
Convolutional Codes

Communication and Coding Laboratory

Dept. of Electrical Engineering,
National Chung Hsing University

Convolutional Codes 1

• Chapter 7: Convolutional Codes

1. Preview of convolutional codes

2. Shift register representation

3. Scalar generator matrix in the time domain

4. Impulse response of MIMO LTI system

5. Polynomial generator matrix in the frequency domain

6. State diagram, tree, and trellis

7. Construction of minimal trellis

8. The algebraic theory of convolutional codes

9. Free distance and path enumerator

10. Termination, truncation, tailbiting, and puncturing

11. Optimal decoding: Viterbi and BCJR decoding

12. Suboptimal decoding: sequential and threshold decoding

CC Lab, EE, NCHU

Convolutional Codes 2

Reference

1. Lin, Error control coding: chapter 11, 12, and 13

2. Johannesson, Fundamentals of convolutional coding

3. Lee, Convolutional coding

4. Dholakis, Introduction to convolutional codes

5. Adamek, Foundation of coding: chapter 14

6. Wicker, Error control systems for digital communication: chapter

11 and 12

7. Reed, Error Control doding for data networks: chapter 8

8. Blahut, Algebraic codes for data transmission: chapter 9

CC Lab, EE, NCHU

Convolutional Codes 3

Preview of Convolutional Codes

CC Lab, EE, NCHU

Convolutional Codes 4

• Block codes and convolutional codes are two major class of codes

for error correction.

• From a viewpoint, convolutional codes differ form block codes in

that the encoder contains memory.

• For convolutional codes, the encoder outputs at any given time

unit depend not only on the inputs at that time unit but also on

some number of previous inputs:

vt = f(ut−m, · · · , ut−1, ut),

where vt ∈ Fn
2 and ut ∈ F k

2 .

• A rate R = k
n convolutional encoder with memory order m can

be realized as a k-input, n-output linear sequential circuit with

input memory m.

CC Lab, EE, NCHU

Convolutional Codes 5

• Convolutional codes were first introduced by Elias in 1955.

• The information and codewords of convolutional codes are of

infinite length, and therefore they are mostly referred to as

information and code sequence.

• In practice, we have to truncate the convolutional codes by

zero-biting, tailbiting, or puncturing.

• There are several methods to describe a convolutional codes.

1. Sequential circuit: shift register representation.

2. MIMO LTI system: impulse response encoder

3. Algebraic description: scalar G matrix in time domain

4. Algebraic description: polynomial G matrix in Z domain,

5. Combinatorial description: state diagram and trellis

CC Lab, EE, NCHU

Convolutional Codes 6

• We emphasize differences among the terms: code, generator

matrix, and encoder.

1. Code: the set of all code sequences that can be created with a

linear mapping.

2. Generator matrix: a rule for mapping information to code

sequences.

3. Encoder: the realization of a generator matrix as a digital LTI

system.

• For example, one convolutional code can be generated by several

different generator matrices and each generator matrix can be

realized by different encoder, e.g., controllable and observable

encoders.

CC Lab, EE, NCHU

Convolutional Codes 7

Summary

• · · ·u(i− 1)u(i) · · · −→ Encoding −→ · · · c(i− 1)c(i) · · ·

u(i) = (u1(i), . . . , uk(i)), c(i) = (c1(i), . . . , cn(i))

• u(D) =
∑

i u(i)Di −→ G(D) −→ c(D) =
∑

i c(i)Di

c(D) = u(D)G(D)

• There are two types of codes in general

– Block codes: G(D) = G =⇒ c(i) = u(i)G

– Convolutional codes: G(D) = G0 + G1D + · · ·+ GmDm

=⇒ c(i) = u(i)G0 + u(i− 1)G1 + · · ·u(i−m)Gm

CC Lab, EE, NCHU

Convolutional Codes 8

G
u(i)

c(i)

Figure 1: Encoder of block codes

u(i) u(i-M)
D D

G1

D

GMG0 GM-1

u(i-1)

+

c(i)

Figure 2: Encoder of convolutional codes

CC Lab, EE, NCHU

Convolutional Codes 9

Shift register representation

CC Lab, EE, NCHU

Convolutional Codes 10

G
u(i)

c(i)

Figure 3: Encoder of block codes

• Use combinatorial logic to implement block codes.

