branch may represent multiple code bits, and two adjacent states may be connected by multiple branches.
• For a positive integer \( v \leq n \), let 
\[
\Lambda \triangleq \{t_0, t_1, t_2, \ldots, t_v\}
\]
be a subset of \( v + 1 \) time instants in the encoding interval \( \Gamma = \{0, 1, 2, \ldots, n\} \) for an \((n, k)\) linear block code \( C \) with 
\[
0 = t_0 < t_1 < t_2 < \ldots < t_v = n.
\]
• A \( v \)-section trellis diagram for \( C \) with section boundaries at the locations (time instants) in \( \Lambda \), denoted by \( T(\Lambda) \), can be obtained from the \( n \)-section trellis \( T \) by
1. To delete every state in \( \Sigma_t(C) \) for \( t \in \{0, 1, \ldots, n\} \setminus \Lambda \) and every branch entering or leaving a deleted state.
2. For \( 1 \leq j \leq v \), connecting a state \( s \in \sum_{t_j} \) to a state \( s' \in \sum_{t_j} \) by a branch with label \( \alpha \) if and only if there is a path with label \( \alpha \) from state \( s \) to state \( s' \) in the \( n \)-section trellis \( T \).
• In this \( v \)-section trellis, a branch connecting a state \( s \in \sum_{t_{j-1}} \) to a state \( s' \in \sum_{t_j} \) represents \( (t_j - t_{j-1}) \) code symbols.

• The state space \( \sum_{t_{j-1}}(C) \) at time-\( t_{j-1} \), the state space \( \sum_{t_j}(C) \) at time-\( t_j \), and all the branches between states in \( \sum_{t_{j-1}}(C) \) and states in \( \sum_{t_j}(C) \), form the \( j \)th section of \( T(\Lambda) \).

• If the lengths of all the sections are the same, \( T(\Lambda) \) is said to be uniformly sectionalized.

• If the section boundary locations \( t_0, t_1, \ldots, t_v \) are chosen at the places where \( \rho_{t_1}, \rho_{t_2}, \ldots, \rho_{t_{v-1}} \) are small, then the resultant \( v \)-section code trellis \( T(\Lambda) \) has a small state space complexity.

• However, sectionalization, in general, results in an increase in branch complexity.

**Example:**
Consider the 16–section trellis for the \((16,11)\) RM code shown in Figure 11.

− Suppose we choose \( v = 4 \) and the section boundary set \( \Lambda = \{0, 4, 8, 12, 16\} \).

− The result is a 4-section trellis as shown in Figure 12. Each section is 4 bits long.

− The state space dimension profile for this 4–section trellis is \((0, 3, 3, 3, 0)\), and the maximum state space dimension is \( \rho_{4,\text{max}}(C) = 3 \).

− The trellis consists of two parallel and structurally identical subtrellises without cross-connections between them.
Parallel decomposition

• For long codes with large dimensions, it is very difficult to implement any trellis-based MLD algorithm based on a full code trellis on (an) integrated circuit (IC) chip(s) for hardware implementation.

• Parallel decomposition:
  To overcome this implementation difficulty, one possible approach is to decompose the minimal trellis diagram of a code into parallel and structurally identical subtrellises of smaller dimensions without cross connections between them so that each subtrellis with reasonable complexity can be put on a single IC chip of reasonable size.

Parallel decomposition should be done in such a way that the maximum state space dimension of the minimal trellis of a code is not exceeded.

• Advantages:
  - **Complexity:**
    Because all the subtrellis are structurally identical, we can devise identical decoders of much smaller complexity to process these subtrellises in parallel.
  - **Speed:**
    This method speeds up the decoding process.
  - **Implementation:**
    Parallel decomposition resolves wire routing problem in IC implementation and reduces internal communication.

  \[ \rho_i(C_1) = \begin{cases} 
    \rho_i(C) - 1 & \text{for } i \in \tau_a(g) \\
    \rho_i(C) & \text{for } i \notin \tau_a(g) 
  \end{cases} \]

  ⇒ The generator matrix \( G_1 \) for this subcode is \( G_1 = G_{TOGM} \setminus \{g\} \).

  • Let \( \dim(C) \) and \( \dim(C_1) \) denote the dimensions of \( C \) and \( C_1 \), respectively.
  ⇒ \( \dim(C_1) = \dim(C) - 1 = k - 1 \).

  • The state space dimension \( \rho_i(C) \) is equal to the number of rows of \( G \) whose active time spans contain the time index \( i \).
  \[ \frac{1}{\rho_i(C_1)} = \begin{cases} 
    \rho_i(C) - 1 & \text{for } i \in \tau_a(g) \\
    \rho_i(C) & \text{for } i \notin \tau_a(g) 
  \end{cases} \]
• We define the following index set:

\[ I_{\text{max}}(C) \triangleq \{ i : \rho_i(C) = \rho_{\text{max}}(C), \text{ for } 0 \leq i \leq n \} \]

• **Theorem:**

If there exists a row \( g \) in the \( G_{\text{TOGM}} \) for an \((n, k)\) linear code \( C \) such that \( \tau_a(g) \supseteq I_{\text{max}}(C) \), then the subcode \( C_1 \) of \( C \) generated by \( G_{\text{TOGM}} \setminus \{ g \} \) has a minimal trellis \( T_1 \) with maximum state space dimension \( \rho_{\text{max}}(C_1) = \rho_{\text{max}}(C) - 1 \), and

\[ I_{\text{max}}(C_1) = I_{\text{max}}(C) \cup \{ i : \rho_i(C) = \rho_{\text{max}}(C) - 1, i \notin \tau_a(g) \}. \]

*Theorem can be applied repeatedly until either the desired level of decomposition is achieved or no row in the generator matrix can be found to satisfy the condition in Theorem.*

• Because \( G \) is in TOF, \( G_1 = G \setminus \{ g \} \) is also in TOF. If the condition of Theorem holds, then it follows from the foregoing that it is possible to construct a trellis for \( C \) that consists of two parallel and structurally identical subtrellises, one for \( C_1 \) and the other for its coset \( C_1 \oplus g \).

• Each subtrellis is a minimal trellis and has maximum state space dimension equal to \( \rho_{\text{max}}(C) \).

---

• **Example:**

Consider the \((8, 4)\) RM code with TOGM

\[
G_{\text{TOGM}} = \begin{bmatrix}
g_0 \\
g_1 \\
g_2 \\
g_3
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}.
\]

– Its state space dimension profile is \((0, 1, 2, 3, 2, 3, 2, 1, 0)\) and \( \rho_{\text{max}}(C) = 3 \). The index set \( I_{\text{max}} \) is \( I_{\text{max}}(C) = \{3, 5\} \).

– By examining \( G_{\text{TOGM}} \), we find only the second row \( g_1 \), whose active time span, \( \tau_a(g_1) = [2, 6] \), contains \( I_{\text{max}}(C) = \{3, 5\} \).

– Suppose we remove \( g_1 \) from \( G_{\text{TOGM}} \). The resulting matrix is

\[
G_1 = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix},
\]

which generates an \((8, 3)\) subcode \( C_1 \) of the \((8, 4)\) RM code \( C \).

– From \( G_1 \) we can construct a minimal 8–section trellis \( T_1 \) for \( C_1 \), as shown in Figure 13 (the upper subtrellis).

– The state space dimension profile of \( T_1 \) is \((0, 1, 1, 2, 1, 2, 1, 1, 0)\) and \( \rho_{\text{max}}(C) = 2 \). Adding \( g_1 = (01011010) \) to every path in \( T_1 \), we obtain the minimal 8–section trellis \( T_1^1 \) for the coset \( g_1 \oplus C_1 \), as shown in Figure 13 (the lower subtrellis).
The trellises $T_1$ and $T'_1$ form a parallel decomposition of the minimal 8-section trellis $T$ for the $(8, 4)$ RM code. We see that the state space dimension profile of $T_1 \cup T'_1$ is $(0, 2, 2, 3, 2, 3, 2, 2, 0)$.

Clearly, $T_1 \cup T'_1$ is not a minimal 8-section trellis for the $(8, 4)$ RM code: however, its maximum state space dimension is still $\rho_{\max}(C) = 3$.

If we sectionalize $T_1 \cup T'_1$ at locations $\Lambda = \{0, 2, 4, 6, 8\}$, we obtain the minimal 4-section trellis for the code, as shown in Figure 11.

### Theorem:
Let $G_{TOM}$ be the TOGM of an $(n, k)$ linear block code $C$ over $GF(2)$. Define the following subset of rows of $G_{TOM}$:

$$R(C) \triangleq \{ g \in G_{TOM} : \tau_a(g) \supseteq I_{\max}(C) \}.$$  

For any integer $r$ with $1 \leq r \leq |R(C)|$, there exists a subcode of $C_r$ of $C$ such that

$$\rho_{\max}(C_r) = \rho_{\max}(C) - r \quad \text{and} \quad \dim(C_r) = \dim(C) - r$$

if and only if there exists a subset $R_r \subseteq R(C)$ consisting of $r$ rows of $R(C)$ such that for every $i$ with $\rho_i(C) > \rho_{\max}(C_r)$, there exist at least $\rho_i(C) - \rho_{\max}(C_r)$ rows in $R_r$ whose active time spans contain $i$. The subcode $C_r$ is generated by $G_{TOM} \setminus R_r$, and the set of coset representatives for $C/C_r$ is generated by $R_r$.

### Corollary:
In decomposing a minimal trellis diagram for a linear block code $C$, the maximum number of parallel isomorphic subtrelises one can obtain such that the total state space dimension at any time does not exceed $\rho_{\max}(C)$ is upper bounded by $2^{|R(C)|}$.

### Corollary:
The logarithm base-2 of the number of parallel isomorphicsubtrelises in a minimal $v$-section trellis with section boundary locations in $\Lambda = \{t_0, t_1, t_2, \ldots, t_v\}$ for a binary $(n, k)$ linear block code $C$ is given by the number of rows in the $G_{TOM}$ whose active time spans contain the section boundary locations, $t_1, t_2, \ldots, t_{v-1}$. 

Department of Electrical Engineering, National Chung Hsing University
Example:
To consider the (16,11) RM code. Suppose we sectionalize the bit–level trellis at locations in \( \Lambda = \{0, 4, 8, 12, 16\} \). Examining the TOGM of the code, we find only row \( g_3 = (0001111010001000) \) whose active time span, \( \tau_a(g_3) = [4, 12] \), consider \( \{4, 8, 12\} \). Therefore, the 4-section trellis \( T(\{0, 4, 8, 12, 16\}) \) consists of two parallel isomorphic subtrellises.

Consider the interleaved code \( C_1 * C_2 * \ldots * C_\lambda \), which is constructed by interleaving \( \lambda \) linear block code, \( C_1, C_2, \ldots, C_\lambda \), of length \( n \).

For \( 1 \leq j \leq \lambda \), let \( T_j \) be an \( n \)-section trellis for \( C_j \). For \( 0 \leq i \leq n \), let \( \sum_i(C_j) \) denote the state space of \( T_j \) at time- \( i \).

The Cartesian product of \( T_1, T_2, \ldots, T_\lambda \), denote by \( T^\lambda \triangleq T_1 \times T_2 \times \ldots \times T_\lambda \), is constructed as follows:
1. For \( 0 \leq i \leq n \), form the Cartesian product of \( \sum_i(C_1), \sum_i(C_2), \ldots, \sum_i(C_\lambda) \),

\[
\sum_i(C^\lambda) \triangleq \sum_i(C_1) \times \sum_i(C_2) \times \ldots \times \sum_i(C_\lambda) = \{(s^{(1)}_i, s^{(2)}_i, \ldots, s^{(\lambda)}_i) : s^{(j)}_i \in \sum_i(C_j) \text{ for } 1 \leq j \leq \lambda\}.
\]

Then, \( \sum_i(C^\lambda) \) forms the state space of \( T^\lambda \) at time- \( i \), i.e., the \( \lambda \)-tuple in \( \sum_i(C^\lambda) \) form the nodes of \( T^\lambda \) at level- \( i \).

2. A state \( (s^{(1)}_i, s^{(2)}_i, \ldots, s^{(\lambda)}_i) \) in \( \sum_i(C^\lambda) \) is adjacent to a state \( (s^{(1)}_{i+1}, s^{(2)}_{i+1}, \ldots, s^{(\lambda)}_{i+1}) \) in \( \sum_{i+1}(C^\lambda) \) if and only if \( s^{(j)}_i \) is adjacent to \( s^{(j)}_{i+1} \) for \( 1 \leq j \leq \lambda \). Let \( l_j \triangleq (l^{(1)}_j, l^{(2)}_j, \ldots, l^{(\lambda)}_j) \) denote the label of the branch that connects the state \( s^{(j)}_i \) to the state \( s^{(j)}_{i+1} \) for \( 1 \leq j \leq \lambda \). We connect the state \( (s^{(1)}_i, s^{(2)}_i, \ldots, s^{(\lambda)}_i) \in \sum_i(C^\lambda) \) to the state \( (s^{(1)}_{i+1}, s^{(2)}_{i+1}, \ldots, s^{(\lambda)}_{i+1}) \in \sum_{i+1}(C^\lambda) \) by a branch that is labeled by the following \( \lambda \)-tuple:

\[
(l^{(1)}_1, l^{(2)}_2, \ldots, l^{(\lambda)}_\lambda).
\]

This label is simply a column of the array of

\[
\begin{bmatrix}
v^{(1)}_{1,0} & v^{(1)}_{1,1} & \ldots & v^{(1)}_{1,n-1} \\
v^{(2)}_{2,0} & v^{(2)}_{2,1} & \ldots & v^{(2)}_{2,n-1} \\
\vdots & \vdots & \ddots & \vdots \\
v^{(\lambda)}_{\lambda,0} & v^{(\lambda)}_{\lambda,1} & \ldots & v^{(\lambda)}_{\lambda,n-1}
\end{bmatrix}
\]
• The constructed Cartesian product $T^\lambda = T_1 \times T_2 \times \ldots \times T_\lambda$ is an $n$-section trellis for the interleaved code
  
  $C^\lambda = C_1 \ast C_2 \ast \ldots \ast C_\lambda$

  in which each section is of length $\lambda$.

- Example:
  Let $C$ be the $(3, 2)$ even parity-check code whose generator matrix in trellis-oriented form is

  \[
  G_{\text{Trellis}} = \begin{bmatrix}
  1 & 1 & 0 \\
  0 & 1 & 1
  \end{bmatrix}
  .
  \]

  - The 3–section bit level trellis $T$ for this code can easily be constructed from $G_{\text{Trellis}}$ and is shown in Figure 14(a).
  - Suppose the code is interleaved to a depth of $\lambda = 2$. Then, the interleaved code $C^2 = C \ast C$ is a $(6, 4)$ linear code.
  - The Cartesian product $T \times T$ results in 3–section trellis $T^2$ for $C^2$, as shown in Figure 14(b).

- Let $C_1$ be an $(n_1, k_1)$ linear code, and let $C_2$ be an $(n_2, k_2)$ linear code. The product $C_1 \times C_2$ is then an $(n_1 n_2, k_1 k_2)$ linear block code.

- To construct a trellis for the product code $C_1 \times C_2$, we regard the top $k_2$ rows of the product array shown in Figure 15 as an interleaved array with codewords from the same code $C_1$.

- We then construct an $n_1$-section trellis for the interleaved code,

  \[
  C_{k_2}^1 = C_1 \ast C_1 \ast \ldots \ast C_1
  \]

  using the Cartesian product. Each $k_2$–tuple branch label in the trellis is encoded into a codeword in $C_2$.

- The result is an $n_1$-section trellis for the product $C_1 \times C_2$, each section is $n_2$–bit in length.
Example:
Let $C_1$ and $C_2$ both be the $(3, 2)$ even parity-check code. Then, the product $C_1 \times C_2$ is a $(9, 4)$ linear code with a minimum distance 4.

- Using the Cartesian product construction method given above, we first construct the 3–section trellis for the interleaved code $C_1^2 = C_1 \ast C_1$, which is shown in Figure 14(b).
- we encode each branch label in this trellis based on the $C_2 = (3, 2)$ code. The result is a 3–section trellis for the product code $C_1 \times C_2$, as shown in Figure 16.

Let $C_1$ and $C_2$ be an $(n, k_1, d_1)$ and an $(n, k_2, d_2)$ binary linear block code with generator matrix, $G_1$ and $G_2$, respectively.

Suppose $C_1$ and $C_2$ have only the all-zero codeword 0 in common; that is, $C_1 \cap C_2 = \{0\}$.

Their direct-sum, denoted by $C_1 \oplus C_2$, is defined as follows:

$$C \triangleq C_1 \oplus C_2 \triangleq \{u + v : u \in C_1, v \in C_2\}.$$ 

Then, $C = C_1 \oplus C_2$ is an $(n, k_1 + k_2, d_{\min})$ code with minimum distance $d_{\min} \leq \min\{d_1, d_2\}$ and generator matrix

$$G = \begin{bmatrix} G_1 \\ G_2 \end{bmatrix}.$$
• Let $T_1$ and $T_2$ be the $n$-section trellis for $C_1$ and $C_2$, respectively. Then, an $n$-section trellis $T$ for the direct-sum code $C = C_1 \oplus C_2$ can be constructed by taking the Cartesian product of $T_1$ and $T_2$.

• The formation of state spaces for $T$ and the condition for state adjacency between states in $T$ are the same as for forming the trellis for an interleaved code by taking the Cartesian product of the trellis for the component codes. The difference is branch labeling.

• Example:
Let $C_1$ and $C_2$ be two linear block codes of length 8 generated by

$$G_1 = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

and

$$G_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

respectively. It is easy to check that $C_1 \cap C_2 = \{0\}$.

• For two adjacent states $(s_i^{(1)}, s_i^{(2)})$ and $(s_i^{(1)}, s_{i+1}^{(2)})$ in $T$ at time-$i$ and time-$(i+1)$, let $l_j \triangleq l(s_i^{(j)}, s_{i+1}^{(j)})$ be the label of the branch that connects the state $s_i^{(j)}$ and the state $s_{i+1}^{(j)}$ for $1 \leq j \leq 2$.

• We connect the state $(s_i^{(1)}, s_i^{(2)})$ and the state $(s_{i+1}^{(1)}, s_{i+1}^{(2)})$ with a branch that is labeled with $l_1 + l_2 = l(s_i^{(1)}, s_{i+1}^{(1)}) + l(s_i^{(2)}, s_{i+1}^{(2)})$.

• The described product of two trellises is also known as the Shannon product.

The direct–sum $C_1 \oplus C_2$ is generated by

$$G = \begin{bmatrix} G_1 \\ G_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix},$$

which is simply the TOGM for the $(8, 4, 4)$ RM code given in before example.

- Both $G_1$ and $G_2$ are TOF. Based on $G_1$ and $G_2$, we construct the 8–section trellises $T_1$ and $T_2$ for $C_1$ and $C_2$ as shown in Figure 17 and 18, respectively.

- Taking the Shannon product of $T_1$ and $T_2$, we obtain an 8–section trellis $T_1 \times T_2$ for the direct–sum $C_1 \oplus C_2$ as shown in Figure 19, which is simply the 8–section minimal trellis for the $(8, 4, 4)$ RM code as shown in Figure 5.
Figure 17: The 8–section minimum trellis for the code generated by $G_1 = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$.

Figure 18: The 8–section minimum trellis for the code generated by $G_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$.

Figure 19: The Shannon product of the trellis of Figures 17 and 18.