• A information block u(i) of length k at time i is mapped to a

codeword c(i) of length n at time i by a k × n generator matrix

for each i, i.e., no memory.

c(i) = u(i) ·G

• We denote this linear block code by C[n, k], usually, n and k are

large.

CC Lab, EE, NCHU

Convolutional Codes 11

u(i) u(i-M)
D D

G1

D

GMG0 GM-1

u(i-1)

+

c(i)

Figure 4: Encoder of convolutional codes

• Use sequential logic to implement convolutional codes.

• A information sequence u of infinite length is mapped to a

codeword v of infinite length. In practice, we will output the

convolutional codes by termination, truncation, or tailbiting.

CC Lab, EE, NCHU

Convolutional Codes 12

• Assume we use feed forward encoder with memory m, then the

codeword c(i) of length n at time i is dependent on the current

input u(i) and previous m inputs, u(i− 1), · · · , u(i−m).

• We need m + 1 matrices G0, G1, · · · , Gm of size k × n:

c(i) = u(i)G0 + u(i− 1)G1 + u(i− 2)G2 + · · ·+ u(i−m)Gm

• We denote this (linear) convolutional code by C[n, k, m], usually,

n and k are small.

CC Lab, EE, NCHU

Convolutional Codes 13

Relation between block and convolutional codes

• A Convolutional code maps information blocks of length k to

code blocks of length n. This linear mapping contains memory,

because the code block depends on m previous information

blocks.

• In this sense, block codes are a special case of convolutional

codes, i.e., convolutional codes without memory.

CC Lab, EE, NCHU

Convolutional Codes 14

• In practical application, convolutional codes have code sequences

of finite length. When looking at the finite generator matrix of

the created code in time domain, we find that it has a special

structure.

• Because the generator matrix of a block code with corresponding

dimension generally dose not have a special structure,

convolutional codes with finite length can be considered as a

special case of block codes.

• The trellis structure of convolutional codes is time-invariant, but

the trellis structure of block codes is usually time-varying.

CC Lab, EE, NCHU

Convolutional Codes 15

Scalar generator matrix in the time domain

CC Lab, EE, NCHU

Convolutional Codes 16

G matrix of block codes

[u(0), u(1), u(2), · · ·]

⎡
⎢⎢⎢⎢⎢⎢⎣

G

G

G

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

= [c(0), c(1), c(2), · · ·]

CC Lab, EE, NCHU

Convolutional Codes 17

G matrix of convolutional codes

[u(0), u(1), u(2), · · ·]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0 G1 G2 · · · Gm · · ·

G0 G1 · · · Gm−1 Gm · · ·

G0 · · · Gm−2 Gm−1 Gm · · ·

· · ·
...

...
... · · ·

G1 G2 G3 · · ·

G0 G1 G2 · · ·

G0 G1 · · ·

G0 · · ·
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [c(0), c(1), c(2), · · · · · · , c(m), c(m + 1), · · ·]

CC Lab, EE, NCHU

Convolutional Codes 18

• Here, we assume that the initial values in the m memories are all

set to zeros.

• For example, the scalar matrix shows that

c(0) = u(0)G0 + u(−1)G1 + u(−2)G2 + · · ·+ u(−m)Gm

= u(0)G0

since u(−1) = u(−2) = · · ·u(−m) = 0.

• Similarly

c(1) = u(1)G0 + u(0)G1 + u(−1)G2 + · · ·+ u(−m + 1)Gm

= u(1)G0 + u(0)G1.

• In general, we have

c(i) = u(i)G0 + u(i− 1)G1 + u(i− 2)G2 + · · ·+ u(i−m)Gm

= u(i)⊗Gi.

CC Lab, EE, NCHU

Convolutional Codes 19

Impulse response of MIMO LTI systems

CC Lab, EE, NCHU

Convolutional Codes 20

• From the scalar G matrix representation, we have

c(i) = u(i)G0 + u(i− 1)G1 + u(i− 2)G2 + · · ·+ u(i−m)Gm

= u(i)⊗Gi

• This is the form of discrete time convolutional sum, i.e., the

output c(i) is the convolutional sum of input sequence u(i) and

the finite impulse response (FIR) (G0, · · · , Gm).

• In the undergraduate course of signal and system, we deal with

SISO.

• Here, we have MIMO LTI systems with k inputs and n outputs

and thus we need k × n impulse responses

g
(j)
i = g

(j)
i (l), 0 ≤ l ≤ m, 1 ≤ i ≤ k, and 1 ≤ j ≤ n,

which can be obtained from m + 1 matrices {G0, · · · , GM}.

CC Lab, EE, NCHU

Convolutional Codes 21

• Correspondingly, we can associate each g
(j)
i with its Fourier

transform G
(j)
i (D) and form a k × n matrix G(D) by

G(D) = [G
(j)
i (D)] = G0 + G1D + G2D

2 + · · ·+ GmDm

• This is the polynomial matrix representation of a convolutional

code.

• The k × n matrix g(l) consisting of impulse responses g
(j)
i (l) and

the k × n matrix G(D) consisting of G
(j)
i (D) form a Fourier pair.

CC Lab, EE, NCHU

Convolutional Codes 22

Example

A (3,2) convolutional code with impulse response g(l) and transfer

function G(D):

g(l) =

⎛
⎝ 110 111 100

010 101 111

⎞
⎠

G(D) =

⎛
⎝ 1 + D 1 + D + D2 1

D 1 + D2 1 + D + D2

⎞
⎠

CC Lab, EE, NCHU

Convolutional Codes 23

LTI system representation

• Let us use ui, ci, (instead of u(i), c(i)) to denote the information

sequence, code sequence respectively, at time i.

• I.e., the infinite information and code sequence is⎧⎨
⎩ u = u0u1u2 · · ·ui · · ·

v = v0v1v2 · · · vi · · ·

• The ui consists of k bits and vi consists of n bits denoted by⎧⎨
⎩ ui = u

(1)
i u

(2)
i u

(3)
i · · ·u

(k)
i

vi = v
(1)
i v

(2)
i v

(3)
i · · · v

(n)
i

CC Lab, EE, NCHU

Convolutional Codes 24

• Define the input sequence due to the ith stream, 1 ≤ i ≤ k, as

u(i) = u
(i)
0 u

(i)
1 u

(i)
2 u

(i)
3 · · ·

and the output sequence due to the jth stream, 1 ≤ j ≤ n, as

v(j) = v
(j)
0 v

(j)
1 v

(j)
2 v

(j)
3 · · ·

• A [n, k, m] convolutional code can be represented as a MIMO LTI

system with k input streams

(u(1), u(2), · · · , u(k)),

and n output streams

(v(1), v(2), · · · , v(n)),

and a k × n impulse response matrix g(l) = {g
(j)
i (l)}.

CC Lab, EE, NCHU

Convolutional Codes 25

• The jth of the n output sequence v(j) is obtained by convolving

the input sequence with the corresponding system impulse

response

v(j) = u(1) ⊗ g
(j)
1 + u(2) ⊗ g

(j)
2 + · · ·u(k) ⊗ g

(j)
k =

k∑
i=1

u(i) ⊗ g
(j)
i

• This is the origin of the name convolutional code.