- The Shannon product can be generalized to construct a trellis for a code that is a direct-sum of $m$ linear block codes.
- For a positive integer $m \geq 2$, and $1 \leq j \leq m$, let $C_j$ be an $(N, K_j, d_j)$ linear code.
- Suppose $C_1, C_2, \ldots, C_m$ satisfy the following condition: for $1 \leq j, j' \leq m$, and $j \neq j'$,
  \[ C_j \cap C_{j'} = \{0\}. \]
- This condition simply implies that for $v_j \in C_j$ with $1 \leq j \leq m$,
  \[ v_1 + v_2 + \ldots + v_m = 0 \]
  if and only if $v_1 = v_2 = \ldots = v_m = 0$. 

Department of Electrical Engineering, National Chung Hsing University
• The direct-sum of $C_1, C_2, \ldots, C_m$ is defined as

$$C \triangleq C_1 \oplus C_2 \oplus \ldots \oplus C_m = \{ v_1 + v_2 + \ldots + v_m : v_j \in C_j, \ 1 \leq j \leq m \}.$$  

• Then, $C = C_1 \oplus C_2 \oplus \ldots \oplus C_m$ is an $(N, K, d)$ linear block code with $K = K_1 + K_2 + \ldots + K_m$ and $d \leq \min_{1 \leq j \leq m} \{ d_j \}$.

**Example:**
Again, we consider the $(8, 4, 4)$ RM code generated by the following TOGM:

$$G = \begin{bmatrix} G_1 \\ G_2 \\ \vdots \\ G_m \end{bmatrix}.$$  

– For $1 \leq j \leq 4$, let $C_j$ be the $(8, 1, 4)$ code generated by the $j$th row of $G$. Then, the direct–sum, $C_1 \oplus C_2 \oplus C_3 \oplus C_4$, gives the $(8, 4, 4)$ RM code.

– The 8–section minimal trellises for the four component codes are shown in Figure 20.
- The Shannon products $T_1 \times T_2$ and $T_3 \times T_4$ generate the trellises for $C_1 \oplus C_2$ and $C_3 \oplus C_4$, respectively, as shown in figure 17 and 18.
- The Shannon product $(T_1 \times T_2) \times (T_3 \times T_4)$ results in the overall trellis for the $(8, 4, 4)$ RM code shown in Figure 19.

- Let $T$ denote the minimal $n$-section trellis for $C$, and $\rho_i(C)$ denote the state space dimension of $T$ at time-$i$ for $0 \leq i \leq n$. Then,
  \[ \rho_i(C) \leq \sum_{j=1}^{m} \rho_i(C_j). \]
- If the equality holds for $0 \leq i \leq n$, then the Shannon product $T_1 \times T_2 \times \ldots \times T_m$ is the minimal $n$-section trellis for the direct-sum $C = C_1 \oplus C_2 \oplus \ldots \oplus C_m$.

- For $1 \leq j \leq m$, let $T_j$ be the minimal $N$-section trellis for the component code $C_j$.
  Then, the Shannon product $T_1 \times T_2 \times \ldots \times T_m$ is the minimal $N$-section trellis for $C$ if and only if the following condition holds: for $0 \leq i \leq N$, $1 \leq j, j' \leq m$, and $j \neq j'$,
  \[ p_{0,i}(C_j) \cap p_{0,i}(C_{j'}) = \{0\}. \]
• Example:
Suppose we sectionalize each of the two 8-section trellises of Figures 17 and 18 into 4 sections, each of length 2. The resultant 4-section trellises are shown in Figure 21, and the Shannon product of these two 4-section trellises gives a 4-section trellis, as shown in Figure 22, which is the same as the 4-section trellis for the (8, 4, 4) RM code shown in Figure 11.

Figure 21: The 4-section trellises for the trellises of Figures 17 and 18.

Figure 22: A 4-section trellises for the (8, 4, 4) RM code.

14.1 THE VITERBI DECODING ALGORITHM
• The decoder processes the trellis from the initial state to the final state serially, section by section.
• The survivors at each level of the code trellis are extended to the next through the connecting branches between the two levels.
• The paths that enter a state at the next level are compared, and the most probable path is chosen as the survivor.
• This process continues until the end of the trellis is reached.
The number of computations required to decode a received sequence can be enumerated easily.

In a bit-level trellis, each branch represents one code bit, and hence a branch metric is simply a bit metric.

Let \( N_a \) denote the total number of additions required to process the trellis \( T \). Then,

\[
N_a = \sum_{i=0}^{n-1} 2^{\rho_i} I_i(a^*)
\]

where \( 2^{\rho_i} \) is number of states at the \( i \)th level of the code trellis \( T \), \( a^* \) is the current input information bit at time-\( i \), and

\[
I_i(a^*) = \begin{cases} 
1, & \text{if } a^* \not\subseteq A_i^0 \\
2, & \text{if } a^* \subseteq A_i^0 
\end{cases}
\]

If there is an oldest information bit \( a^0 \) to be shifted out from the encoder memory at time-\( i \), then there are two branches entering each state \( s_{i+1} \) of the trellis at time-\( i + 1 \).

Define

\[
J_i(a^0) = \begin{cases} 
0, & \text{if } a^0 \not\subseteq A_i^0 \\
1, & \text{if } a^0 \subseteq A_i^0 
\end{cases}
\]

where \( A_i^0 \) is the state-defining information set at time-\( i \).

Let \( N_c \) denote the total number of comparisons required to determine the survivors in the decoding process. Then,

\[
N_c = \sum_{i=0}^{n-1} 2^{\rho_i + 1} J_i(a^0).
\]

The total number of computations (additions and comparisons) required to decode a received sequence based on the bit-level trellis \( T \) using the Viterbi decoding algorithm is \( N_a + N_c \).
The total number of computations (additions and comparisons) required to process a sectionalized trellis $T(\Lambda)$ depends on the choice of the section boundary location set $\Lambda = [t_0, t_1, ..., t_v]$.

A sectionalization of a code trellis that gives the smallest total number of computations is called an "optimal sectionalization" for the code.

For any two integers $x$ and $y$ with $0 \leq x < y \leq n$, the section from time-$x$ to time-$y$ in any sectionalized trellis $T(\Lambda)$ with $x,y \in \Lambda$ and $x+1, x+2, ..., y-1 \notin \Lambda$ is identical.

Let $\varphi(x,y)$ denote the number of computations of the Viterbi decoding algorithm to process the trellis section from time-$x$ to time-$y$. Let $\varphi_{\min}(x,y)$ denote the smallest number of computations of the Viterbi decoding algorithm to process the trellis section from time-$x$ to time-$y$.

It follows from the definitions of $\varphi(x,y)$ and $\varphi_{\min}(x,y)$ that

$$\varphi_{\min}(0, y) = \begin{cases} \min\{\varphi(0, y), \min_{0 < x < y}\{\varphi_{\min}(0, x) + \varphi(x, y)\}\}, & \text{for } 1 < y \leq n \\ \varphi(0, 1), & \text{for } y = 1. \end{cases}$$

For every $y \in \{1, 2, ..., n\}$, $\varphi_{\min}(0, y)$ can be computed as follows.

Example: Consider the second-order RM code of length 64 that is a (64,22) code with minimum Hamming distance 16. We find that the boundary location set $\Lambda = \{0, 8, 16, 32, 48, 61, 63, 64\}$ results in an optimum sectionalization. With this optimum sectionalization, $\varphi_{\min}(0,64)$ is 101786.

With the section boundary location set $\Lambda = \{0, 8, 16, 24, 32, 40, 48, 56, 64\}$, requires a total of 119935 computations.
14.4.1 The MAP Algorithm Based on a Bit-level Trellis

Assume BPSK transmission. Let $v = (v_0, v_1, ..., v_{n-1})$ be a codeword and $c = (c_0, c_1, ..., c_{n-1})$ be its corresponding bipolar signal sequence, where for $0 \leq i < n$, $c_i = 2v_i - 1 = \pm 1$. Let $r = (r_0, r_1, ..., r_{n-1})$ be the soft-decision received sequence.

Log-likelihood ratio (LLR), which is defined as

$$L(v_i) \triangleq \log \frac{p(v_i = 1|r)}{p(v_i = 0|r)}$$

(3)

where $p(v_i|r)$ is the a posteriori probability of $v_i$ given the received sequence $r$.

The estimated code bit $v_i$ is then given by the sign of its LLR as follows:

$$v_i = \begin{cases} 1, & \text{if } L(v_i) > 0, \\ 0, & \text{if } L(v_i) \leq 0. \end{cases}$$

(4)

the larger the $|L(v_i)|$, the more reliable the hard decision of $v_i$. Therefore, $L(v_i)$ represents the soft information associated with the decision on $v_i$.

In the $n$-section bit-level trellis $T$ for $C$, let $B_i(C)$ denote the set of all branches $(s_i, s_{i+1})$ that connect the state in state space $\Sigma_i(C)$ at time-$i$ and the states in state space $\Sigma_{i+1}(C)$ at time-$(i + 1)$.

Let $B^0_i(C)$ and $B^1_i(C)$ denote the two disjoint subsets of $B_i(C)$ that correspond to code $v_i=0$ and $v_i=1$, respectively. Clearly,

$$B_i(C) = B^0_i(C) \cup B^1_i(C)$$

(5)

for $0 \leq i < n$. Based on the structure of linear codes, $|B^0_i(C)| = |B^1_i(C)|$.

For $(s', s) \in B_i(C)$, we define the joint probabilities

$$\lambda_i(s', s) \triangleq p(s_i = s', s_{i+1} = s, r)$$

(6)

for $0 \leq i < n$. Then, the joint probabilities $p(v_i, r)$ for $v_i = 0$ and $v_i = 1$ are given by

$$p(v_i = 0, r) = \sum_{(s', s) \in B^0_i(C)} \lambda_i(s', s),$$

(7)

$$p(v_i = 1, r) = \sum_{(s', s) \in B^1_i(C)} \lambda_i(s', s).$$

(8)
• In fact, the LLR of $v_i$ can be computed directly from the joint probabilities $p(v_i = 0, r)$ and $p(v_i = 1, r)$, as follows:

$$L(v_i) \triangleq \log \frac{p(v_i = 1, r)}{p(v_i = 0, r)}$$

for $0 \leq j \leq l \leq n$. Let $r_{j,l}$ denote the following section of the received sequence $r$:

$$r_{j,l} \triangleq (r_j, r_{j+1}, ..., r_{l-1})$$

• For any state $s \in \sum_i(C)$, we define the probabilities

$$\alpha_i(s) \triangleq p(s_i = s, r_{0,i})$$

$$\beta_i(s) \triangleq p(r_{i,n} | s_i = s).$$

Then, it follows from (7), (8), and (15) that we can express (9) as follows:

$$L(v_i) \triangleq \log \frac{\sum_{(s',s) \in B_{i-1}^1(C)} \alpha_i(s') \gamma_i(s', s) \beta_{i+1}(s)}{\sum_{(s',s) \in B_{i+1}^1(C)} \alpha_i(s') \gamma_i(s', s) \beta_{i+1}(s)}.$$  

For a memoryless channel, it follows from the definitions of $\alpha_i(s)$ and $\beta_i(s)$ that

$$\alpha_0(s_0) = \beta_n(s_f) = 1.$$  

1. For $0 \leq i \leq n$,

$$\alpha_i(s) = \sum_{s' \in \Omega_{i-1}^{(c)}(s)} p(s_{i-1} = s', s_i = s, r_{i-1}, r_{0,i-1})$$

2. For $0 \leq i \leq n$,

$$\beta_i(s) = \sum_{s' \in \Omega_{i+1}^{(d)}(s)} p(r_i, r_{i-1,n}, s_{i+1} = s' | s_i = s)$$

The state transition probability \( \gamma_i(s', s) \) depends on the probability distribution of the information bits and the channel. Assume that each information bit is equally likely to be 0 or 1. Then, all the states in \( \sum_i(C) \) are equiprobable, and the transition probability

\[
p(s_{i+1} = s | s_i = s') = \frac{1}{\Omega_i^{d_{i+1}}(s')}
\]

For an AWGN channel with zero mean and two-sided power spectral density \( N_0 \), the conditional probability

\[
p(r_i(s_i, s_{i+1}) = (s', s)) = \frac{1}{\sqrt{\pi N_0}} \exp\left\{-\frac{(r_i - c_i)^2}{N_0}\right\},
\]

where \( c_i = 2v_i - 1 \), and \( v_i \) is the code bit on the branch \((s', s)\).

We can use

\[
w_i(s', s) \triangleq \exp\left\{-\frac{(r_i - c_i)^2}{N_0}\right\}
\]

(21)

to replace \( \gamma_i(s', s) \) in computing \( \alpha_i(s), \beta_i(s), \lambda_i(s', s), p(v_i = 1, r) \), and \( p(v_i = 0, r) \). We call \( w_i(s', s) \) the weight of the branch \((s', s)\).

Consequently, for each state \( s \in \sum_{i+1}(C) \) compute and store

\[
\alpha_i(s) = \sum_{s' \in \Omega_i^{d_i}(s)} \alpha_{i+1}(s') \omega_i(s', s).
\]

(22)

\[
\beta_i(s) = \sum_{s' \in \Omega_i^{d_i}(s)} \omega_i(s, s') \beta_{i+1}(s').
\]

(23)

Then, to carry out the MAP decoding algorithm, use the following three steps:

1. Perform the forward recursion process to compute the forward state probabilities, \( \alpha_i(s')s_i \), for \( 0 \leq i \leq n \).
2. Perform the backward recursion process to compute the backward state probabilities, \( \beta_i(s)s_i \), for \( 0 \leq i \leq n \).
3. Decoding is also performed during the backward recursion. As soon as the probabilities \( \beta_{i+1}(s) \) for all state \( s \in \sum_{i+1}(C) \) have been computed, evaluate the probabilities \( \lambda_i(s', s) \) for all branches \((s', s) \in B_i(C)\).
From (7) and (8) compute the joint probabilities \( p(v_i = 0, r) \) and \( p(v_i = 1, r) \). Then, compute the LLR of \( v_i \) from (9) and decode \( v_i \) based on the decision rule given by (4).
1. A **factor graph** is a graphical representation of any function, in particular for a complicated global function which is a product of some simple local functions.

In other words, a factor graph expresses how a global function of many variables factors into a product of local functions of a subset of some variables.

\[
f(x_1, x_2, x_3, x_4, x_5) = f_A(x_1) \cdot f_B(x_2) \cdot f_C(x_1, x_2, x_3) \cdot f_D(x_3, x_4) \cdot f_E(x_3, x_5).
\]

2. The **sum product algorithm** operated on the factor graph attempts to compute (1) exact marginal functions associated with the global function when the factor graph is cycle free or (2) almost exact marginal function with low complexity iterative processing when the factor graph has cycles.
3. For coding, **factor graphs** provide a nice graphical description of any realization of codes and the **sum product** algorithms represent the optimal or near optimal decoding of codes.

4. For any linear code \( C \) (block or convolutional codes), we can associate \( C \) with at least two realizations and its corresponding factor graphs:
   - one based on the parity check matrix of \( C \),
     (check-based realization: Tanner factor graph with cycles)
   - the other based on the trellis of \( C \).
     (trellis-based realization: Wiberg factor graph without cycles).

5. We can then apply the sum product decoding algorithms on these two factor graphs.

---

The binary linear code \( C[6,3,3] = \{ x \in F_2^6 : H \cdot x = 0 \} \) with

\[
H = \begin{bmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\([(x_1, x_2, \ldots, x_6) \in C] (a \ complicated \ function) = [x_1 \oplus x_3 \oplus x_4 = 0] \cdot [x_1 \oplus x_2 \oplus x_5 = 0] \cdot [x_2 \oplus x_3 \oplus x_6 = 0] \]

This factor graph is also called a Tanner graph.

The factor graph for a given code based on a \( r \times n \) \( H \) has \( r \) check nodes and \( n \) symbol nodes.

---

For a binary code, we have simple parity check nodes and binary-valued symbol nodes (bit nodes).

The factor graph is not unique since a linear code has many parity check matrices associated with it.

The factor graph with parity check matrices for \( C[6,3,3] \) is in general not cycle free and supports suboptimal iterative decoding with low complexity.

We can combined these three **simple** check nodes into a single complex global \( (6,3) \) check node whose factor graph is now cycle free and support optimal noniterative decoding with high complexity.
A $r \times n$ parity check matrix with constant $\rho \ll n$ row weights and constant $\gamma \ll r$ column weights, i.e., a factor graph in which every check node has degree $\rho$ and every symbol node has degree $\gamma$, is called a regular $(\gamma, \rho)$ LDPC code.

A $(3, 4)$ regular LDPC code with $n = 12$ and $r = 9$.

The same $C[6,3,3]$ linear code with trellis and factor graph:

[$(x_1, x_2, \ldots, x_6) \in C, (s_0, s_1, \ldots, s_6) \in S] = [(s_0, x_1, s_1) \in T_1] \cdot [(s_1, x_2, s_2) \in T_2] \cdot [(s_2, x_3, s_3) \in T_3] \cdot [(s_3, x_4, s_4) \in T_4] \cdot [(s_4, x_5, s_5) \in T_5] \cdot [(s_5, x_6, s_6) \in T_6] \cdot [(s_6, x_7, s_7) \in T_7]$

E.g., $T_2 = \{(0,0,00), (0,1,10), (1,0,11), (1,1,01)\}$

Besides the $n$ symbol nodes and $n$ trellis-section check nodes, we also have $n + 1$ state nodes.

The state nodes are not binary-valued. For a good code, the number of states is prohibitively large.
The factor graph based on the trellis of $C$ is cycle free but also not unique since there are many trellises realizations of a code even though the ordering of the codeword bits is fixed.

Since the minimal trellis of $C$ always exists for fixed ordering, the corresponding factor graph for the minimal trellis is unique.

The problem of finding an optimal minimal trellis among all permutations of bit positions is extremely difficult. Right now, only Reed Muller codes of natural ordering with optimal minimal trellis have been found.

We can also consider the tailbiting trellises for $C$ whose factor graph is with one cycle.

Finding a good tailbiting trellis for $C$ is a very active research.

6. Many Shannon capacity approaching codes, such as turbo codes, LDPC codes, RA codes, are all well understood as codes defined on factor graph:
   (a) Turbo codes (1993): Berrou
   (b) LDPC codes (1963): Gallager
   (c) RA codes (1998): McEliece
7. Many decoding algorithms, such as BCJR, SOVA, Viterbi, and iterative decoding for turbo codes and LDPC codes, can all be viewed as the specific instances of sum product algorithm.

8. Beside coding, many other known algorithms in AI and signal processing can also be viewed as instances of sum product algorithm that operates by passing messages in the factor graph.

9. Factor graphs are bipartite graphs:
   The nodes (vertices) of factor graphs are divided into two groups such that there are no edges (branches) connections inside each group, but only edges connected between nodes in different groups.

10. In the case of factor graphs for coding, these groups are
   (a) variable nodes (symbol nodes, visible nodes, bit nodes)
   (b) auxiliary nodes (state nodes, hidden nodes, latent nodes)
   (c) function nodes (constraints nodes, factor nodes, check nodes)

   Each node can be thought of a processor doing the calculation of the messages and each edge is a channel of passing the messages in two directions.

Algebraic vs. Graphic coding

- Algebraic coding $\implies$ coding theory
- Graphic coding $\implies$ coding practice
- Algebraic coding and Graphic coding are two important disciplines in error correcting codes.
- Coding theory and coding practice are indispensable subject in communication engineering.
- More connection and twists between algebraic coding (coding theory) and graphic coding (coding practice) are expected and need to be explored.
**History**

- In 1981, Tanner introduced bipartite graphs to describe any linear block code with $r \times n$ parity check matrix $H$, in particular for regular low density parity check codes with constant column and row weight.
- The bipartite graph of codes has $n$ codeword bit nodes as one group and $r$ parity check nodes as the other group, representing parity check constraints. The edge is connected from the $i$ check node to the $j$ bit node iff $h_{i,j} = 1$.
- Tanner also presented the fundamentals of two iterative decoding on graphs, i.e., the min-sum and sum-product algorithms.