• The impulse response g
(j)
i of the ith input with the response to

the jth output is found by stimulating the encoder with the

discrete impulse (1000 · · ·) at the ith input and by observing the

jth output when all other inputs are set to (0000 · · ·).

CC Lab, EE, NCHU

Convolutional Codes 26

Polynomial generator matrix in frequency domain

CC Lab, EE, NCHU

Convolutional Codes 27

Now introduce the delay operator D in the representation of input

sequence, output sequence, and impulse response, i.e.,

1. Use z transform

u(i) = u
(i)
0 u

(i)
1 u

(i)
2 u

(i)
3 · · · ←→ Ui(D) =

∞∑
t=0

u
(i)
t Dt

v(j) = v
(j)
0 v

(j)
1 v

(j)
2 v

(j)
3 · · · ←→ Vi(D) =

∞∑
t=0

v
(j)
t Dt

g
(j)
i = (g

(j)
i (0), · · · , g

(j)
i (m))←→ G

(j)
i (D) =

m∑
l=0

g
(j)
i (l)Dl

2. z{u ∗ g} = U(D)G(D) = V (D)

3. Vj(D) =
∑k

i=1 Ui(D) ·G
(j)
i (D)

CC Lab, EE, NCHU

Convolutional Codes 28

We thus have

V (D) = U(D) ·G(D)

, where

U(D) = (U1(D), U2(D), . . . , Uk(D))

V (D) = (V1(D), V2(D), . . . , Vn(D))

G(D) =

⎛
⎜⎜⎝ G

(j)
i (D)

⎞
⎟⎟⎠

CC Lab, EE, NCHU

Convolutional Codes 29

Example 1

Figure 5: (2,1,2) convolutional code encoder

CC Lab, EE, NCHU

Convolutional Codes 30

Input: u = (1, 1, 1, 0, 1) in time domain

In z domain:

G(1)(D) = 1 + D + D2

G(2)(D) = 1 + D2

G(D) = [1 + D + D2, 1 + D2]

U(D) = 1 + D + D2 + D4

V (D) = U(D) •G(D)

V1(D) = 1 + D2 + D5 + D6

V2(D) = 1 + D + D3 + D6

In time domain:

v1 = (1, 0, 1, 0, 0, 1, 1)

v2 = (1, 1, 0, 1, 0, 0, 1)

CC Lab, EE, NCHU

Convolutional Codes 31

Example 2

Figure 6: (3,2,2) convolutional code encoder

CC Lab, EE, NCHU

Convolutional Codes 32

V1(D) = U1(D)

V2(D) = U2(D)

V3(D) = U1(D) • D + U2(D) • (D + D
2)

[
V1(D) V2(D) V3(D)

]
=

[
U1(D) U2(D)

]
•

⎡
⎣ 1 0 D

0 1 D + D2

⎤
⎦

G1(D) =

⎡
⎣ 1 0 D

0 1 D + D2

⎤
⎦

U1 = 1 U2 = 1 + D

V =
[

1 1 + D

]
•

⎡
⎣ 1 0 D

0 1 D + D2

⎤
⎦ =

[
1 1 + D D3

]

v1 = (1, 0, 0, 0) v2 = (1, 1, 0, 0) v3 = (0, 0, 0, 1)

CC Lab, EE, NCHU

Convolutional Codes 33

State diagram, tree, and trellis

CC Lab, EE, NCHU

Convolutional Codes 34

State diagram

• Convolutional code ���������� finite state machine

• ��(shift register)��������� states��� vt ��� t

��������� state σt � �� ut ���

• � state diagram �� nodes ���� state ���������

��� (ut/vt)