**Factor vs. Normal graphs**

- A realization of a code/system is a mathematical characterization of the code/system.
- Given a code, we can have at least two different realizations of the code, i.e., the check realization and the trellis realization.
- For each realization, we can associate it with different graphs, e.g., the factor graphs and the normal graphs.
- For coding, factor graphs by Kschischang and normal graphs by Forney are two different graphical representations of any realization of a code $C$. 

The artificial intelligence community also developed graphical methods of solving probabilistic inference problems, termed probability propagation.
- Pearl presented an algorithm in 1986 under the name **belief propagation** in Bayesian Networks, for use in acyclic or cycle-free graphs.
- **Fact**: many algorithms used in digital communications and signal processing are all special instances of a more general message-passing algorithm, the sum-product algorithm, operating on factor graphs.
• The normal graph replaces the symbol nodes by an edge of degree 1 and the state nodes by an edge of degree 2.
• We can easily transform a factor graph into a normal graph and vice versa.
• For a beginner, we suggest him to understand the factor graphs first.
• For an expert, you might learn the factor and normal graphs simultaneously.
• It seems that the normal graphs is more natural than factor graph in coding society.

Let $x = (x_1, x_2, \ldots, x_n)$ be a collection of variables.
- Each $x_i$ takes on values in $A_i$, $1 \leq i \leq n$, usually $|A_i| < \infty$.
- $x_i$ could be visible or hidden nodes.
- For check-based factor graph, $A_i = F_2$, $1 \leq i \leq n$.
- For trellis-based factor graph, besides $A_i = F_2$ for visible bit node $x_i$, we could have a state space $A_s = F_{2^{k_s}}$, where $k_s$ is the state dimension of the $s$-th state space for hidden state node $x_s$.

Let $g(x) = g(x_1, \ldots, x_n)$ be a real-valued function of these variables.
- I.e., $g(x)$ a function with domain $S = A_1 \times A_2 \times \ldots \times A_n$ and codomain $\mathbb{R}$.
- The domain $S$ of $g$ is also called the configuration space and each element of $S$ is a particular configuration of $g$.
- We can compute $n$ marginal functions $g_i(x)$, i.e., for each $a \in A_i$ the value of $g_i(a)$ is obtained by summing the value of global function $g(x_1, \ldots, x_n)$ over all configurations of the variables which have $x_i = a$. 
Let \( g \) be a function of three variables \( x_1, x_2, \) and \( x_3 \), then the “summary for \( x_2 \)” is denoted by
\[
\sum_{\sim\{x_2\}} g(x_1, x_2, x_3) := \sum_{x_1 \in A_1} \sum_{x_3 \in A_3} g(x_1, x_2, x_3).
\]

Therefore, the \( i \)-th marginal function is denoted by
\[
g_i(x_i) := \sum_{\sim\{x_i\}} g(x_1, \ldots, x_n).
\]

Assuming that \( g(x) \) can be factored into some local functions and with the help of distributive law of product operation over sum operation, we are seeking an efficient algorithm operate on the factor graph of \( g(x) \) to compute \( g_i(x_i) \).

**Definition.** A factor graph is a bipartite graph that expresses the structure of the factorization \( g(x_1, \ldots, x_n) = \prod_{j \in J} f_j(X_j) \).

A factor graph has a variable node for each variable \( x_i \), a factor node for each local function \( f_j \), and an edge-connecting variable node \( x_i \) to factor node \( f_j \) if and only if \( x_i \) is an argument of \( f_j \).
**Example:**

\[ g(x_1, x_2, x_3, x_4) = f_A(x_1)f_B(x_1, x_2, x_3)f_C(x_3, x_4)f_D(x_3) \]

\[ S = \{ x_1, x_2, x_3, x_4 \} \text{ and } Q = \{ f_A, f_B, f_C, f_D \} \]

**Notations**

- In coding, it is preferred to separate the variable nodes into symbol and state nodes and call the function nodes as constraint or check nodes.

- In other words, we have three nodes: symbol, state, and check nodes in coding application.

- The edge is connected from the \( i \)-th check node to the \( k \)-th symbol node or the \( j \)-th state node if the \( i \)-th constraint node is involved with the \( k \)-th symbol and the \( j \)-th state nodes.

- Then the extended code (full behavior) is the set of all symbol/state configurations satisfying all local constraints.

- The code (partial behavior) is the symbol configurations (codewords) that appears as part of symbol/state configurations in the extended code.
In normal graphs, we only have check nodes which purely do the computation; symbol edges are purely for input/output and state edges are purely for message passing.

**Example 1 (A Simple Factor Graph)**

Let $g(x)$ be a function of five variables, and suppose that $g(x)$ can be expressed as a product

$$g(x_1, x_2, x_3, x_4, x_5) = f_A(x_1)f_B(x_2)f_C(x_1, x_2, x_3) \cdot f_D(x_3, x_4)f_E(x_3, x_5),$$

where $J = \{A, B, C, D, E\}$, $X_A = \{x_1\}$, $X_B = \{x_2\}$, $X_C = \{x_1, x_2, x_3\}$, $X_D = \{x_3, x_4\}$, and $X_E = \{x_3, x_5\}$.

Figure 1: A factor graph for $g(x) = f_A(x_1) \cdot f_B(x_2) \cdot f_C(x_1, x_2, x_3) \cdot f_D(x_3, x_4) \cdot f_E(x_3, x_5)$. 
• Now, we can compute the first marginal function $g_1(x_1)$ as

$$g_1(x_1) = f_A(x_1) \left( \sum_{x_2} f_B(x_2) \left( \sum_{x_3} f_C(x_1,x_2,x_3) \cdot \left( \sum_{x_4} f_D(x_3,x_4) \left( \sum_{x_5} f_E(x_3,x_5) \right) \right) \right) \right).$$

or, in summary notation

$$g_1(x_1) = f_A(x_1) \times \sum_{\sim\{x_1\}} f_B(x_2) f_C(x_1,x_2,x_3) \times \sum_{\sim\{x_3\}} f_D(x_3,x_4) \times \sum_{\sim\{x_3\}} f_E(x_3,x_5).$$

Similarly, we find that

$$g_3(x_3) = \left( \sum_{\sim\{x_3\}} f_A(x_1) f_B(x_2) f_C(x_1,x_2,x_3) \right) \times \left( \sum_{\sim\{x_3\}} f_D(x_3,x_4) \right) \times \left( \sum_{\sim\{x_3\}} f_E(x_3,x_5) \right).$$

In computer science, arithmetic expressions like the right-hand sides of $g_1(x_1)$ and $g_3(x_3)$ are often represented by ordered rooted trees, here called expression trees.

The operators shown in these figures are the function product and the summary, having various local functions as their arguments.

Figure 3: (a) A tree representation for $g_1(x_1)$.  
(b) The factor graph with $x_1$ as root.

Figure 4: (a) A tree representation for $g_3(x_3)$.  
(b) The factor graph with $x_3$ as root.
• When a factor graph is cycle-free, the factor graph not only encodes in its structure the factorization of the global function, but also provides an efficient way to compute the marginal functions.

• To find $g_i(x_i)$, we can arrange $x_i$ as the root of the expression tree. Then every node $v$ in the factor graph has a clearly defined parent node, namely, the neighboring node through which the unique path from $v$ to $x_i$ must pass.

In (a), replace each variable node in the factor graph with a product operator.

In (b), replace each factor node in the factor graph with a “form product and multiply by $f$” operator, and between a factor node $f$ and its parent $x$, insert a $\sum$ summary operator.

Computing a single marginal function

• Every expression tree represents an algorithm for computing the corresponding expression.

• To compute $g_i(x_i)$, use a “bottom-up” procedure:
  – To start at the leaves of the tree, with each operator vertex combining its operands and passing on the result as an operand for its parent.

To best understand such algorithms, it helps to imagine that

\[
\begin{align*}
\text{processor} & \leftrightarrow \text{each vertex of the factor graph} \\
\text{channel} & \leftrightarrow \text{the factor-graph edge}
\end{align*}
\]

• Messages sent along the edges (channels) between the nodes (processor) are some appropriate description of some marginal function.
• The computation starts from the leaves.
• Each leaf variable node sends an identity function message to its parent.
• Each leaf function node sends the description of \( f \) to its parent.
• After receiving the messages from all its children, the vertex then computes them and sends the updated messages to its parent.
  – For a variable node, it sends the product of all messages from its children to its parent.
  – For a function node with parent node \( x \), it operates the summary of \( x \) of the product of all messages from its children and sends to its parent.
• The process terminates at node \( x_i \) and \( g_i(x_i) \) is the product of all messages from the children of \( x \).

Computing all marginal functions

• Computation of \( g_i(x_i) \) for all \( i \) simultaneously can be efficiently accomplished by essentially “overlaying” on a single factor graph all possible instances of the single-\( i \) algorithm.
• At variable node \( x_i \), the product of all incoming messages is the marginal function \( g_i(x_i) \), just as in the single-\( i \) algorithm.
• Since this algorithm operates by computing various sums and products, we refer to it as the \textbf{sum-product algorithm}.
• The operations of sum and product in \( \mathbb{R}(+,\cdot) \) need to satisfy the distributive law
\[
x \cdot (y + z) = x \cdot y + x \cdot z
\]

The sum-product algorithm

• The sum-product algorithm operates according to the following simple rule:

\textbf{The sum-product update rule:}
The message sent from a node \( v \) on an edge \( e \) is the product of the local function at \( v \) (or the unit function if \( v \) is a variable node) with all messages received at \( v \) on edges other than \( e \), summarized for the variable associated with \( e \).
• Let
  \[
  \begin{align*}
  \mu_{x \rightarrow f}(x) & : \text{The message sent from node } x \text{ to node } f. \\
  \mu_{f \rightarrow x}(x) & : \text{The message sent from node } f \text{ to node } x. \\
  n(v) & : \text{The set of neighbors of a given node } v \text{ in a factor graph.}
  \end{align*}
  \]

- The message computations performed by the sum-product algorithm may be expressed as follows:
  - variable to local function:
    \[
    \mu_{z \rightarrow f}(x) = \prod_{h \in n(x) \setminus \{f\}} \mu_h \rightarrow x(x)
    \]
  - local function to variable:
    \[
    \mu_{f \rightarrow x}(x) = \sum_{\sim \{x\}} \left( f(X) \prod_{y \in n(f) \setminus \{x\}} \mu_y \rightarrow f(y) \right)
    \]
    where \( X = n(f) \) is the set of arguments of the function \( f \).

A detailed Example:
Fig. 7 shows the flow of messages that would be generated by the sum-product algorithm applied to the factor graph of Fig. 1.

Figure 6: message passing in an edge between \( f \) and \( x \).

Figure 7: sum-product algorithm for a cycle-free graph.
1. 
\[ \mu_{f_A \rightarrow x_1}(x_1) = \sum_{x_1} f_A(x_1) = f_A(x_1) \]
\[ \mu_{f_B \rightarrow x_2}(x_2) = \sum_{x_2} f_B(x_2) = f_B(x_1) \]
\[ \mu_{x_4 \rightarrow f_D}(x_4) = 1 \]
\[ \mu_{x_5 \rightarrow f_E}(x_5) = 1 \]

2. 
\[ \mu_{x_1 \rightarrow f_C}(x_1) = \mu_{f_A \rightarrow x_1}(x_1) \]
\[ \mu_{x_2 \rightarrow f_C}(x_2) = \mu_{f_B \rightarrow x_2}(x_2) \]
\[ \mu_{f_D \rightarrow x_3}(x_3) = \sum_{x_3} \mu_{x_1 \rightarrow f_D}(x_4) f_D(x_3, x_4) = \sum_{x_3} f_D(x_3, x_4) \]
\[ \mu_{f_E \rightarrow x_3}(x_3) = \sum_{x_3} \mu_{x_5 \rightarrow f_E}(x_5) f_E(x_3, x_5) = \sum_{x_3} f_E(x_3, x_5) \]

3. 
\[ \mu_{f_C \rightarrow x_3}(x_3) = \sum_{x_3} \mu_{x_1 \rightarrow f_C}(x_1) \mu_{x_2 \rightarrow f_C}(x_2) f_C(x_1, x_2, x_3) \]
\[ \mu_{x_3 \rightarrow f_C}(x_3) = \mu_{f_D \rightarrow x_3}(x_3) \mu_{f_E \rightarrow x_3}(x_3) \]

4. 
\[ \mu_{f_C \rightarrow x_1}(x_1) = \sum_{x_1} \mu_{x_3 \rightarrow f_C}(x_3) \mu_{x_2 \rightarrow f_C}(x_2) f_C(x_1, x_2, x_3) \]
\[ \mu_{f_C \rightarrow x_2}(x_2) = \sum_{x_2} \mu_{x_3 \rightarrow f_C}(x_3) \mu_{x_1 \rightarrow f_C}(x_1) f_C(x_1, x_2, x_3) \]
\[ \mu_{x_3 \rightarrow f_D}(x_3) = \mu_{f_C \rightarrow x_3}(x_3) \mu_{f_E \rightarrow x_3}(x_3) \]
\[ \mu_{x_3 \rightarrow f_E}(x_3) = \mu_{f_C \rightarrow x_3}(x_3) \mu_{f_D \rightarrow x_3}(x_3) \]
5. \[
\begin{align*}
\mu_{x_1 \rightarrow f_A}(x_1) &= \mu_{f_C \rightarrow x_1}(x_1) \\
\mu_{x_2 \rightarrow f_B}(x_2) &= \mu_{f_C \rightarrow x_2}(x_2) \\
\mu_{f_D \rightarrow x_4}(x_4) &= \sum_{\sim \{x_4\}} \mu_{x_3 \rightarrow f_D}(x_3)f_D(x_3, x_4) \\
\mu_{f_E \rightarrow x_5}(x_5) &= \sum_{\sim \{x_5\}} \mu_{x_3 \rightarrow f_E}(x_3)f_E(x_3, x_5)
\end{align*}
\]

• Equivalently, since the message passed on any given edge is equal to the product of all but one of these messages, we may compute \(g_i(x_i)\) as the product of the two messages that were passed (in opposite directions) over any single edge incident on \(x_i\).

• Thus, for example, we may compute \(g_3(x_3)\) in three other ways as follows:

\[
\begin{align*}
g_3(x_3) &= \mu_{f_C \rightarrow x_3}(x_3)\mu_{x_3 \rightarrow f_C}(x_3) \\
&= \mu_{f_D \rightarrow x_3}(x_3)\mu_{x_3 \rightarrow f_D}(x_3) \\
&= \mu_{f_E \rightarrow x_3}(x_3)\mu_{x_3 \rightarrow f_E}(x_3)
\end{align*}
\]
We now apply the factor graph description to coding realization.

Forney makes a clear distinction between the realization of a code and the graphic model of the realization.

In other words, a code can have many realizations and for each realization, we can associate it with different graphic modeling.

We will describe various ways in which factor graphs may be used to model the code/systems.

We will use "the realization of a code" and "the modeling of a code" interchangeably.

Given a code, we will talk about two realizations for codes and one realization for decoding:
1. behavior modeling: check-based and trellis-based realization
2. probability modeling

For each realization, we will only consider the factor graph associated with it and leave the normal graph to the readers.

If $P$ is a predicate (Boolean proposition) involving some set of variables, then $\{P\}$ is the $\{0, 1\}$-valued function that indicates the truth of $P$, i.e.

$$\{P\} = \begin{cases} 
1, & \text{if } P \text{ is true} \\
0, & \text{otherwise.}
\end{cases}$$

For example, $f(x, y, z) = [x + y + z = 0]$ is the function that takes a value of 1 if $(x, y, z)$ has even weight, and 0 otherwise.

If we let $\land$ denote the logical conjunction or “AND” operator, then an important property of Iverson’s convention is that

$$\{P = P_1 \land P_2 \land \ldots \land P_n\} = [P_1] [P_2] \ldots [P_n].$$

Thus, $P$ is true iff $P_i$ is true for all $i$; then the complicated global indicator $\{P\}$ can be factored into $n$ simple indicators $P_i$ product. Hence we can represent $P$ by a factor graph.
In the “behavioral” modeling of codes/systems:
Use the characteristic (i.e., indicator) function for the given code/behavior; then the factor graph for the characteristic function is the graphic description for the code/behavior.
- Factorizations of this characteristic function can give important structural information about the model.

In probabilistic modeling of systems:
A factor graph can be used to represent the joint probability mass function of the variables that comprise the system.
- Factorizations of this function can give important information about statistical dependencies among these variables.
- For example, in channel coding, we model both the valid behavior (i.e., the set of codewords) and the a posteriori joint probability mass function over the variables that define the codewords given the received output of a channel.

---

Check-based modeling

- Let \( x_1, x_2, \ldots, x_n \) be a collection of variables with configuration space \( S = A_1 \times A_2 \times \ldots \times A_n \).
- Any element of \( S \) is called a configuration (word).
- By a code/behavior in \( S \), we mean any subset \( B \) of \( S \).
  - The elements of \( B \) are called the valid configurations (codewords).
  - Since a system is specified via its behavior \( B \), this approach is known as behavioral modeling.

Behavioral modeling is natural for codes.
- If the domain of each variable is some finite alphabet \( A \), so that the configuration space is the \( n \)-fold Cartesian product \( S = A^n \), then a behavior \( C \subset S \) is called a block code of length \( n \) over \( A \), and the valid configurations are called codewords.
- The characteristic (or set membership indicator) function for a behavior \( B \) is defined as
  \[
  \chi_B(x_1, \ldots, x_n) := [ (x_1, \ldots, x_n) \in B ]
  \]
  Obviously, specifying \( \chi_B \) is equivalent to specifying \( B \).
Example 2 (Tanner Graphs for Linear Codes)

The characteristic function for any linear code defined by an $r \times n$ parity check matrix $H$ can be represented by a factor graph having $n$ variable nodes and $r$ factor nodes.

Let $C$ be the binary linear code with parity-check matrix

$$H = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}.$$

$C$ is the set of all binary 6-tuples $x \triangleq (x_1, x_2, \ldots, x_6)$ that satisfy three simultaneous equations: $C = \{ x : Hx^T = 0 \}$.

The factor graph of $C$ has 6 symbol nodes and 3 check nodes.

The indication function of $C$ is

$$\chi_C(x_1, x_2, \ldots, x_6) = \left[ (x_1, x_2, \ldots, x_6) \in C \right] = \left[ x_1 \oplus x_2 \oplus x_5 = 0 \right] \left[ x_2 \oplus x_3 \oplus x_6 = 0 \right] \left[ x_1 \oplus x_3 \oplus x_4 = 0 \right].$$

The factor graph (Tanner graph) for the code is:

By this example, a Tanner graph for any $[n, k]$ linear block code may be obtained from a parity-check matrix $H = [h_{ij}]$ for the code.

Such a parity-check matrix has $n$ columns and at least $n - k$ rows.

Variable (symbol) nodes correspond to the columns of $H$ and factor (check) nodes to the rows of $H$, with an edge connecting factor node $i$ to variable node $j$ if and only if $h_{ij} \neq 0$.

Of course, since there are, in general, many parity check matrices that represent a given code, there are, in general, many Tanner graph representations for the code.
trellis-based modeling

- Often, a description of a system is simplified by introducing hidden (sometimes called auxiliary, latent, or state) variables. Nonhidden variables are called visible.
- A particular behavior $B$ with both auxiliary and visible variables is said to represent a given (visible) behavior $C$ if the projection of the elements of $B$ on the visible variables is equal to $C$.
- Any factor graph for $B$ is then considered to be also a factor graph for $C$.