CC Lab, EE, NCHU

Convolutional Codes 35

Figure 7: state diagram of (2,1,2) Convolutional code

CC Lab, EE, NCHU

Convolutional Codes 36

Code Tree of Convolutional code

• �� (n,k,m) Convolutional code � codeword ��� code tree

�������

• ������ h � code tree �� (h + m + 1) � level ����

� node(level 0) �� origin node

• ���� h levels� �� node �� 2k � branch ��� level

(h+m)��	��� 2hk � nodes ��� terminal nodes

• � origin node � terminal ����� code path�������

� code word

CC Lab, EE, NCHU

Convolutional Codes 37

Figure 8: state tree of (2,1,2) Convolutional code

CC Lab, EE, NCHU

Convolutional Codes 38

Trellises of Convolutional code

• � code tree �� node����������	� state ���

Convolutional code � code trellis

• ��� (n,k,m) � Convolutional code�state ���� level m

� 2K
�� K =

∑k
j=1 Kj ,Kj �� j ��������
 level

���� 2K � nodes

• terminal node
�������������

• � origin node � terminal node �����������

codeword

CC Lab, EE, NCHU

Convolutional Codes 39

Figure 9: trellis of (2,1,2) Convolutional code

CC Lab, EE, NCHU

Convolutional Codes 40

Structural properties of Convolutional codes

Convolutional encoder is a linear sequential circuit, it’s operation can

be describe by a state diagram.The state of an encoder is defined as

its shift register contents.

CC Lab, EE, NCHU

Convolutional Codes 41

For an (n,k,v) encoder

The encoder state σl at time unit l is the binary v-tuple

σl = (s
(1)
l−1s

(1)
l−2 . . . s

(1)
l−v1

s
(2)
l−1s

(2)
l−2 . . . s

(2)
l−v2
· · · s

(k)
l−1s

(k)
l−2 . . . s

(k)
l−vk

)

Each branch in the state diagram is labeled with the k inputs

(u
(1)
l , u

(2)
l , . . . , u

(k)
l)

causing the transition and the n corresponding output

(v
(1)
l , v

(2)
l , . . . , v

(n−1)
l)

CC Lab, EE, NCHU

Convolutional Codes 42

(2,1,3) encoder

CC Lab, EE, NCHU

Convolutional Codes 43

State diagrams for (2,1,3) encoder

CC Lab, EE, NCHU

Convolutional Codes 44

Construction of minimal trellis

CC Lab, EE, NCHU

Convolutional Codes 45

Consider an (n, k, m, d) Convolutional code. The trellis is principle

infinite, but it has a very regular structure, consisting(after a short

initial transient) of repeated copies of what we shall call the trellis

module associated with G(D).

CC Lab, EE, NCHU

Convolutional Codes 46

• The trellis module consists of 2m initial state and 2m final states,

with each initial state being connected by a directed edge to

exactly 2k final state.Thus the trellis module has 2k+m edge

• Each edge is label with an n-symbol binary vector,namely the

output produced by the encoder in response to the given state

transition

• Each edge has length n, so the total edge length of the

Convolutional trellis module is n · 2k+m

• Conventional trellis complexity of the trellis module can be

defined as
n

k
· 2m+k

CC Lab, EE, NCHU

Convolutional Codes 47

Ex: The (3, 2, 2) Convolutional code with canonical generator matrix

given by

G1(D) =

⎛
⎝ 1 + D 1 + D 1

D 0 1 + D

⎞
⎠

CC Lab, EE, NCHU

Convolutional Codes 48

Figure 10: The trellis module of (3,2,2) Convolutional code

The total number of edge symbol is

3 · 22+2 = 48

so that the Convolutional trellis complexity corresponding to the

matrix G1(D) is 48/2 = 24 symbols per bits.

CC Lab, EE, NCHU

Convolutional Codes 49

We can do substantially better than this, if we use the punctured

Convolutional code.

• Begin with a (N, 1, m) Convolutional code, and block it to depth

k, i.e., group the input bit stream into blocks of k bits each, the

result is an (Nk, k, m) Convolutional code

• Delete, or puncture, all but n symbols form each Nk-symbol

output block,the result is an (n, k, m) Convolutional code.

CC Lab, EE, NCHU

Convolutional Codes 50

• The punctured code can be represented by a trellis whose trellis

module is built from k copies of the trellis module from the

parent (N, 1, m) code, each of which has only 2m+1 symbols

• The total number of symbols on the trellis module is n · 2m+1

• the trellis complexity of an (n, k, m) punctured code is

n

k
· 2m+1

which is a factor of 2k−1 smaller than the complexity of the

conventional trellis

CC Lab, EE, NCHU

Convolutional Codes 51

Ex:The (2, 1, 2, 5) Convolutional code defined by the canonical

generator matrix

G2(D) =
(

1 + D + D2 1 + D2
)

The trellis module:

CC Lab, EE, NCHU

Convolutional Codes 52

CC Lab, EE, NCHU

Convolutional Codes 53

CC Lab, EE, NCHU

Convolutional Codes 54

If G(D) is a canonical generator matrix for an (n, k, m)

Convolutional code C, then we can write G(D) in the form

G(D) = G0 + G1D + · · ·+ GLDL

where G0, . . . GL are k × n scalar matrices,and L is the maximum

degree of any entry of G(D). The integer L is called the memory of

the code

CC Lab, EE, NCHU

Convolutional Codes 55

If we concatenate the L + 1 matrices G0G1 · · ·GL, we obtain a

k × (L + 1)n scalar matrix

G̃ = (G0G1 · · ·GL)

and its shifts can built a scalar generator matrix Gscalar for the code

C

Gscalar =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

G0 G1 G2

G0 G1 G2

G0 G1 G2

G0 G1 G2

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

CC Lab, EE, NCHU

Convolutional Codes 56

The trellis module for the trellis associated with Gscalar corresponds

to the (L + 1)k × n matrix module

Ĝ =

⎛
⎜⎜⎜⎜⎜⎜⎝

GL

GL−1

...