Such graphs were introduced by Wiberg et al. and may be called Wiberg-type graphs.
- As in Wiberg, hidden variable nodes are in general indicated by a double circle.
- An important class of models with hidden variables are the trellis representations.

A trellis for a block code $C$ is an edge labelled directed graph with one left root and one right goal vertices.
- Each sequence of edge labels encountered in any directed path from the root vertex to the goal vertex is a codeword in $C$.
- The collection of all paths forms the code.
- All paths from the root to any given vertex should have the same fixed length $d$, called the depth of the given vertex.
- The root vertex has depth 0, and the goal vertex has depth $n$.
  The set of depth $d$ vertices can be viewed as the $d$-th state space.

(a) A trellis and its (b) Wiberg graph for a $[6, 3, 4]$ code.
- In addition to the visible variable nodes $x_1, x_2, \ldots, x_6$, there are also hidden (state) variable nodes $s_0, s_1, \ldots, s_6$.
- Each local check corresponds to one section of the trellis.
In this example, the local behavior $T_2$ corresponding to the second trellis section from the left in Fig. 9 consists of the following triples $(s_1, x_2, s_2)$:

$$T_2 = \{(0,0,00), (0,1,10), (1,1,01), (1,0,11)\}$$

where the domains of the state variables $s_1$ and $s_2$ are taken to be $\{0,1\}$ and $\{00,01,10,11\}$, respectively, numbered from bottom to top.

- Each element of the local behavior corresponds to one trellis edge.
- The corresponding factor node in the Wiberg-type graph is the indicator function $f(s_1, x_2, s_2) = [(s_1, x_2, s_2) \in T_2]$.

A trellis divides naturally into $n$ sections, where the $i$th trellis section $T_i$ is the subgraph of the trellis induced by the vertices at depth $i-1$ and depth $i$.

- The set of edge labels in $T_i$ may be viewed as the domain of a (visible) variable $x_i$.
- In effect, each trellis section $T_i$ defines a “local behavior” that constrains the possible combinations of $s_{i-1}, x_i$, and $s_i$.

It is important to note that a factor graph corresponding to a trellis is cycle-free.

- Since every code has a trellis representation, it follows that every code can be represented by a cycle-free factor graph.
- Unfortunately, it often turns out that the state-space sizes (the sizes of domains of the state variables) can easily become too large to be practical.

For example, trellis representations of the overall turbo codes have enormous state spaces. But the trellis of the two component codes in turbo codes is relatively small.
Other behavior modeling

- Trellises are basically conventional state-space system models, and the generic factor graph shown below can represent any state-space model of a time-invariant or time-varying system.

Example 4 (State-Space Models)

- The classical linear time-invariant state-space model is given by the equations

\[
\begin{align*}
x(j + 1) &= Ax(j) + Bu(j) \\
y(j) &= Cx(j) + Du(j)
\end{align*}
\]

where \( j \in \mathbb{Z} \) is the discrete time index

- \( u(j) = (u_1(j), \ldots, u_k(j)) \) are the time–j input variables, \( y(j) = (y_1(j), \ldots, y_n(j)) \) are the time–j output variables, and \( x(j) = (x_1(j), \ldots, x_m(j)) \) are the time–j state variables.

- \( A, B, C, D \) are matrices respectively.

Summary of behavioral realization

- The behavioral/code realization of a code is characterized by three sets of elements:

1. A symbol configuration space

\[
A = \prod_{k \in I_A} A_k,
\]

2. A state configuration space

\[
S = \prod_{j \in I_S} S_j,
\]

3. some local constraints

\[\{C_i : i \in I_C\},\]

where \( I_A, I_S, \) and \( I_C \) are discrete index sets.
• A check-based realization of a code $C \subset A$ is defined by some local constraints (behaviors). Each local behavior $C_i$ involves a subset of some symbol variables, indexed by $I_{A}(i) \subset I_{A}$:

$$C_i \subset T_i = \prod_{k \in I_{A}(i)} A_k$$

• The code $C \subset A$ is the set of all valid symbol configuration satisfying all local constraints:

$$C = \{a \in A | a_{I_{A}(i)} \in C_i, \forall i \in I_{C}\},$$

where $a_{I_{A}(i)} = \{a_{k} | k \in I_{A}(i)\} \in T_i$ is the projection of $a$ onto $T_i$.

• The factor graph associated this realization is also called a Tanner graph.

• The trellis-based realization of a code $C \subset A$ is defined by some local constraints (behaviors). Each local behavior $C_i$ involves a subset of some symbol variables, indexed by $I_{A}(i) \subset I_{A}$ and some state variables, indexed by $I_{S}(i) \subset I_{S}$:

$$C_i \subset W_i = \prod_{k \in I_{A}(i)} A_k \times \prod_{j \in I_{S}(i)} S_j$$

• The full behavior $B \subset A \times S$ is the set of all valid symbol/state configuration satisfying all local constraints:

$$B = \{(a, s) \in A \times S | (a_{I_{A}(i)}, s_{I_{S}(i)}) \in C_i, \forall i \in I_{C}\},$$

where $(a_{I_{A}(i)}, s_{I_{S}(i)}) = \{\{a_{k} | k \in I_{A}(i)\}, \{s_{j} | j \in I_{S}(i)\}\} \in W_i$ is the projection of $a$ onto $W_i$.

• In coding, there are three possible behavior/code realizations
  1. code modeling by a parity check matrix (with cycles)
  2. code modeling by conventional trellis (cycle-free)
  3. code modeling by tailbiting trellis (with one cycle)

• The code $C$ is then the projection of $B$ onto the symbol configuration space, i.e., $C = B_{I_{A}}$.

• The factor graph associated this realization is also called a Wiber graph.
Code modeling by a parity check matrix (with many cycles)

$I_A = [1, n]$ and $I_C = [1, r]

$C_i = [n_i, n_i - 1, 2]$ single parity check code, where $n_i = |I_A(i)|.$

Code modeling by conventional trellis (cycle-free)

$I_A = [0, n - 1] = \mathbb{Z}_n,$ $I_S = [0, n],$ and $I_C = [0, n - 1] = \mathbb{Z}_n,$

$C_i$ is the $i$-th trellis section specifies the valid local configuration:

$\left( s_i, a_i, s_{i+1} \right) \in S_i \times A_i \times S_{i+1}$

Code modeling by tailbiting trellis (with one cycle)

$I_A = \mathbb{Z}_n,$ $I_S = \mathbb{Z}_n,$ and $I_C = \mathbb{Z}_n$

Same $i$-th trellis section as conventional trellis except the $n - 1$-th

$\left( s_{n-1}, a_{n-1}, s_0 \right) \in S_{n-1} \times A_{n-1} \times S_0$

Probability Modeling for codes

- In decoding of DMC with input $x \in X$ and output $y \in Y,$ we are given the prior probability $p(x),$ usually uniform distributed, and the conditional probability $p(y|x).$

- In BSC, $X = Y = F_2^n$ and

$$p(y|x) = p^d(x,y)(1-p)^{n-d(x,y)}$$

$$= \prod_{i=1}^{n} p^{d(x_i,y_i)}(1-p)^{1-d(x_i,y_i)}$$

- In AWGN, $X = F_2^n$ and $Y = R^n$ and

$$p(y|x) = \prod_{i=1}^{n} \frac{1}{\sqrt{\pi N_0}} e^{-\frac{(y_i - x_i)^2}{N_0}}$$
• We can find the posterior probability \( p(x|y) = p(x)p(y|x) \).
• Then we may do the MAP decoding for minimizing block or bit error probability:

\[
\max_{x \in C} p(x|y) = \max_{x \in C} p(x)p(y|x) \\
p(x_i|y) = \sum_{\sim\{x_i\}} p(x|y)
\]

Example 5 (APP Distributions)

Consider the standard coding model in which a codeword \( x = (x_1, \ldots, x_n) \) is selected from a code \( C \) of length \( n \) and transmitted over a memoryless channel with corresponding output sequence \( y = (y_1, \ldots, y_n) \).

• For each fixed observation \( y \), the joint a posteriori probability (APP) distribution for the components of \( x \) (i.e., \( p(x|y) \)) is proportional to the function \( g(x) = f(y|x)p(x) \), where \( p(x) \) is the a priori distribution of \( x \) and \( f(y|x) \) is the conditional pdf for \( y \) when \( x \) is transmitted.

• Since conditional and unconditional independence of random variables is expressed in terms of a factorization of their joint probability mass or density function, factor graphs for probability distributions arise in many situations.

Assuming that the a priori distribution for the transmitted vectors is uniform over codewords, we have

\[
p(x) = \chi_C(x)/|C|,
\]

where \( \chi_C(x) \) is the characteristic function for \( C \) and \( |C| \) is the number of codewords in \( C \).

If the channel is memoryless, then \( f(y|x) \) factors as

\[
f(y_1, \ldots, y_n|x_1, \ldots, x_n) = \prod_{i=1}^{n} f(y_i|x_i).
\]
Under these assumptions, we have
\[ g(x_1, \ldots, x_n) = \frac{1}{|C|} \chi_C(x_1, \ldots, x_n) \prod_{i=1}^{n} f(y_i|x_i). \]

Now the characteristic function \( \chi_C \) itself may factor into a product of local characteristic functions.

Given a factor graph \( F \) for \( \chi_C(x) \), we obtain a factor graph for (a scaled version of) the APP distribution over simply by augmenting \( F \) with factor nodes corresponding to the different \( f(y_i|x_i) \) factors.

The \( i \)th such factor has only one argument, namely \( x_i \), since \( y_i \) is regarded as a parameter. Thus, the corresponding factor nodes appear as pendant vertices (“dongles”) in the factor graph.

Consider a \( C[6,3,3] \) binary linear code with \( p(x|y) \)
\[ g(x_1, \ldots, x_6) = [x_1 \oplus x_2 \oplus x_5 = 0] \cdot [x_2 \oplus x_3 \oplus x_6 = 0] \cdot [x_1 \oplus x_3 \oplus x_4 = 0] \cdot \prod_{i=1}^{6} f(y_i|x_i) \]
whose factor graph is shown in Fig. 11.

Example 6 (Markov Chains, Hidden Markov Models)

In general, let \( f(x_1, \ldots, x_n) \) denote the joint probability mass function of a collection of random variables. By the chain rule of conditional probability, we may always express this function as
\[ f(x_1, \ldots, x_n) = \prod_{i=1}^{n} f(x_i|x_1, \ldots, x_{i-1}). \]

For example, if \( n = 4 \), then
\[ f(x_1, \ldots, x_4) = f(x_1) f(x_2|x_1) f(x_3|x_2, x_1) f(x_4|x_1, x_2, x_3) \]
which has the factor graph representation shown in Fig. 12(b).
Continuing this Markov chain example, if we cannot observe each $X_i$ directly, but instead can observe only $Y_i$, the output of a memoryless channel with $X_i$ as input, then we obtain a so-called “hidden Markov model.”

The joint probability mass or density function for these random variables then factors as

$$f(x_1, \ldots, x_n, y_1, \ldots, y_n) = \prod_{i=1}^{n} f(x_i | x_{i-1}) f(y_i | x_i)$$

whose factor graph is shown in Fig. 12(d) for $n = 4$.

---

**Trellis processing**

- An important family of cycle free factor graphs for a code is the one with the chain graphs that represent trellises or Markov models for it.

- Apply the sum-product algorithm to the trellises; it is obvious that a variety of well-known algorithms:
  1. the forward/backward algorithm (BCJR, MAP, APP)
  2. the Viterbi algorithm, SOVA

may be viewed as special cases of the sum-product algorithm.
The forward/backward algorithm

- We start with the forward/backward algorithm, sometimes referred to in coding theory as the BCJR, APP, or MAP algorithm.
- The factor graph of Fig. 13 models the most general situation, which involves a combination of behavioral and probabilistic modeling.
- We have vectors $u = (u_1, u_2, \ldots, u_k)$, $x = (x_1, x_2, \ldots, x_n)$, and $s = (s_0, \ldots, s_n)$ that represent, respectively, input variables, output variables, and state variables in a Markov model, where each variable is assumed to take on values in a finite domain.

![Factor Graph](image)

Figure 13: The factor graph in which the forward/backward algorithm operates: the $s_i$ are state variables, the $u_i$ are input variables, the $x_i$ are output variables, and each $y_i$ is the output of a memoryless channel with input $x_i$.

- This model is a “hidden” Markov model in which we cannot observe the output symbols directly.
- The a posteriori joint probability mass function for $u, s, a n d x$ given the observation $y$ is proportional to:

$$g_y(u, s, x) := \prod_{i=1}^{n} T_i(s_{i-1}, x_i, u_i, s_i) \prod_{i=1}^{n} f(y_i|x_i)$$

where $y$ is again regarded as a parameter of $g$. The factor graph of Fig. 13 represents this factorization of $g$.

- Given $y$, we would like to find the APPs $p(u_i|y)$ for each $i$. These marginal probabilities are proportional to the following marginal functions associated with $g$:

$$p(u_i|y) \propto \sum_{s_i \sim \{u_i\}} g_y(u, s, x).$$

Since the factor graph of Fig. 13 is cycle-free, these marginal functions may be computed by applying the sum-product algorithm to the factor graph of Fig. 13.
Initialization

- This is a cycle-free factor graph for the code and the sum
  product algorithm starts at the leaf variable nodes, i.e.,
  \( s_0, s_n, \) and \( u_i, 1 \leq i \leq k, \)
  and the leaf functional nodes, i.e.,
  \( f(y_i|x_i), 1 \leq i \leq n. \)
- Trivial messages are sent by the input variable nodes and the
  endmost state variable nodes, i.e.,
  \[
  \mu_{u_i \rightarrow T_i}(u_i = 0) = \mu_{u_i \rightarrow T_i}(u_i = 1) = 1, 1 \leq i \leq k,
  \mu_{s_0 \rightarrow T_1}(s_0 = 0) = \mu_{s_n \rightarrow T_n}(s_n = 0) = 1, \\
  \mu_{s_0 \rightarrow T_1}(s_0 \neq 0) = \mu_{s_n \rightarrow T_n}(s_n \neq 0) = 1
  \]

- Each pendant factor node, \( f(y_i|x_i), 1 \leq i \leq n, \) sends a message
  \( (f(y_i|x_i = 0), f(y_i|x_i = 1)) \) to the corresponding output variable
  node.
- Since the output variable nodes, \( x_i, \) have degree two, no
  computation is performed; instead, incoming messages received
  on one edge are simply transferred to the other edge and sent to
  the corresponding trellis check node \( T_i. \)

In the literature on the forward/backward algorithm:

- The message \( \mu_{x_i \rightarrow T_i}(x_i) \) is denoted as \( \gamma(x_i) \)
- The message \( \mu_{s_i \rightarrow T_{i+1}}(s_i) \) is denoted as \( \alpha(s_i) \)
- The message \( \mu_{s_i \rightarrow T_i}(s_i) \) is denoted as \( \beta(s_i). \)
- The message \( \mu_{T_i \rightarrow u_i}(u_i) \) is denoted as \( \delta(u_i). \)

The operation of the sum-product algorithm creates two natural
recursions:
one to compute \( \alpha(s_i) \) as a function of \( \alpha(s_{i-1}) \) and \( \gamma(x_i) \) and the
other to compute \( \beta(s_i) \) as a function of \( \beta(s_{i-1}) \) and \( \gamma(x_i). \)

These two recursions are called the forward and backward
recursions, respectively, according to the direction of message
flow in the trellis.

The forward and backward recursions do not interact,
so they could be computed in parallel.
Fig. 14 gives a detailed view of the message flow for a single trellis section. The local function in this figure represents the trellis check $T_i(s_i-1, u_i, x_i, s_i)$.

The Forward/Backward Recursions

$$\alpha(s_i) = \sum_{\sim\{s_i\}} T_i(s_i-1, u_i, x_i, s_i) \alpha(s_i-1) \gamma(x_i)$$

$$\beta(s_{i-1}) = \sum_{\sim\{s_{i-1}\}} T_i(s_i-1, u_i, x_i, s_i) \beta(s_i) \gamma(x_i)$$

These sums can be viewed as being defined over valid trellis edges $e = (s_i-1, u_i, x_i, s_i)$ such that $T_i(e) = 1$.

The algorithm terminates with the computation of the $\delta(u_i)$.

$$\delta(u_i) = \sum_{\sim\{u_i\}} T_i(s_i-1, u_i, x_i, s_i) \alpha(s_i-1) \beta(s_i) \gamma(x_i).$$

Denoting by $E_i(s)$ the set of edges incident on a state $s$ in the ith trellis section, the $\alpha$ and $\beta$ update equations may be rewritten as

$$\alpha(s_i) = \sum_{e \in E_i(s_i)} \alpha(e) \gamma(e)$$

$$\beta(s_{i-1}) = \sum_{e \in E_i(s_{i-1})} \beta(e) \gamma(e)$$

The basic operations in the forward and backward recursions are therefore “sum of products.”
The min-sum and max-product semirings

- The codomain $R$ of the global function $g$ represented by a factor graph may in general be any semiring with two operations “+” and “·” that satisfy the distributive law
\[
(\forall x, y, z \in R) \quad x \cdot (y + z) = (x \cdot y) + (x \cdot z)
\]
- For nonnegative real-valued quantities $x, y,$ and $z$, “·” distributes over “max”
\[
x(\max(y, z)) = \max(xy, xz).
\]

With maximization as a summary operator, the maximum value of a nonnegative real-valued function $g(x_1, \ldots, x_n)$ is viewed as the “complete summary” of $g$; i.e.
\[
\max g(x_1, \ldots, x_n) = \max(\max_{x_1} \ldots (\max_{x_n} g(x_1, \ldots, x_n))))
\]
\[
= \sum_{\sim{}} g(x_1, \ldots, x_n)
\]

- MAP decoding for minimizing the codeword error probability
\[
\max_{x \in \mathcal{C}} p(x|y) = \max_{x \in \mathcal{C}} p(x)p(y|x)
\]
- MAP decoding is equivalent to ML decoding if $p(x) = \frac{1}{M}$.
- For the MAP or ML decoding problem, we are interested in finding a valid configuration $x$ that achieves this maximum.
- The sum product decoding becomes max. product decoding.
• In practice, MLSD is most often carried out in the negative log-likelihood domain.

• Here, the “product” operation becomes a “sum” and the “max” operation becomes a “min” operation, so that we deal with the “min-sum” semiring.

  ▶ For real-valued quantities $x, y, z$, “+” distributes over “min”

  $$x + \min(y, z) = \min(x + y, x + z).$$

• Applying the min-sum algorithm in this context yields the same message flow as in the forward/backward algorithm.

• As in the forward/backward algorithm, we may write an update equation for the various messages.

  ▶ For example, the basic update equation corresponding to $\alpha(s_i) = \sum_{e \in E_i(s_i)} \alpha(e) \gamma(e)$ is

  $$\alpha(s_i) = \min_{e \in E_i(s_i)} (\alpha(e) + \gamma(e))$$

  so that the basic operation is a “minimum of sums” instead of a “sum of products.”

• A similar recursion may be used in the backward direction, and from the results of the two recursions the most likely sequence may be determined. The result is a “bidirectional” Viterbi algorithm.

---

Iterative decoding for LDPC, turbo, and RA codes

• We now apply the sum product algorithm to the factor graphs with cycles.

• We will discuss three Iterative decoding for:

  1. Turbo codes
  2. LDPC codes
  3. RA codes
Iterative decoding of turbo code

- A “turbo code” ("parallel concatenated convolutional code") has the encoder structure shown in Figure 15(a).

![Figure 15: Turbo code. (a) Encoder block diagram.](image)

- The first parity-check sequence \( p \) is generated via a standard recursive convolutional encoder; viewed together, \( u \) and \( p \) would form the output of a standard rate \( \frac{1}{2} \) convolutional code.
- The second parity-check sequence \( q \) is generated by applying a permutation \( \pi \) to the input stream, and applying the permuted stream to a second convolutional encoder.

A block \( u \) of data to be transmitted enters a systematic encoder which produces \( u \), and two parity-check sequences \( p \) and \( q \) at its output.

- A factor graph representation for a (very) short turbo code is shown in Fig. 15(b).
- Included in the figure are the state variables for the two constituent encoders, as well as a terminating trellis section in which no data is absorbed, but outputs are generated.

![Factor Graph representation](image)

- Iterative decoding of turbo codes is usually accomplished via a message-passing schedule that involves a forward/backward computation over the portion of the graph representing one constituent code, followed by propagation of messages between encoders (resulting in the so-called extrinsic information in the turbo-coding literature).
- This is then followed by another forward/backward computation over the other constituent code, and propagation of messages back to the first encoder.
**LDPC codes**

- LDPC codes were introduced by Gallager in the early 1960s.
- LDPC codes are defined in terms of a regular bipartite graph.
- In a \((j, k)\) LDPC code, left nodes, representing codeword symbols, all have degree \(j\), while right nodes, representing checks, all have degree \(k\).

**RA codes**

- RA codes are a special, low-complexity class of turbo codes introduced by Divsalar, McEliece, and others, who initially devised these codes because their ensemble weight distributions are relatively easy to derive.
- An encoder for an RA code operates on \(k\) input bits \(u_1, \ldots, u_k\), repeating each bit \(Q\) times, and permuting the result to arrive at a sequence \(z_1, \ldots, z_{kQ}\).
- An output sequence \(x_1, \ldots, x_{kQ}\) is formed via an accumulator that satisfies \(x_1 = z_1\) and \(x_i = x_{i-1} + z_i\) for \(i > 1\).
Iterative decoding for LDPC and RA codes

- We treat here only the important case where all variables are binary (Bernoulli) and all functions except single-variable functions are parity checks.
- The probability mass function for a binary random variable may be represented by the vector \((p_0, p_1)\), where \(p_0 + p_1 = 1\).
- According to the generic updating rules, when messages \((p_0, p_1)\) and \((q_0, q_1)\) arrive at a variable node of degree three, the resulting (normalized) output message should be

\[
\text{VAR}(p_0, p_1, q_0, q_1) = \left( \frac{p_0 q_0}{p_0 q_0 + p_1 q_1}, \frac{p_1 q_1}{p_0 q_0 + p_1 q_1} \right).
\]

- Similarly, at a check node representing the function \(f(x, y, z) = [x \oplus y \oplus z = 0]\) (where “\(\oplus\)” represents modulo-2 addition), we have

\[
\text{CHK}(p_0, p_1, q_0, q_1) = (p_0 q_0 + p_1 q_1, p_0 q_1 + p_1 q_0).
\]

- Since \(p_0 + p_1\), binary probability mass functions can be parametrized by a single value.

Depending on the parametrization, various probability gate implementations arise. We give four different parametrizations, and derive the \text{VAR} and \text{CHK} functions for each.

1. Likelihood ratio (LR)
   \[
   \lambda(p_0, p_1) = \frac{p_0}{p_1}.
   \]
   \[
   \text{VAR}(\lambda_1, \lambda_2) = \lambda_1 \lambda_2
   \]
   \[
   \text{CHK}(\lambda_1, \lambda_2) = \frac{1 + \lambda_1 \lambda_2}{1 + \lambda_1 + \lambda_2}
   \]

2. Log-likelihood ratio (LLR)
   \[
   \Delta(p_0, p_1) = \ln \left( \frac{p_0}{p_1} \right)
   \]
   \[
   \text{VAR}(\Delta_1, \Delta_2) = \Delta_1 + \Delta_2
   \]
   \[
   \text{CHK}(\Delta_1, \Delta_2) = \ln \left( \cosh \left( \frac{\Delta_1 + \Delta_2}{2} \right) \right)
   \]
   \[
   - \ln \left( \cosh \left( \frac{\Delta_1 - \Delta_2}{2} \right) \right)
   \]
   \[
   = 2 \tanh^{-1} \left( \tanh \left( \frac{\Delta_1}{2} \right) \tanh \left( \frac{\Delta_2}{2} \right) \right).
   \]
• **Likelihood difference (LD)**

Definition: \( \delta(p_0, p_1) = p_0 - p_1 \).

\[
\begin{align*}
\text{VAR}(\delta_1, \delta_2) &= \frac{\delta_1 \delta_2}{1 + \delta_1 \delta_2} \\
\text{CHK}(\delta_1, \delta_2) &= \delta_1 \delta_2.
\end{align*}
\]

• **Signed log-likelihood difference (SLLD)**

Definition: \( \Delta(p_0, p_1) = \text{sgn}(p_1 - p_0) \ln |p_1 - p_0| \).

\[
\begin{align*}
\text{VAR}(\Delta_1, \Delta_2) &= \begin{cases} 
\text{sgn}(\Delta_1) = \text{sgn}(\Delta_2) = s, \\
\text{sgn}(\Delta_1) = -\text{sgn}(\Delta_2) = -s.
\end{cases} \\
\text{CHK}(\Delta_1, \Delta_2) &= \text{sgn}(\Delta_1) \text{sgn}(\Delta_2) |\Delta_1| + |\Delta_2|).
\end{align*}
\]

In the LLR domain, we observe that for \( x \gg 1 \)

\[
\ln (\cosh(x)) \approx |x| - \ln(2).
\]

Thus, an approximation to the \( \text{CHK} \) function is

\[
\text{CHK}(\Lambda_1, \Lambda_2) \approx |(\Lambda_1 + \Lambda_2)/2| - |(\Lambda_1 - \Lambda_2)/2| = \text{sgn}(\Lambda_1) \text{sgn}(\Lambda_2) \min(|\Lambda_1|, |\Lambda_2|)
\]

which turns out to be precisely the min-sum update rule.

• By applying the equivalence between factor graphs illustrated in Figure 18, it is easy to extend these formulas to cases where variable nodes or check nodes have degree larger than three.

- In particular, we may extend the \( \text{VAR} \) and \( \text{CHK} \) functions to more than two arguments via the relations

\[
\begin{align*}
\text{VAR}(x_1, x_2, \ldots, x_n) &= \text{VAR}(x_1, \text{VAR}(x_2, \ldots, x_n)) \\
\text{CHK}(x_1, x_2, \ldots, x_n) &= \text{CHK}(x_1, \text{CHK}(x_2, \ldots, x_n))
\end{align*}
\]

Of course, there are other alternatives, corresponding to the various binary trees with \( n \) leaf vertices.

- For example, when \( n = 4 \) we may compute \( \text{VAR}(x_1, x_2, x_3, x_4) \) as

\[
\text{VAR}(x_1, x_2, x_3, x_4) = \text{VAR}(\text{VAR}(x_1, x_2), \text{VAR}(x_3, x_4))
\]

which would have better time complexity in a parallel implementation than a computation based on above equations.

![Figure 18: Transforming variable and check nodes of high degree to multiple nodes of degree three.](Image)
Let us now study the more complex factor graph of the [8,4] extended Hamming code. This code has the systematic parity-check matrix

\[
H_{[8,4]} = \begin{bmatrix}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

The code has 4 information bits, which we associate with variable nodes \(U_1, \ldots, U_4\); it also has 4 parity bits, which are associated with the variable nodes \(X_5, \ldots, X_8\).

The function nodes \(V_1, \ldots, V_4\) are the four parity-check equations, given as boolean truth functions. For example,

- \(V_1: U_1 \oplus U_2 \oplus U_3 \oplus X_5 = 0\)
- \(V_2: U_1 \oplus U_2 \oplus U_4 \oplus X_6 = 0\)
- \(V_3: U_1 \oplus U_3 \oplus U_4 \oplus X_7 = 0\)
- \(V_4: U_2 \oplus U_3 \oplus U_4 \oplus X_8 = 0\)

The complete factor graph of the parity-check matrix representation of this code is shown in Figure 7(a).
Turbo Codes

Coding and Communication Laboratory

Dept. of Electrical Engineering,
National Chung Hsing University

Chapter 10: Turbo Codes
1. Introduction
2. Turbo code encoder
3. Iterative decoding of turbo codes

Reference
1. Lin, Error Control Coding
   - chapter 16
What are turbo codes?

- Turbo codes, which a class of error correcting codes is, are introduced by Berrou and Glavieux in ICC93.
- Turbo codes can come closer to approaching Shannon’s limit than any other class of error correcting codes.
- Turbo codes achieve their remarkable performance with relatively low complexity encoding and decoding algorithms.

A firm understanding of convolutional codes is an important prerequisite to the understanding of turbo codes.

Two fundamental ideas of Turbo code:

Encoder: It produce a codeword with randomlike properties.
Decoder: It make use of soft-output values and iterative decoding.

Power efficiency of existing standards

![Power efficiency of existing standards](image)

Turbo code encoder
Turbo codes

Turbo code encoder

- The fundamental turbo code encoder:
  - Two identical recursive systematic convolutional (RSC) codes with parallel concatenation.
- An RSC encoder is termed a component encoder.
- The two component encoders are separated by an interleaver.

![Figure A: Fundamental Turbo Code Encoder (r = 1/3)](image)

In general, an RSC encoder is typically $r = \frac{1}{2}$.

Turbo codes

Turbo codes suffer from two disadvantages:

1. A large decoding delay, owing to the large block lengths and many iterations of decoding required for near-capacity performance.
2. It significantly weakened performance at BERs below $10^{-5}$ owing to the fact that the codes have a relatively poor minimum distance, which manifests itself at very low BERs.

![Figure A-1: Performance comparison of convolutional codes and turbo codes.](image)
### Recursive systematic convolutional (RSC) encoder

- **The RSC encoder:**
  The conventional convolutional encoder by feeding back one of its encoded outputs to its input.

- **Example.** Consider the conventional convolutional encoder in which

<table>
<thead>
<tr>
<th>Generator sequence</th>
<th>( g_1 = [111], g_2 = [101] )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact form</td>
<td>( G = [g_1, g_2] )</td>
</tr>
</tbody>
</table>

**Figure B:** Conventional convolutional encoder with \( r = \frac{1}{2} \) and \( K = 3 \)

- The RSC encoder of the conventional convolutional encoder:
  \[ G = [1, g_2 / g_1] \]
  where the first output is fed back to the input.

- In the above representation:
  - \( 1 \): the systematic output
  - \( g_2 \): the feed forward output
  - \( g_1 \): the feedback to the input of the RSC encoder

- Figure C shows the resulting RSC encoder.

**Figure C:** The RSC encoder obtained from figure B with \( r = \frac{1}{2} \) and \( K = 3 \).
**Trellis termination**

- For the conventional encoder, the trellis is terminated by inserting \( m = K - 1 \) additional zero bits after the input sequence. These additional bits drive the conventional convolutional encoder to the all-zero state (Trellis termination). However, this strategy is not possible for the RSC encoder due to the feedback.

- Convolutional encoder are time-invariant, and it is this property that accounts for the relatively large numbers of low-weight codewords in terminated convolutional codes.

- Figure D shows a simple strategy that has been developed that overcomes this problem.


**Recursive and nonrecursive convolutional encoders**

- Example. Figure E shows a simple nonrecursive convolution encoder with generator sequence \( g1 = [11] \) and \( g2 = [10] \).

\[ x = [1000] \rightarrow e_1 = [1100] \]

\[ d \]

\[ e_2 = [1000] \]

**Figure E:** Nonrecursive \( r = \frac{1}{2} \) and \( K = 2 \) convolutional encoder with input and output sequences.

- Example. Figure F shows the equivalent recursive convolutional encoder of Figure E with \( G = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \).

\[ x = [1000] \rightarrow e_1 = [1000] \]

\[ d \]

\[ e_2 = [1111] \]

**Figure F:** Recursive \( r = \frac{1}{2} \) and \( K = 2 \) convolutional encoder of Figure E with input and output sequences.
• Compare Figure E with Figure F:
  
<table>
<thead>
<tr>
<th>Encoder Type</th>
<th>Codeword Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonrecursive</td>
<td>3</td>
</tr>
<tr>
<td>Recursive</td>
<td>5</td>
</tr>
</tbody>
</table>

• State diagram:

![State diagram of the nonrecursive encoder in Figure E.](image1)

Figure G-1: State diagram of the nonrecursive encoder in Figure E.

Figure G-2: State diagram of the recursive encoder in Figure F.

• A recursive convolutional encoder tends to produce codewords with increased weight relative to a nonrecursive encoder. This results in fewer codewords with lower weights and this leads to better error performance.

• For turbo codes, the main purpose of implementing RSC encoders as component encoders is to utilize the recursive nature of the encoders and not the fact that the encoders are systematic.

• Clearly, the state diagrams of the encoders are very similar.

• The transfer function of Figure G-1 and Figure G-2:

\[ T(D) = \frac{D^3}{1 - D} \quad \text{Where } N \text{ and } J \text{ are neglected.} \]

References:

**Concatenation of codes**

- A concatenated code is composed of two separate codes that combined to form a large code.
- There are two types of concatenation:
  - Serial concatenation
  - Parallel concatenation

---

**Turbo codes**

- The total code rate for serial concatenation is
  \[ r_{\text{tot}} = \frac{k_1 k_2}{n_1 n_2} \]
  which is equal to the product of the two code rates.

**Figure H: Serial concatenated code**

---

- The total code rate for parallel concatenation is:
  \[ r_{\text{tot}} = \frac{k}{n_1 + n_2} \]

**Figure I: Parallel concatenated code.**

---

- For serial and parallel concatenation schemes:
  An interleaver is often between the encoders to improve burst error correction capacity or to increase the randomness of the code.
- Turbo codes use the parallel concatenated encoding scheme. However, the turbo code decoder is based on the serial concatenated decoding scheme.
- The serial concatenated decoders are used because they perform better than the parallel concatenated decoding scheme due to the fact that the serial concatenation scheme has the ability to share information between the concatenated decoders whereas the decoders for the parallel concatenation scheme are primarily decoding independently.
**Interleaver design**

- The interleaver is used to provide randomness to the input sequences.
- Also, it is used to increase the weights of the codewords as shown in Figure J.

![Figure J: The interleaver increases the code weight for RSC Encoder 2 as compared to RSC Encoder 1.](image)

**Table:** Input an Output Sequences for Encoder in Figure K.

<table>
<thead>
<tr>
<th>Input Sequence $x_i$</th>
<th>Output Sequence $c_{1i}$</th>
<th>Output Sequence $c_{2i}$</th>
<th>Codeword Weight $i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 0$</td>
<td>1100</td>
<td>1100</td>
<td>3</td>
</tr>
<tr>
<td>$i = 1$</td>
<td>1010</td>
<td>1010</td>
<td>4</td>
</tr>
<tr>
<td>$i = 2$</td>
<td>1001</td>
<td>1001</td>
<td>5</td>
</tr>
</tbody>
</table>

- The interleaver affect the performance of turbo codes because it directly affects the distance properties of the code.

![Figure L: Block interleaver.](image)
Random (Pseudo-Random) interleaver

- The random interleaver uses a fixed random permutation and maps the input sequence according to the permutation order.
- The length of the input sequence is assumed to be \( L \).
- The best interleaver reorder the bits in a pseudo-random manner. Conventional block (row-column) interleavers do not perform well in turbo codes, except at relatively short block lengths.

Circular-Shifting interleaver

- The permutation \( p \) of the circular-shifting interleaver is defined by
  \[
  p(i) = (ai + s) \mod L
  \]
  satisfying \( a < L \), \( a \) is relatively prime to \( L \), and \( s < L \) where \( i \) is the index, \( a \) is the step size, and \( s \) is the offset.
Turbo codes

Iterative decoding of turbo codes

Iterative decoding of turbo codes

The notation of turbo code encoder

- The information sequence (including termination bits) is considered to be a block of length $K = K^* + v$ and is represented by the vector $\mathbf{u} = (u_0, u_1, \ldots, u_{K-1})$.

Because encoding is systematic the information sequence $\mathbf{u}$ is the first transmitted sequence; that is $\mathbf{u} = \mathbf{v}^{(0)} = (v_0^{(0)}, v_1^{(0)}, \ldots, v_{K-1}^{(0)})$.

The first encoder generates the parity sequence $\mathbf{v}^{(1)} = (v_0^{(1)}, v_1^{(1)}, \ldots, v_{K-1}^{(1)})$.

The parity sequence by the second encoder is represented as $\mathbf{v}^{(2)} = (v_0^{(2)}, v_1^{(2)}, \ldots, v_{K-1}^{(2)})$.

The final transmitted sequence (codeword) is given by the vector $\mathbf{v} = (v_0^{(0)}, v_0^{(1)}, v_0^{(2)}, v_1^{(0)}, v_1^{(1)}, v_1^{(2)}, \ldots, v_{K-1}^{(0)}, v_{K-1}^{(1)}, v_{K-1}^{(2)})$.

The second encoder may or may not be transmitted.

The basic structure of an iterative turbo decoder

- The basic structure of an iterative turbo decoder is shown in Figure O. (We assume here a rate $R = 1/3$ parallel concatenated code without puncturing.)

Figure O: Basic structure of an iterative turbo decoder.
• For an AWGN channel with unquantized (soft) outputs, we define the log-likelihood ratio (L-value) \( L(v^{(0)}_l | r^{(0)}_l) = L(u_l | r^{(0)}_l) \) (before decoding) of a transmitted information bit \( u_l \) given the received value \( r^{(0)}_l \) as

\[
L(u_l | r^{(0)}_l) = \ln \frac{P(u_l = 1 | r^{(0)}_l)}{P(u_l = -1 | r^{(0)}_l)} = \ln \frac{P(r^{(0)}_l | u_l = 1)}{P(r^{(0)}_l | u_l = -1)} = \ln \frac{P(r^{(0)}_l | u_l = 1)}{P(r^{(0)}_l | u_l = -1)} + \ln \frac{P(u_l = 1)}{P(u_l = -1)}
\]

where \( E_s/N_0 \) is the channel SNR, and \( u_l \) and \( r^{(0)}_l \) have both been normalized by a factor of \( \sqrt{E_s} \).

---

• In a linear block code with equally likely information bits, the parity bits are also equally likely to be +1 or -1, and thus the a priori L-values of the parity bits are 0; that is,

\[
L_a(v^{(j)}_l) = \ln \frac{P(v^{(j)}_l)}{P(v^{(j)}_l = -1)} = 0, \quad j = 1, 2.
\]

---

• This equation simplifies to

\[
L(u_l | r^{(0)}_l) = -\frac{E_s}{N_0} \left( r^{(0)}_l - 1 \right)^2 - \left( r^{(0)}_l + 1 \right)^2 + \ln \frac{P(u_l = 1)}{P(u_l = -1)} = \frac{E_s}{N_0} r^{(0)}_l + \ln \frac{P(u_l = 1)}{P(u_l = -1)} = L_{c-r^{(0)}_l} + L_a(u_l),
\]

where \( L_c = 4(E_s/N_0) \) is the channel reliability factor, and \( L_a(u_l) \) is the a priori L-value of the bit \( u_l \).

• In the case of a transmitted parity bit \( v^{(j)}_l \), given the received value \( r^{(j)}_l \), \( j = 1, 2 \), the L-value (before decoding) is given by

\[
L(v^{(j)}_l | r^{(j)}_l) = L_c r^{(j)}_l + L_a(v^{(j)}_l) = L_c r^{(j)}_l, \quad j = 1, 2,
\]
• The received soft channel $L$-valued $L_{c}\ell^{(0)}$ for $u_1$ and $L_{c}\ell^{(1)}$ for $v_1^{(1)}$ enter decoder 1, and the (properly interleaved) received soft channel $L$-valued $L_{c}\ell^{(2)}$ for $v_1^{(2)}$ enter decoder 2.

The output of decoder 1 contains two terms:
1. $L^{(1)}(u_1) = \ln \left( \frac{P(u_1 = +1 \mid r_1, L_{a}^{(1)})}{P(u_1 = -1 \mid r_1, L_{a}^{(1)})} \right)$, the a posteriori $L$-value (after decoding) of each information bit produced by decoder 1 given the (partial) received vector $r_1$ and the a priori input vector $L_{a}^{(1)} = \left[L_{a}^{(1)}(u_0), L_{a}^{(1)}(u_1), \ldots, L_{a}^{(1)}(u_{K-1})\right]$ for decoder 1, and

2. $L^{(1)}(u_1) = L^{(1)}(u_1) - L_{c}\ell^{(0)}(u_1) - L_{c}\ell^{(2)}(u_1)$, the extrinsic a posteriori $L$-value (after decoding) associated with each information bit produced by decoder 1, which, after interleaving, is passed to the input of decoder 2 as the a priori value $L_{a}^{(2)}(u_1)$.

Subtracting the term in brackets, namely, $L_{c}\ell^{(0)}(u_1) + L_{c}\ell^{(2)}(u_1)$, removes the effect of the current information bit $u_1$ from $L^{(1)}(u_1)$, leaving only the effect of the parity constraint, thus providing an independent estimate of the information bit $u_1$ to decoder 2 in addition to the received soft channel $L$-values at time $l$.

Similarly, the output of decoder 2 contains two terms:
1. $L^{(2)}(u_2) = \ln \left( \frac{P(u_2 = +1 \mid r_2, L_{a}^{(2)})}{P(u_2 = -1 \mid r_2, L_{a}^{(2)})} \right)$, where $r_2$ is the (partial) received vector and $L_{a}^{(2)}$ the a priori input vector for decoder 2, and

2. $L^{(2)}(u_2) = L^{(2)}(u_2) - L_{c}\ell^{(0)}(u_2) - L_{c}\ell^{(1)}(u_2)$, and the extrinsic a posteriori $L$-values $L_{c}\ell^{(2)}(u_2)$ produced by decoder 2, after deinterleaving, are passed back to the input of decoder 1 as the a priori values $L_{a}^{(1)}(u_2)$.

Iterative decoding using the log-MAP algorithm

Example. Consider the parallel concatenated convolutional code (PCCC) formed by using the 2–state $(2,1,1)$ systematic recursive convolutional code (SRCC) with generator matrix $G(D) = [1 1 / 1 + D]$ as the constituent code. A block diagram of the encoder is shown in Figure P(a).

Also consider an input sequence of length $K = 4$, including one termination bit, along with a 2 $\times$ 2 block (row–column) interleaver, resulting in a $(12,3)$ PCCC with overall rate $R = 1/4$. 

Figure P: (a) A 2-state turbo encoder and (b) the decoding trellis for $(2,1,1)$ constituent code with $K = 4$. 
Turbo codes 48

- The length $K = 4$ decoding trellis for the component code is shown in Figure P(b), where the branches are labeled using the mapping $0 \rightarrow -1$ and $1 \rightarrow +1$.
- The input block is given by the vector $u = [u_0, u_1, u_2, u_3]$, the interleaved input block is $u' = [u'_0, u'_1, u'_2, u'_3] = [u_0, u_1, u_2, u_3]$, the parity vector for the first component code is given by $p^{(1)} = [p^{(1)}_0, p^{(1)}_1, p^{(1)}_2, p^{(1)}_3]$, and the parity vector for the second component code is $p^{(2)} = [p^{(2)}_0, p^{(2)}_1, p^{(2)}_2, p^{(2)}_3]$.
- We can represent the 12 transmitted bits in a rectangular array, as shown in Figure R(a), where the input vector $u$ determines the parity vector $p^{(1)}$ in the first two rows, and the interleaved input vector $u'$ determines the parity vector $p^{(2)}$ in the first two columns.

Turbo codes 49

Figure R: Iterative decoding example for a (12,3) PCCC.

Turbo codes 50

- For purposes of illustration, we assume the particular bit values shown in Figure R(b).
- We also assume a channel SNR of $E_s/N_0 = 1/4 (-6.02\text{dB})$, so that the received channel $L$-values corresponding to the received vector

$$r = \begin{bmatrix} r^{(0)}_0 & r^{(1)}_0 & r^{(2)}_1 & r^{(1)}_1 & r^{(0)}_2 & r^{(1)}_2 & r^{(0)}_3 & r^{(1)}_3 \end{bmatrix}$$

are given by

$$L_{c}r^{(j)}_l = 4\left(\frac{E_s}{N_0}\right)r^{(j)}_l, \quad l = 0, 1, 2, 3, \quad j = 0, 1, 2.$$

Again for purposes of illustration, a set of particular received channel $L$-values is given in Figure R(c).

Turbo codes 51

- In the first iteration of decoder 1 (row decoding), the log-MAP algorithm is applied to the trellis of the 2-state $(2, 1, 1)$ code shown in Figure P(b) to compute the a posteriori $L$-values $L^{(1)}(u_l)$ for each of the four input bits and the corresponding extrinsic a posteriori $L$-values $L^{(1)}_e(u_l)$ to pass to decoder 2 (the column decoder).
- Similarly, in the first iteration of decoder 2, the log-MAP algorithm uses the extrinsic posteriori $L$-values $L^{(1)}_e(u_l)$ received from decoder 1 as the a priori $L$-values, $L^{(2)}_a(u_l)$ to compute the a posteriori $L$-values $L^{(2)}(u_l)$ for each of the four input bits and the corresponding extrinsic a posteriori $L$-values $L^{(2)}_e(u_l)$ to pass back to decoder 1.

Further decoding proceeds iteratively in this fashion.
• To simplify notation, we denote the transmitted vector as \( \mathbf{v} = (v_0, v_1, v_2, v_3) \), where \( v_l = (u_l, p_l) \), \( l = 0, 1, 2, 3 \), \( u_l \) is an input bit, and \( p_l \) is a parity bit.

• Similarly, the received vector is denoted as \( \mathbf{r} = (r_0, r_1, r_2, r_3) \), where \( r_l = (r_{u_l}, r_{p_l}) \), \( l = 0, 1, 2, 3 \), \( r_{u_l} \) is the received symbol corresponding to the transmitted input bit \( u_l \), and \( r_{p_l} \) is the received symbol corresponding to the transmitted parity bit \( p_l \).

We can express the a posteriori \( L \)-value as

\[
L(u_l) = \ln \frac{P(u_{l}=+1|x,r)}{P(u_{l}=-1|x,r)} = \ln \frac{\sum_{(s',s) \in \Sigma_l}^+ p(s',x,r)}{\sum_{(s',s) \in \Sigma_l}^- p(s',x,r)}
\]

where

- \( s' \) represents a state at time \( l \) (denote by \( s' \in \sigma_l \)).
- \( s \) represents a state at time \( l + 1 \) (denoted by \( s \in \sigma_{l+1} \)).
- The sums are over all state pairs \((s',s)\) for which \( u_l = +1 \) or \(-1\), respectively.

Further simplifying the branch metric, we obtain

\[
r^*_l(s', s) = \frac{p(u_{l}=0|x)}{p(u_{l}=1|x)} r_{l} \cdot v_{l}, \quad l = 0, 1, 2, 3,
\]

where the max function is defined in \( \max(x,y) \equiv \ln(e^x + e^y) = \max(x,y) + \ln(1 + e^{-|x-y|}) \) and the initial conditions are \( \alpha^*_0(S_0) = \beta^*_0(S_0) = 0 \), and \( \alpha^*_0(S_1) = \beta^*_0(S_1) = -\infty \).
The final form of above equation illustrate clearly the three components of the a posteriori L-value of \( u_0 \) computed at the output of a log-MAP decoder:

- \( L_c r_{u_0} \): the received channel L-value corresponding to bit \( u_0 \), which was part of the decoder input.
- \( L_a(u_0) \): the a priori L-value of \( u_0 \), which was also part of the decoder input. Expect for the first iteration of decoder 1, this term equals the extrinsic a posteriori L-value of \( u_0 \) received from the output of the other decoder.
- \( L_e(u_0) \): the extrinsic part of the a posteriori L-value of \( u_0 \), which does not depend on \( L_c r_{u_0} \) or \( L_a(u_0) \). This term is then sent to the other decoder as its a priori input.

Continuing, we can use the same procedure to compute the a posteriori L-values of bits \( u_2 \) and \( u_3 \) as

\[
L(u_2) = L_c r_{u_2} + L_a(u_2) + L_e(u_2),
\]

\[
L(u_3) = L_c r_{u_3} + L_a(u_3) + L_e(u_3),
\]

where

\[
L(u_2) = \max \left\{ +\frac{1}{2} L_c r_{u_2} + \alpha^*_1(S_0) + \beta^*_1(S_1), -\frac{1}{2} L_c r_{u_2} + \alpha^*_2(S_0) + \beta^*_2(S_0) \right\}
\]

\[
L(u_3) = \max \left\{ +\frac{1}{2} L_c r_{u_3} + \alpha^*_1(S_0) + \beta^*_1(S_1), -\frac{1}{2} L_c r_{u_3} + \alpha^*_2(S_0) + \beta^*_2(S_0) \right\}
\]

and

\[
L(u_3) = L_c r_{u_3} + L_a(u_3) + L_e(u_3),
\]

where

\[
L(u_3) = \max \left\{ +\frac{1}{2} L_c r_{u_3} + \alpha^*_1(S_0) + \beta^*_1(S_1), -\frac{1}{2} L_c r_{u_3} + \alpha^*_2(S_0) + \beta^*_2(S_0) \right\}
\]

\[
= \alpha^*_1(S_1) - \alpha^*_2(S_0)
\]
We now need expressions for the terms \( \alpha_1^*(S_0) \), \( \alpha_1^*(S_1) \), \( \alpha_2^*(S_0) \), \( \alpha_2^*(S_1) \), \( \beta_1^*(S_0) \), \( \beta_1^*(S_1) \), \( \beta_2^*(S_0) \), \( \beta_2^*(S_1) \), \( \beta_3^*(S_0) \), \( \beta_3^*(S_1) \), and \( \beta_5^*(S_1) \) that are used to calculate the extrinsic a posteriori L-values \( L_e(u_l) \), \( l = 0, 1, 2, 3 \).

\[
\begin{align*}
\alpha_1^*(S_0) &= \frac{1}{2}(L_{u_0} + L_{p_0}) \\
\alpha_1^*(S_1) &= \frac{1}{2}(L_{u_0} + L_{p_0}) \\
\alpha_2^*(S_0) &= \max \left\{ -\frac{1}{2}(L_{u_1} + L_{p_1}) + \alpha_1^*(S_0), \frac{1}{2}(L_{u_1} - L_{p_1}) + \alpha_1^*(S_1) \right\} \\
\alpha_2^*(S_1) &= \max \left\{ -\frac{1}{2}(L_{u_1} + L_{p_1}) + \alpha_1^*(S_0), \frac{1}{2}(L_{u_1} - L_{p_1}) + \alpha_1^*(S_1) \right\} \\
\beta_1^*(S_0) &= \max \left\{ -\frac{1}{2}(L_{u_0} + L_{p_0}) + \alpha_1^*(S_0), \frac{1}{2}(L_{u_0} - L_{p_0}) + \alpha_1^*(S_1) \right\} \\
\beta_1^*(S_1) &= \max \left\{ -\frac{1}{2}(L_{u_0} + L_{p_0}) + \alpha_1^*(S_0), \frac{1}{2}(L_{u_0} - L_{p_0}) + \alpha_1^*(S_1) \right\} \\
\beta_2^*(S_0) &= \max \left\{ -\frac{1}{2}(L_{u_2} + L_{p_2}) + \alpha_2^*(S_0), \frac{1}{2}(L_{u_2} - L_{p_2}) + \alpha_2^*(S_1) \right\} \\
\beta_2^*(S_1) &= \max \left\{ -\frac{1}{2}(L_{u_2} + L_{p_2}) + \alpha_2^*(S_0), \frac{1}{2}(L_{u_2} - L_{p_2}) + \alpha_2^*(S_1) \right\} \\
\beta_3^*(S_0) &= \max \left\{ -\frac{1}{2}(L_{u_1} + L_{p_1}) + \alpha_3^*(S_0), \frac{1}{2}(L_{u_1} - L_{p_1}) + \alpha_3^*(S_1) \right\} \\
\beta_3^*(S_1) &= \max \left\{ -\frac{1}{2}(L_{u_1} + L_{p_1}) + \alpha_3^*(S_0), \frac{1}{2}(L_{u_1} - L_{p_1}) + \alpha_3^*(S_1) \right\} \\
\beta_5^*(S_1) &= \max \left\{ -\frac{1}{2}(L_{u_3} + L_{p_3}) + \alpha_5^*(S_0), \frac{1}{2}(L_{u_3} - L_{p_3}) + \alpha_5^*(S_1) \right\} \\
\end{align*}
\]

We note here that the a priori L-value of a parity bit \( L_a(p_l) = 0 \) for all \( l \), since for a linear code with equally likely.

We can write the extrinsic a posteriori L-values in terms of \( L_{u_2} \) and \( L_{p_2} \) as

\[
\begin{align*}
L_e(u_0) &= L_{p_0} + \beta_1^*(S_1) - \beta_1^*(S_0) \\
L_e(u_1) &= \max \left\{ +\frac{1}{2}L_{p_1} + \alpha_1^*(S_0) + \beta_2^*(S_1), -\frac{1}{2}L_{p_1} + \alpha_1^*(S_1) + \beta_2^*(S_0) \right\} \\
&- \max \left\{ -\frac{1}{2}L_{p_1} + \alpha_1^*(S_0) + \beta_2^*(S_1), +\frac{1}{2}L_{p_1} + \alpha_1^*(S_1) + \beta_2^*(S_0) \right\} \\
L_e(u_2) &= \max \left\{ +\frac{1}{2}L_{p_2} + \alpha_2^*(S_0) + \beta_5^*(S_1), -\frac{1}{2}L_{p_2} + \alpha_2^*(S_1) + \beta_5^*(S_0) \right\} \\
&- \max \left\{ -\frac{1}{2}L_{p_2} + \alpha_2^*(S_0) + \beta_5^*(S_1), +\frac{1}{2}L_{p_2} + \alpha_2^*(S_1) + \beta_5^*(S_0) \right\} \\
L_e(u_3) &= \alpha_5^*(S_1) - \alpha_5^*(S_0).
\end{align*}
\]

The extrinsic L-value of bit \( u_l \) does not depend directly on either the received or a priori L-values of \( u_l \).
\[
\begin{align*}
\beta_i^*(S_0) &= \max \left\{ -1.45, -3.05 \right\} = -3.05 \\
\beta_i^*(S_1) &= \max \left\{ -1.45, -3.05 \right\} = -3.05 \\
\beta_i^*(S_0) &= \max \left\{ -\frac{1}{2}(1.0 - 0.5) + 1.25, \frac{1}{2}(1.0 - 0.5) + 3.05 \right\} = \max \left\{ 1.00, 3.30 \right\} = 3.30 \\
\beta_i^*(S_1) &= \max \left\{ \frac{1}{2}(1.0 + 0.5) + 1.25, \frac{1}{2}(1.0 + 0.5) + 3.05 \right\} = \max \left\{ 2.00, 3.30 \right\} = 3.30 \\
L_e^{(1)}(u_0) &= 0.1 + 2.30 - 3.30 = -0.90 \\
L_e^{(1)}(u_2) &= \max \left\{ [-0.25 - 0.45 + 3.05], [0.25 + 0.45 + 3.05] \right\} - \max \left\{ [0.25 - 0.45 + 1.25], [-0.25 + 0.45 + 3.05] \right\} = \max \left\{ 3.15, 1.95 \right\} - \max \left\{ 1.05, 3.25 \right\} = 2.35 - 3.25 = -0.90,
\end{align*}
\]

and, using similar calculations, we have
\[
L_e^{(1)}(u_2) \approx +1.4 \quad \text{and} \quad L_e^{(1)}(u_3) \approx -0.3
\]

Using these approximate extrinsic a posteriori \( L \)-values as a posteriori \( L \)-value as a priori \( L \)-values for decoder 2, and recalling that the roles of \( u_1 \) and \( u_2 \) are reversed for decoder 2, we obtain
\[
\begin{align*}
\alpha_i^*(S_0) &= -\frac{1}{3} (0.8 - 0.9 - 1.2) = 0.65 \\
\alpha_i^*(S_1) &= +\frac{1}{3} (0.8 - 0.9 - 1.2) = -0.65 \\
\alpha_i^*(S_0) &= \max \left\{ [-\frac{1}{2}(1.8 + 1.4 + 1.2) + 0.05], [\frac{1}{2}(1.8 + 1.4 + 1.2) - 0.65] \right\} = \max \left\{ 0.25, -1.45 \right\} = 0.25 \\
\alpha_i^*(S_1) &= \max \left\{ [\frac{1}{2}(1.8 + 1.4 + 1.2) + 0.05], [-\frac{1}{2}(1.8 + 1.4 + 1.2) - 0.65] \right\} = \max \left\{ 1.05, 0.15 \right\} = 1.05 \\
\alpha_i^*(S_0) &= \max \left\{ [\frac{1}{2}(1.0 - 0.9 + 0.2) + 0.25], [\frac{1}{2}(1.0 - 0.9 - 0.2) + 0.05] \right\} = \max \left\{ 0.10, 1.00 \right\} = 1.00 \\
\alpha_i^*(S_1) &= \max \left\{ [\frac{1}{2}(1.0 - 0.9 + 0.2) + 0.25], [-\frac{1}{2}(1.0 - 0.9 - 0.2) + 0.05] \right\} = \max \left\{ 0.40, 1.10 \right\} = 1.10
\end{align*}
\]

We calculate the approximate a posteriori \( L \)-value of information bit \( u_0 \) after the first complete iteration of decoding as
\[
L_e^{(2)}(u_0) = L_e r_{u_0} + L_e^{(2)}(u_0) + L_e(u_0) \approx 0.8 - 0.9 - 0.8 = -0.9,
\]
and we similarly obtain the remaining approximate a posteriori \( L \)-values as \( L_e^{(2)}(u_2) \approx +0.7 \), \( L_e^{(2)}(u_1) \approx -0.7 \), and \( L_e^{(2)}(u_3) \approx +1.4 \).
**Fundamental principle of turbo decoding**

- We now summarize our discussion of iterative decoding using the log-MAP and Max-log-MAP algorithm:
  - The extrinsic a posteriori $L$-values are no longer strictly independent of the other terms after the first iteration of decoding, which causes the performance improvement from successive iterations to diminish over time.
  - The concept of iterative decoding is similar to negative feedback in control theory, in the sense that the extrinsic information from the output that is fed back to the input has the effect of amplifying the SNR at the input, leading to a stable system output.

---

- Decoding speed can be improved by a factor of 2 by allowing the two decoders to work in parallel. In this case, the a priori $L$-values for the first iteration of decoder 2 will be the same as for decoder 1 (normally equal to 0), and the extrinsic a posteriori $L$-values will then be exchanged at the same time prior to each succeeding iteration.

- After a sufficient number of iterations, the final decoding decision can be taken from the a posteriori $L$-values of either decoder, or form the average of these values, without noticeably affect performance.

---

- As noted earlier, the $L$-values of the parity bits remain constant throughout decoding. In serially concatenated iterative decoding systems, however, parity bits from the outer decoder enter the inner decoder, and thus the $L$-values of these parity bits must be updated during the iterations.

- The forgoing approach to iterative decoding is ineffective for nonsystematic constituent codes, since channel $L$-values for the information bits are not available as inputs to decoder 2; however, the iterative decoder of Figure O can be modified to decode PCCCs with nonsystematic component codes.

---

- As noted previously, better performance is normally achieved with pseudorandom interleavers, particularly for large block lengths, and the iterative decoding procedure remains the same.

- It is possible, however, particularly on very noisy channels, for the decoder to converge to the correct decision and then diverge again, or even to “oscillate” between correct and incorrect decision.
Iterations can be stopped after some fixed number, typically in the range 10 – 20 for most turbo codes, or stopping rules based on reliability statistics can be used to halt decoding.

The Max-log-MAP algorithm is simpler to implement than the log-MAP algorithm; however, it typically suffers a performance degradation of about 0.5 dB.

It can be shown that MAX-log-MAP algorithm is equivalent to the SOVA algorithm.

The stopping rules for iterative decoding

1. One method is based on the cross-entropy (CE) of the APP distributions at the outputs of the two decoders.

   - The cross-entropy $D(P||Q)$ of two joint probability distributions $P(u)$ and $Q(u)$, assume statistical independence of the bits in the vector $u = [u_0, u_1, \ldots, u_{K-1}]$, is defined as
     
     $D(P||Q) = E_p \left\{ \log \frac{P(u)}{Q(u)} \right\} = \sum_{i=0}^{K-1} E_p \left\{ \log \frac{P(u_i)}{Q(u_i)} \right\}$.

     where $E_p \{ \cdot \}$ denote expectation with respect to the probability distribution $P(u_i)$.

   - Now, using the facts that $L^{(1)}_{a(i)}(u_i) = L^{(2)}_{e(i-1)}(u_i)$ and $L^{(2)}_{a(i)}(u_i) = L^{(1)}_{e(i)}(u_i)$, and letting $Q(u_i)$ and $P(u_i)$ represent the a posteriori probability distributions at the outputs of decoders 1 and 2, respectively, we can write
     
     $L^{(Q)}_{e(i)}(u_i) = L_{e(i)}(u_i) + L^{(P)}_{e(i)}(u_i)$

     and
     
     $L^{(P)}_{e(i)}(u_i) = L_{e(i)}(u_i) + L^{(Q)}_{e(i)}(u_i)$.

   - We can write the difference in the two soft outputs as
     
     $L^{(P)}(u_i) - L^{(Q)}(u_i) = L^{(P)}_{e(i)}(u_i) - L^{(P)}_{e(i-1)}(u_i) = \Delta L^{(P)}_{e(i)}(u_i)$;

     that is, $\Delta L^{(P)}_{e(i)}(u_i)$ represents the difference in the extrinsic a posteriori $L$-values of decoder 2 in two successive iterations.
- We now compute the CE of the a posteriori probability distributions \( P(u_l) \) and \( Q(u_l) \) as follows:

\[
E_p \left\{ \log \frac{P(u_l)}{Q(u_l)} \right\} = P(u_l = +1) \log \frac{P(u_l = +1)}{Q(u_l = +1)} + P(u_l = -1) \log \frac{P(u_l = -1)}{Q(u_l = -1)}
\]

\[
= \frac{e^{L_{(i)}^{(P)}(u_l)}}{1 + e^{-L_{(i)}^{(P)}(u_l)}} \log \frac{e^{L_{(i)}^{(P)}(u_l)}}{1 + e^{L_{(i)}^{(P)}(u_l)}} + \frac{e^{-L_{(i)}^{(P)}(u_l)}}{1 + e^{L_{(i)}^{(P)}(u_l)}} \log \frac{e^{-L_{(i)}^{(P)}(u_l)}}{1 + e^{-L_{(i)}^{(P)}(u_l)}}
\]

where we have used expressions for the a posteriori \( P(u_l = \pm 1) \) and \( Q(u_l = \pm 1) \) analogous to those given in \( P(u_l = \pm 1) \):

\[
\frac{e^{L_{(i)}^{(P)}(u_l)}}{1 + e^{-L_{(i)}^{(P)}(u_l)}} - \frac{e^{-L_{(i)}^{(P)}(u_l)}}{1 + e^{L_{(i)}^{(P)}(u_l)}} \approx 0
\]

and that when \( x \) is large, \( e^{-x} \) is small, and

\[
1 + e^{-x} \approx 1 \text{ and } \log(1 + e^{-x}) \approx e^{-x}
\]

- The above equation can simplify as

\[
E_p \left\{ \log \frac{P(u_l)}{Q(u_l)} \right\} = -\frac{\Delta L_{(i)}^{(P)}(u_l)}{1 + e^{-L_{(i)}^{(P)}(u_l)}} + \log \frac{e^{-L_{(i)}^{(P)}(u_l)}}{1 + e^{L_{(i)}^{(P)}(u_l)}}
\]

- The hard decisions after iteration \( i \), \( \hat{u}_{(i)} \), satisfy

\[
\hat{u}_{(i)} = \text{sgn} \left[ L_{(i)}^{(P)}(u_l) \right] = \text{sgn} \left[ L_{(i)}^{(Q)}(u_l) \right]
\]

- Applying these approximations to \( E_p \left\{ \log \frac{P(u_l)}{Q(u_l)} \right\} \), we can show that

\[
E_p \left\{ \log \frac{P(u_l)}{Q(u_l)} \right\} \approx e^{-L_{(i)}^{(Q)}(u_l)} \left( 1 - e^{-\hat{u}_{(i)} \Delta L_{(i)}^{(P)}(u_l)} \right) \left( 1 + \hat{u}_{(i)} \Delta L_{(i)}^{(P)}(u_l) \right)
\]

CC Lab., EE, NCHU
- Noting that the magnitude of $\Delta L^{(P)}_{e(i)}(u_i)$ will be smaller than 1 when decoding converges, we can approximate the term $e^{-\hat{u}_i^{(i)} \Delta L^{(P)}_{e(i)}(u_i)}$ using the first two terms of its series expansion as follows:

$$e^{-\hat{u}_i^{(i)} \Delta L^{(P)}_{e(i)}(u_i)} \approx 1 - \hat{u}_i^{(i)} \Delta L^{(P)}_{e(i)}(u_i),$$

which leads to the simplified expression

$$E_p \left\{ \log \frac{P(u)}{Q(u)} \right\} \approx e^{-|\hat{L}^{(Q)}_{e(i)}(u_i)|} \left[ \left( 1 - \hat{u}_i^{(i)} \Delta L^{(P)}_{e(i)}(u_i) \right) \left( 1 + \hat{u}_i^{(i)} \Delta L^{(P)}_{e(i)}(u_i) \right) \right]$$

as the approximate value of the CE at iteration $i$. $T(i)$ can be computed after each iteration.

- Experience with computer simulations has shown that once convergence is achieved, $T(i)$ drops by a factor of $10^{-2}$ to $10^{-4}$ compared with its initial value, and thus it is reasonable to use $T(i) < 10^{-3}T(1)$ as a stopping rule for iterative decoding.

2. Another approach to stopping the iterations in turbo decoding is to concatenate a high-rate outer cyclic code with an inner turbo code.

$$w \xrightarrow{Encoder_1} v^{(1)} \xrightarrow{Encoder_2} v^{(2)}$$

Figure: A concatenation of an outer cyclic code with an inner turbo code.
After each iteration, the hard-decision output of the turbo decoder is used to check the syndrome of the cyclic code.

- If no errors are detected, decoding is assumed correct and the iterations are stopped.
- It is important to choose an outer code with a low undetected error probability, so that iterative decoding is not stopped prematurely.
- For this reason it is usually advisable not to check the syndrome of the outer code during the first few iterations, when the probability of undetected error may be larger than the probability that the turbo decoder is error free.

This method of stopping the iterations is particularly effective for large block lengths, since in this case the rate of the outer code can be made very high, thus resulting in a negligible overall rate loss.

For large block lengths, the foregoing idea can be extended to include outer codes, such as BCH codes, that can correct a small number of errors and still maintain a low undetected error probability.

In this case, the iterations are stopped once the number of hard-decision errors at the output of the turbo decoder is within the error-correcting capability of the outer code.

This method also provides a low word-error probability for the complete system; that is, the probability that the entire information block contains one or more decoding errors can be made very small.
Chapter 11: LDPC Codes

1. Introduction
2. A geometric construction of LDPC code
3. EG-LDPC code
4. PG-LDPC code
5. Random LDPC code
6. Decoding of LDPC code
An LDPC code is defined as the null space of a parity-check matrix $H$ that has the following structural properties:

1. Each row consists of $\rho$ 1’s.
2. Each column consists of $\gamma$ 1’s.
3. The number of 1’s in common between any two columns, denoted by $\lambda$, is no greater than 1; that is $\lambda = 0$ or 1.
4. Both $\rho$ and $\gamma$ are small compared with length of the code and the number of rows in $H$ [1,2].

Properties (1) and (2) say that the parity check matrix $H$ has constant row and column weights $\rho$ and $\gamma$. Property (3) implies that no two rows of $H$ have more than one 1 in common.

We define the density $r$ of the parity-check matrix $H$ as the ratio of the total number of 1’s in $H$ to the total number of entries in $H$. Then, we readily see that

$$r = \frac{\rho}{n} = \frac{\gamma}{J}$$

where $J$ is number of rows in $H$.

The LDPC code given by the definition is called a $(\gamma, \rho)$-regular LDPC code. If all the columns or all the rows of the parity check matrix $H$ do not have the same weight, an LDPC code is then said to be irregular.

Ex: Consider the matrix $H$ given below. Each column and each row of this matrix consist of four 1’s, respectively. It can be checked easily that no two columns (or two rows) have more than one 1 in common. The density of this matrix is 0.267. Therefore, it’s is a low-density matrix. The null space of this matrix given a (15,7) LDPC code with a minimum distance of 5. It will be shown in a later section that this code is cyclic and is a BCH code.
Let $k$ be a positive integer greater than 1. For a given choice of $\rho$ and $\gamma$, Gallager gave the following construction of a class of linear codes specified by their parity-check matrices. Form a $k\gamma \times k\rho$ matrix $H$ that consists of $\gamma k \times k\rho$ sub-matrices, $H_1, H_2, \ldots, H_\gamma$. Each rows of submatrix has $\rho$ 1's and each column of a submatrix contains a single 1. Therefore, each submatrix has a total of $k\rho$ 1's. For $1 \leq i \leq k$, the $i$th row of $H_1$ contains all its $\rho$ 1's in columns $(i-1)\rho + 1$ to $i\rho$. The other submatrices are merely column permutations $H_1$. Then, $H = \begin{bmatrix} H_1 \\ H_2 \\ \vdots \\ H_\gamma \end{bmatrix}$.

From the construction of $H$, it is clear that:

1. No two rows in a submatrix of $H$ have any 1-component in common.
2. No two columns in a submatrix of $H$ have more than one 1 in common.

Because the total number of ones in $H$ is $k\rho\gamma$ and the total number of entries in $H$ is $k^2\rho\gamma$, the density of $H$ is $1/k$. If $k$ is chosen much greater than 1, $H$ has a very small density and is a sparse matrix.

Consider an LDPC code $C$ of length $n$ specified by a $J \times n$ parity-check matrix $H$. Let $h_1, h_2, \ldots, h_J$ denote the rows of $H$ where:

$$h_j = (h_{j,0}, h_{j,1}, \ldots, h_{j,n-1})$$

for $1 \leq j \leq J$. $v = (v_0, v_1, \ldots, v_{n-1})$ is a codeword in $C$. Then, the inner product:

$$s_j = v \cdot h_j = \sum_{l=0}^{n-1} v_l h_{j,l} = 0$$

give a parity-check sum. There are a total of $J$ such parity-check sums specified by the $J$ rows of $H$.

A code bit $v_l$ is said to be checked by the sum $v \cdot h_j$ if $h_{j,l} = 1$. For $0 \leq l \leq n$, let $A_l = \{h_{1,l}^{(l)}, h_{2,l}^{(l)}, \ldots, h_{\gamma,l}^{(l)}\}$ denote the set of rows in $H$ that check on the code bit $v_l$. For $1 \leq j \leq \gamma$, let $h_j^{(l)} = (h_{j,0}^{(l)}, h_{j,1}^{(l)}, \ldots, h_{j,n-1}^{(l)})$

Then, $h_{1,l}^{(l)} = h_{2,l}^{(l)} = \cdots = h_{\gamma,l}^{(l)} = 1$.
Any error pattern with $\lceil \gamma/2 \rceil$ or fewer errors can be corrected. Consequently, the minimum distance $d_{min}$ of the code is at least $\gamma + 1$; that is $d_{min} \geq \gamma + 1$. If $\gamma$ is too small, the one-step majority-logic decoding of an LDPC code will give very poor error performance.

A geometric construction of LDPC code

Let $Q$ be a finite geometry with $n$ points and $J$ lines has following properties:
1. Every lines consist of $\rho$ points.
2. Every points lies on $\gamma$ lines.
3. Two points are connected by one and only one line.
4. Two lines are either disjoint or they intersect one and only one point.

We denote the points and lines in $Q$ with $\{p_1, p_2, \cdots, p_n\}$ and $\{L_1, L_2, \cdots, L_J\}$, respectively. Let $\mathbf{v} = (v_1, v_2, \cdots, v_n)$ be an n-tuple over $GF(2)$ whose components correspond to the $n$ points of geometry $Q$, where the $i$th component $v_i$ corresponds to the $i$th point $p_i$ of $Q$. Let $L$ be a line in $Q$, we define a vector based on the points on $L$ as follow:

$$\mathbf{v}_L = (v_1, v_2, \cdots, v_n)$$

where:

$$v_i = \begin{cases} 
1 & \text{if } p_i \text{ is a point on } L \\
0 & \text{otherwise}
\end{cases}$$
We form a $J \times n$ matrix $H_Q^{(1)}$ whose rows are the incidence vectors of the $J$ lines of the finite geometry $Q$ and whose columns correspond to the $n$ points of $Q$. $H_Q^{(1)}$ has four properties:
1. Each row consists of $\rho$ 1’s.
2. Each column has $\gamma$ 1’s.
3. No two rows have more than one 1 in common.
4. No two column have more than one 1 in common.
The null space of $H_Q^{(1)}$ gives an LDPC code of length $n$. This code is called the type $-I$ geometry $-Q$ LDPC code, denoted by $C_Q^{(1)}$, which has a minimum distance of at least $\gamma + 1$.

The $n \times J$ matrix: $H_Q^{(2)}$ is transpose of $H_Q^{(1)}$, denote: $H_Q^{(2)} = [H_Q^{(1)}]^T$.

The properties and rank of $H_Q^{(1)}$ and $H_Q^{(2)}$ are the same.

The null space of $H_Q^{(2)}$ gives an LDPC code of length $J$ with a minimum distance of at least $\rho + 1$. This LDPC code is called the type $-II$ geometry $-Q$ LDPC code.

Four classes of finite-geometry LDPC codes can be constructed:
1. Type-I Eucliden geometry (EG)-LDPC codes.
2. Type-II EG-LDPC codes.
3. Type-I projective geometry (PG)-LDPC codes.
4. Type-II PG-LDPC codes.
A type-I EG-LDPC code based on $\text{EG}(m, 2^s)$, we form the parity-checked matrix $H_{\text{EG}}^{(1)}$, whose rows are the incidence vectors of all the lines in $\text{EG}(m, 2^s)$ and whose columns correspond to all the points in $\text{EG}(m, 2^s)$. Therefore, $H_{\text{EG}}^{(1)}$ consists of

$$J = \frac{2^{(m-1)s}(2^{ms} - 1)}{2^s - 1}$$

consists rows and $n = 2^{ms}$ columns.

Because each line in $\text{EG}(m, 2^s)$ consists of $2^s$ points, each row of $H_{\text{EG}}^{(1)}$ has weight $\rho = 2^s$. Since each point in $\text{EG}(m, 2^s)$ is interested by $(2^{ms} - 1)/(2^s - 1)$ lines, each column of $H_{\text{EG}}^{(1)}$ has weight $\gamma = (2^{ms} - 1)/(2^s - 1)$. The density $\gamma$ of $H_{\text{EG}}^{(1)}$

$$\gamma = \frac{\rho}{n} = \frac{2^s}{2^{ms}} = 2^{-(m-1)s}$$

For $m \geq 2$ and $s \geq 2$, $r \leq 1/4$ and $H_{\text{EG}}^{(1)}$ is a low-density parity-check matrix. The null space of $H_{\text{EG}}^{(1)}$ hence give an LDPC code of length $n = 2^{ms}$, which is called an $m$-dimensional type-I $(0,s)$th order EG-LDPC code denoted by $C_{\text{EG}}^{(1)}(m, 0, s)$. The minimum distance of this code is lower bounded as follows:

$$d_{\text{min}} \geq \gamma + 1 = \frac{2^{ms} - 1}{2^s - 1} + 1$$

To construct an $m$-dimensional type-II EG-LDPC code, we take the transpose of $H_{\text{EG}}^{(1)}$, which gives the parity-checked matrix

$$H_{\text{EG}}^{(2)} = [H_{\text{EG}}^{(1)}]^T$$

Matrix $H_{\text{EG}}^{(2)}$ consist of $J = 2^{ms}$ rows and $n = 2^{(m-1)s}(2^{ms} - 1)/(2^s - 1)$ columns.

Let $\alpha$ be a primitive element of $GF(2^{ms})$. Then $\alpha^0 = 1, \alpha, \alpha^2, \ldots, \alpha^{2^{ms}-2}$ are all the $2^{ms} - 1$ nonorigin points of $\text{EG}(m, 2^s)$. Let

$$v = (v_0, v_1, \ldots, v_{2^{ms}-2})$$

be a $(2^{ms} - 1)$-tuple over $GF(2)$ whose components correspond to the $2^{ms} - 1$ nonorigin points of $\text{EG}(m, 2^s)$, where $v_i$ corresponds to the point $\alpha^i$ with $0 \leq i < 2^{ms} - 1$.

Let $L$ be a line in $\text{EG}(m, 2^s)$, that does not pass through the origin. Based on $L$, we form $(2^{ms} - 1)$-tuple over $GF(2)$ as follow:

$$v_L = (v_0, v_2, \ldots, v_{2^{ms}-2})$$

whose $i$th component $v_i$ is as follows:

$$v_i = \begin{cases} 1 & \text{if } \alpha^i \text{ is a point on } L \\ 0 & \text{otherwise} \end{cases}$$

The vector $v_L$ is the incidence vector on the line $L$. Therefore, $J_0 = (2^{(m-1)s} - 1)(2^{ms} - 1)/(2^s - 1)$ lines in $\text{EG}(m, 2^s)$ that do not pass through the origin.
Let $H_{EG,c}^{(1)}$ be a matrix whose rows are incidence vectors of all the $J_0$ lines in $EG(m, 2^s)$ and whose columns correspond to the $n = 2^{ms} - 1$ non-origin points of $EG(m, 2^s)$. The matrix has following properties:

1. Each rows has weight $\rho = 2^s$.
2. Each columns has weight $\gamma = (2^{ms} - 1)/(2^s - 1) - 1$.
3. No two columns have more than one 1's in common; that is $\lambda = 0$ or 1.
4. No two rows have more than one 1 in common.

The density of $H_{EG,c}^{(1)}$ is $r = \frac{2^s}{2^{ms} - 1}$.

Again, for $m \geq 2$ and $s \geq 2$, $r$ is relatively small compared with 1. Therefore, $H_{EG,c}^{(1)}$ is a low-density matrix.

Let $\alpha$ be a primitive element of $GF(2^{ms})$. Let $h$ be a nonprimitive integer less than $2^{ms} - 1$. For a nonprimitive integer $l$, let $h^{(l)}$ be the remainder resulting from dividing $2^lh$ by $2^{ms} - 1$. Then, $g_{EG,c}^{(1)}(X)$ has $\alpha^l$ as a root if and only if

$$0 < \max_{0 \leq l < s} W_{2^s}(h^{(l)}) \leq (m-1)(2^s - 1)$$

where $W_{2^s}(h^{(l)})$ is the $2^s$-weight of $h^{(l)}$.

Let $h_0$ be the smallest integer that does not satisfy the condition. It can be shown that

$$h_0 = (2^s - 1) + (2^s - 1)2^s + \cdots + (2^s - 1)2^{(m-3)s} + 2^{(m-2)s} + 2^{(m-1)s} = 2^{(m-1)s} + 2^{(m-2)s + 1} - 1$$

Therefore, $g_{EG,c}^{(1)}(X)$ has following sequence of consecutive powers of

A special subclass of type-I cyclic EG-LDPC code is the class of two-dimensional type-I cyclic $(0, s)$th-order EG-LDPC codes. $C_{EG,C}^{(1)}(2, 0, s)$ has the following parameters:

- Length $n = 2^{2s} - 1$
- Number of parity bits $n - k = 3^s - 1$
- Dimension $k = 2^{2s} - 3^s$
- Minimum distance $d_{min} = 2^s + 1$
- Density $r = \frac{2^{2s}}{2^{2s} - 1}$
Two-dimensional type-I cyclic \((0,s)\)th-order EG-LDPC codes

<table>
<thead>
<tr>
<th>(s)</th>
<th>(n)</th>
<th>(k)</th>
<th>(d_{\text{min}})</th>
<th>(\rho)</th>
<th>(\gamma)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>0.267</td>
</tr>
<tr>
<td>3</td>
<td>63</td>
<td>37</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>0.127</td>
</tr>
<tr>
<td>4</td>
<td>255</td>
<td>175</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>0.062</td>
</tr>
<tr>
<td>5</td>
<td>1023</td>
<td>781</td>
<td>33</td>
<td>32</td>
<td>32</td>
<td>0.031</td>
</tr>
<tr>
<td>6</td>
<td>4095</td>
<td>3367</td>
<td>65</td>
<td>64</td>
<td>64</td>
<td>0.016</td>
</tr>
<tr>
<td>7</td>
<td>16383</td>
<td>14197</td>
<td>129</td>
<td>128</td>
<td>128</td>
<td>0.008</td>
</tr>
</tbody>
</table>

The companion code of the \(m\)-dimensional type-I \((0,s)\)th-order EG-LDPC code \(C^{(1)}_{EG,C}\) is the null space of the parity-check matrix

\[
H^{(2)}_{EG,qc} = [H^{(1)}_{EG,c}]^T
\]

This LDPC code has length

\[
n = J_0 = \frac{2^{(m-1)s-1}(2^{ms}-1)}{2^s-1}
\]

and a minimum distance \(d_{\text{min}}\) of at least \(2^s+1\). It is not cyclic but can be put in quasicyclic form. We call this code an \(m\)-dimensional type-II quasi-cyclic \((0,s)\)th-order EG-LDPC code, denoted by \(C^{(2)}_{EG,qc}(m,0,s)\).

- To put \(C^{(2)}_{EG,qc}(m,0,s)\) artition the \(J_0\) incidence vectors of the lines in \(\text{EG}(m,2^s)\) not pass through origin into \(K = \frac{2^{(m-1)s-1}}{2^s-1}\) cyclic classes.
- Each of these \(K\) cyclic classes contains \(2^{ms-1}\) incidence vectors, which are obtained by cyclically shifting any incidence vectors in the class \(2^{ms-1}\) times.
- The \((2^{ms-1}) \times K\) matrix \(H_0\) whose K columns are the K representative incidence vectors of K cyclic class .The \(H^{(2)}_{EG,qc} = [H_0, H_1, ..., H_{2^{ms-2}}]\), \(H_i\) is the a \((2^{ms-1}) \times K\) matrix whose columns are the \(i\)th downward cyclic shift of the column of \(H_0\).
- The null space of \(H^{(2)}_{EG,qc}\) gives the type-II EG-LDPC code \(C^{(2)}_{EG,qc}(m,0,s)\) in quasi-cyclic form.
Let $\alpha$ be a primitive element of $GF(2^{(m+1)s})$, which is considered as an extension field of $GF(2^s)$. Let

$$n = \frac{2^m s - 1}{2^s - 1}$$

Then, the $n$ elements,

$$(\alpha^0)(\alpha^1)(\alpha^2), \ldots, (\alpha^{n-1})$$

form an $m$-dimensional projective geometry over $GF(2^s)$, $PG(m, 2^s)$. The element $(\alpha^0)(\alpha^1)(\alpha^2), \ldots, (\alpha^{n-1})$ are the points of $PG(m, 2^s)$. A line in $PG(m, 2^s)$ consists of $2^s + 1$ points. There are

$$J = \frac{(1 + 2^s + \ldots + 2^{ms})(1 + 2^s + \ldots + 2^{(m-1)s})}{1 + 2^s}$$

lines in $PG(m, 2^s)$.

The matrix $H^{(1)}_{PG}$ has the following properties:

1. Each row has weight $\rho = 2^s + 1$.
2. Each column has weight $\gamma = \frac{2^m s - 1}{2^s - 1}$.
3. No two columns have more than one 1 in common.
4. No two rows have more than one 1 in common. The density of $H^{(1)}_{PG}$ is

$$r = \frac{\rho}{n} = \frac{(2^s - 1)(2^s + 1)}{2^{(m+1)s} - 1}$$

The code $C^{(1)}_{PG}(m, 0, s)$ is the null space of $H^{(1)}_{PG}$ has $d_{\min} \geq \gamma + 1$ and it is called $m$-dimensional type-I $(0, s)$th order PG-LDPC code.

### Specified generator polynomial

Let $h$ be a nonegative integer less than $2^{(m+1)s} - 1$, and

$$2^h = q(2^{(m+1)s} - 1) + h^{(l)}$$

$\alpha^h$ as roots if and only if $0 < \max W_2(h) \leq j(2^s - 1)$.

Let $\xi = \alpha^2 - 1$. The order of $\xi$ is then $n = \frac{2^{(m+1)s} - 1}{2^s - 1}$.

$\xi^{(1)}_{PG}(X)$ has the following consecutive powers of $\xi$: $\xi, \xi^2, \ldots, \xi^{2^s - 1}$.
Special subclass is 2-dimensional type-I cyclic (0,s)th-order PG-LDPC code, whose null space is $C_{PG}^{(1)}(2,0,s)$ of length $n=2^{2s}-1$. $C_{PG}^{(1)}(2,0,s)$ has parameter:

- **Length** $n = 2^{2s} + 2^s + 1$
- **Number of parity bits** $n - k = 3^s + 1$
- **Dimension** $k = 2^{2s} + 2^s - 3^s$
- **Minimum distance** $d = 2^s + 2$
- **Density** $r = \frac{2^{s+1}}{2^{s+2} + 1}$

Two-dimensional type-I PG-LDPC codes

<table>
<thead>
<tr>
<th>s</th>
<th>n</th>
<th>k</th>
<th>$d_{min}$</th>
<th>$\rho$</th>
<th>$\gamma$</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>21</td>
<td>11</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>0.2381</td>
</tr>
<tr>
<td>3</td>
<td>73</td>
<td>45</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>0.1233</td>
</tr>
<tr>
<td>4</td>
<td>273</td>
<td>191</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>0.0623</td>
</tr>
<tr>
<td>5</td>
<td>1057</td>
<td>813</td>
<td>34</td>
<td>33</td>
<td>33</td>
<td>0.0312</td>
</tr>
<tr>
<td>6</td>
<td>4161</td>
<td>3431</td>
<td>66</td>
<td>65</td>
<td>65</td>
<td>0.0156</td>
</tr>
<tr>
<td>7</td>
<td>16513</td>
<td>14326</td>
<td>130</td>
<td>129</td>
<td>129</td>
<td>0.0078</td>
</tr>
</tbody>
</table>

The type-II PG-LDPC code matrix:

$$H_{PG}^{(2)} = [H_{EG}^{(1)}]^T$$

$H_{PG}^{(2)}$ has $J = \frac{2^{(m+1)s} - 1}{2^s - 1}$ rows and

$$n = \frac{(2^{(m-1)s} + \ldots + 2^s + 1)(2^{ms} + \ldots + 2^s + 1)}{2^s + 1}$$

The row and column weights of $H_{PG}^{(2)}$ are $\rho = \frac{2^{ms} - 1}{2^s - 1}$ and $\gamma = 2^s + 1$, respectively. Therefore, $C_{PG}^{(2)}(m, 0, s)$ has length $n$ and minimum distance

$$d_{min} \geq 2^s + 2$$
To construct a parity check matrix, to choose an appropriate column weight $\gamma$ and a appropriate number $J$ rows, $J$ must be close to equal $n - k$. If the rows of $H$ weight is $\rho$, the number of 1 is

$$\gamma \times n = \rho \times (n - k)$$

If $n$ is divisible by $(n - k)$,

$$\rho = \frac{\gamma n}{n - k}$$

this case can be constructed as a regular LDPC code.

If $n$ is not divisible by $(n - k)$,

$$\gamma \times n = \rho(n - k) + b$$

$b$ is constant.

Suggest the parity check matrix has two row weights, top $b$ rows weight $= \rho + 1$, bottom $(n - k - b)$ rows weight $= \rho$.

A $n - k$ tuple column $h_i$ has weight $\gamma$, and add to partial of the parity check matrix:

$$H_{i-1} = \{h_1, h_i, \ldots, h_{i-1}\}$$

There are 3 steps:

1. Chosen $h_i$ at random from the remaining binary $(n - k)$-tuples that are not being used in $H_{i-1}$ and that were not reject earlier
2. Check whether $h_i$ has more than one 1-component with any column, if it is not go to 3, reject $h_i$, go back 1 step.
3. Add $h_i$ to $H_{i-1}$ form a temporary partial parity check matrix. If all the top $b$ rows weight $\leq \rho + 1$ and bottom $(n - k - b)$ rows weight $\leq \rho$, then permanently add $h_i$ to $H_{i-1}$ to form $H_i$ and go to step 1 continue construction process, else reject $h_i$ and choose a new column.

Decoding of LDPC code
An LDPC code can be decoded in various ways namely:

- Bit-flipping decoding algorithm
- The sum-product algorithm

A codeword \( \mathbf{v} = (v_0, v_1, \ldots, v_{n-1}) \) is mapped into a bipolar sequence \( \mathbf{x} = (x_0, x_1, \ldots, x_{n-1}) \) before its transmission, where

\[
x_l = (2v_l - 1) = +1 \text{ for } v_l = 1, \quad \text{and} \quad x_l = -1 \text{ for } v_l = 0 \text{ with } 0 \leq l \leq n - 1
\]

Let \( \mathbf{y} = (y_0, y_1, \ldots, y_{n-1}) \) be the soft-decision received sequence at the output of the receiver matched filter. For \( 0 \leq l \leq n - 1 \),

\[
y_l = \pm 1 + n_l, \quad \text{where } n_l \text{ is a Gaussian random variable with zero mean and variance } N_0/2.
\]

Let \( \mathbf{z} = (z_0, z_1, \ldots, z_{n-1}) \) be the binary hard-decision sequence obtained from \( \mathbf{y} \) as follow:

\[
z_l = \begin{cases} 1 & \text{for } y_l > 0 \\ 0 & \text{for } y_l \leq 0 \end{cases}
\]

Let \( \mathbf{H} \) be the parity-check matrix of an LDPC code \( \mathbf{C} \) with \( J \) rows and \( n \) column. Let \( \mathbf{h}_1, \mathbf{h}_2, \ldots, \mathbf{h}_J \), denote the rows of \( \mathbf{H} \), where

\[
\mathbf{h}_j = (h_{j,0}, h_{j,1}, \ldots, h_{j,n-1})
\]

for \( 1 \leq j \leq J \). Then,

\[
\mathbf{s} = (s_1, s_2, \ldots, s_J) = \mathbf{z} \cdot \mathbf{H}^T
\]

gives the syndrome of the received sequence \( \mathbf{Z} \), where the \( j \)th syndrome component \( s_j \) is given by the checke-sum

\[
s_j = \mathbf{z} \cdot \mathbf{h}_j = \sum_{l=0}^{n-1} z_l h_{j,l}
\]

The received vector \( \mathbf{z} \) is a codeword if and only if \( \mathbf{s} = \mathbf{0} \). If \( \mathbf{s} \neq \mathbf{0} \), error in \( \mathbf{z} \) are detected.

A non zero syndrome component \( s_j \) indicates a parity failure. The number of parity failure is equal to the number of nonzero syndrome components in \( \mathbf{s} \). Let

\[
\mathbf{e} = (e_0, e_1, \ldots, e_{n-1}) = (v_0, v_1, \ldots, v_{n-1}) + (z_0, z_1, \ldots, z_{n-1})
\]

Then, \( \mathbf{e} \) is the error pattern in \( \mathbf{z} \). This error pattern \( \mathbf{e} \) and the syndrome \( \mathbf{s} \) satisfy the condition

\[
\mathbf{s} = (s_1, s_2, \ldots, s_J) = \mathbf{e} \cdot \mathbf{H}^T
\]

where

\[
s_j = \mathbf{e} \cdot \mathbf{h}_j = \sum_{l=0}^{n-1} e_l h_{j,l}
\]
Bit-flipping decoding algorithm

- Bit-flipping decoding was devised by Gallager in 1960.
- A very simple BF decoding algorithm is given here:
  1. Compute the parity-check sum. If all parity-check sums are zero, stop the decoding.
  2. Find the number of failed parity-check equations for each bit, denoted by \( f_i \), \( i = 0, 1, \ldots, n-1 \).
  3. Identify the set \( S \) of bits for which \( f_i \) is the largest.
  4. Flip the bits in the set \( S \).
  5. Repeat step 1 to 4 until all parity-check sum are zero, or a preset maximum number of iterations is reached.

The sum-product algorithm

- The sum-product algorithm decoding is a soft decision base on log-likelihood ratio, it can improve the reliability measure.

We consider an LDPC code \( C \) of length \( n \) specified by a parity-check matrix \( H \) with \( J \) rows, \( h_1, h_2, \ldots, h_J \), where

\[
  h_j = (h_{j,0}, h_{j,1}, \ldots, h_{j,n-1})
\]

For \( 1 \leq j \leq J \), we define the following index set for \( h_j \)

\[
  B(h_j) = \{ l : h_{j,l} = 1, 0 \leq l < n \}
\]

which is called the support of \( h_j \).

If preset maximum number of iterations is reached and not all parity-check sum are zero, we may simply declare a decoding failure or decode the unmodified received sequence \( z \) with MLG decoding to obtain a decoded sequence, which may not be a codeword in \( C \).

The parameter \( \delta \) called threshold, is a design parameter that should be chosen to optimize the error performance while minimizing the number of computations of parity-check sums.

The value of \( \delta \) depend on the code parameters \( \rho, \gamma, d_{\text{min}} \) and SNR.

If decoding fails for a given value of \( \delta \), then the value of \( \delta \) should be reduced to allow further decoding iterations.

The implementation of the sum-product algorithm bases on the computation of the marginal a posteriori probabilities

\[
  P(v_l | y)
\]

for \( 0 \leq l < n \), where \( y \) is the soft-decision received sequence. Then, the LLR for each code bit is given by

\[
  L(v_l) = \log \frac{p(v_l = 1 | y)}{p(v_l = 0 | y)}
\]

Let \( p^0_l = P(v_l = 0) \) and \( p^1_l = P(v_l = 1) \) be the prior probabilities of \( v_l = 0 \) and \( v_l = 1 \).
For $0 \leq l < n$, $1 \leq j \leq n$, and each $h_j \in A_t$, let $q_{j,l}^{x(i)}$ be the conditional probability that the transmitted code bit $v_l$ has value $x$, given the check-sums computed based on the check vectors in $A_t/h_j$ at the $i$th decoding iteration.

For $0 \leq l < n$, $1 \leq j \leq n$, and $h_j \in A_t$, let $\sigma_{j,l}^{x(i)}$ be the conditional probability that the check-sum $s_j$ is satisfied (i.e., $s_j = 0$), given $v_l = x$ (0 or 1) and the other code bits in $B(h_j)$ have a separable distribution $\{q_{j,t}^{v_t(i)} : t \in B(h_j) \setminus l\}$; that is:

$$
\sigma_{j,l}^{x(i)} = \sum_{\{v_t : t \in B(h_j) \setminus l\}} P(s_j = 0 | v_l = x, \{v_t : t \in B(h_j) \setminus l\}) \prod_{t \in B(h_j) \setminus l} q_{j,t}^{v_t(i)}
$$

To computed values of $\sigma_{j,l}^{x(i)}$, and then used to update the value $q_{j,l}^{x(i+1)}$ as follows:

$$
q_{j,l}^{x(i+1)} = \alpha_{j,l}^{(i+1)} \prod_{h_j \in A_t \setminus h_j} \sigma_{j,l}^{x(i)}
$$

where $\alpha_{j,l}^{(i+1)}$ is chosen such that

$$
q_{j,l}^{0(i+1)} + q_{j,l}^{1(i+1)} = 1
$$

At the $i$th step, the pseudo-prior probabilities are given by

$$
P^{(i)}(v_l = 0 | y) = \alpha_{l}^{(i)} \prod_{h_j \in A_t} \sigma_{j,l}^{x(l-1)}
$$

where $\alpha_{l}^{(i)}$ is chosen such that $P^{(i)}(v_l = 0 | y) + P^{(i)}(v_l = 1 | y) = 1$

The sum-product algorithm decoding in terms of probability consist of the following steps:

Initialization: Set $i = 0$ and maximum number of iterations to $I_{max}$.

For every pair $(j, l)$ such that $h_{j,l} = 1$ with $1 \leq j \leq J$ and $0 \leq l < n$, set $q_{j,l}^{0(0)} = p_l^0$ and $q_{j,l}^{1(0)} = p_l^1$.

1. For $0 \leq l < n$, $1 \leq j \leq J$, and each $h_j \in A_t$, compute the probabilities of $\sigma_{j,l}^{0(i)}$ and $\sigma_{j,l}^{1(i)}$. Go to step 2.

2. For $0 \leq l < n$, $1 \leq j \leq J$, and each $h_j \in A_t$, compute the values of $q_{j,l}^{0(i+1)}$ and $q_{j,l}^{1(i+1)}$ and the values of $P^{(i+1)}(v_l = 0 | y)$ and $P^{(i+1)}(v_l = 1 | y)$. Form $Z^{(i+1)}$ and test $Z^{(i+1)} \cdot H^T$. If $Z^{(i+1)} \cdot H^T = 0$ or the maximum iteration number $I_{max}$ is reached, go to step 3. Otherwise, set $i \leftarrow i + 1$ and go to step 1.

3. Output $Z^{(i+1)}$ as the decoded codeword and stop the decoding process.