G0

⎞
⎟⎟⎟⎟⎟⎟⎠

which repeatedly appears as a vertical slice in Gscalar

CC Lab, EE, NCHU

Convolutional Codes 57

It is easy to show that the number of edge symbols in this trellis

module is

edge symbol count=
∑n

j=1 2aj

where aj is the number of active entries in the jth column of the

matrix Ĝ

CC Lab, EE, NCHU

Convolutional Codes 58

EX:consider the (3, 2, 1) code with generator matrix

G3(D) =

⎛
⎝ 1 0 1

1 1 + D 1 + D

⎞
⎠

The scalar matrix G̃3 corresponding to G3(D) is

G̃3 =

⎛
⎝ 1 0 1 0 0 0

1 1 1 0 1 1

⎞
⎠

CC Lab, EE, NCHU

Convolutional Codes 59

The matrix module corresponding to G̃3 is

Ĝ3 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0

0 1 1

1 0 1

1 1 1

⎞
⎟⎟⎟⎟⎟⎠

Thus a1 = 3, a2 = 3,and a3 = 3

The corresponding trellis module has 23 + 23 + 23 = 24 edge symbols

The resulting trellis complexity is 24/2 = 12 symbols per bits

CC Lab, EE, NCHU

Convolutional Codes 60

If we add the first row of G3(D) to the second row, the resulting

generator matrix, which is still canonical is

G′
3(D) =

⎛
⎝ 1 0 1

0 1 + D D

⎞
⎠

The scalar matrix G̃3
′
corresponding to G′

3(D) is

G̃3
′
=

⎛
⎝ 1 0 1 0 0 0

0 1 0 0 1 1

⎞
⎠

CC Lab, EE, NCHU

Convolutional Codes 61

The matrix module corresponding to G̃3
′
is

Ĝ3 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0

0 1 1

1 0 1

0 1 0

⎞
⎟⎟⎟⎟⎟⎠

Thus a1 = 2, a2 = 3,and a3 = 3

The corresponding trellis module has 22 + 23 + 23 = 20 edge symbols

The resulting trellis complexity is 20/2 = 12 symbols per bits

CC Lab, EE, NCHU

Convolutional Codes 62

But we can do it still better. If we multiply the first row of G′
3(D) by

D and add it to the second row, the resulting generator matrix,

which is still canonical is

G′′
3(D) =

⎛
⎝ 1 0 1

D 1 + D 0

⎞
⎠

The scalar matrix G̃3
′′

corresponding to G′′
3(D) is

G̃3 =

⎛
⎝ 1 0 1 0 0 0

0 1 0 1 1 0

⎞
⎠

CC Lab, EE, NCHU

Convolutional Codes 63

The matrix module corresponding to G̃3
′′

is

Ĝ3
′′

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0

1 1 0

1 0 1

0 1 0

⎞
⎟⎟⎟⎟⎟⎠

Thus a1 = 2, a2 = 3,and a3 = 2

The corresponding trellis module has 22 + 23 + 22 = 16 edge symbols

The resulting trellis complexity is 16/2 = 8 symbols per bits

CC Lab, EE, NCHU

Convolutional Codes 64

CC Lab, EE, NCHU

Convolutional Codes 65

In this sample, the ratio of the Convolutional trellis complexity to

the minimal trellis complexity is 12/8 = 3/2.

If this code were punctured, the ratio would be at least 2.

It is easy to see that there is no generator matrix for this code with

spanlength less than 7, so that the trellis module shown below yields

the minimal trellis for the code.

CC Lab, EE, NCHU

Convolutional Codes 66

Alternatively, we can examine the scalar generator matrix for the

code corresponding to G̃′′
3

Gscalar =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 0 0

0 1 0 1 1 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

we see that the Gscalar has the property that no column contains

more than one underline entry, or more than one overline entry. Thus

Gscalar has the LR property

CC Lab, EE, NCHU

Convolutional Codes 67

Gscalar is infinite, we can define the Mth truncation of the code C,

denoted by C [M], as the [(M + L)n, Mk] block code.

G
[M]
scalar =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 0 0

0 1 0 1 1 0

. . .

1 0 1 0 0 0

0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

CC Lab, EE, NCHU

Convolutional Codes 68

EX: M = 3 truncation, with corresponding scalar matrix

G
[3]
scalar =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 0 0

0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This is the generator matrix for a [12, 6] block code.the trellis of

G
[3]
scalar is shown below.

CC Lab, EE, NCHU

Convolutional Codes 69

This trellis consists of two copies of the minimal trellis module of

G′′
3(D), glued together,plus initial and final transient sections.

CC Lab, EE, NCHU

Convolutional Codes 70

Generator matrix G(D) produces a minimal trellis if and only if

G(D) has the property that the spanlength of the corresponding G

cannot be reduced by an operation of the form

gi(D)← gi(D) + Dlgj(D)

Where gi(D) is the ith row of G(D), and l is an integer in the range

0 ≤ l ≤ L

CC Lab, EE, NCHU

Convolutional Codes 71

The algebraic theory of Convolutional codes

CC Lab, EE, NCHU

Convolutional Codes 72

Abstract

We defined in (n, k) Convolutional code C to be a k-dimensional

subspace of F (D)n, and a generator matrix of C to be a k× n matrix

over F (D), whose rowspace is C. We will discuss the various kinds of

generator matrices that a Convolutional code can have, and settle on

the canonical polynomial generator matrices as the preferred kind.

CC Lab, EE, NCHU

Convolutional Codes 73

• PGM:If the entries of G(D) are polynomials, then G(D) is called

a polynomial generator matrix.

• Any Convolutional code has a polynomial generator

matrix, since if G is an arbitrary generator matrix for C, the

matrix obtained from G by multiplying each row by the least

common multiple of the denominators of the entries in that row

is a PGM for C.

CC Lab, EE, NCHU

Convolutional Codes 74

• Let G(D) = (gij(D)) be a k × n PGM for C. We now define the

internal degree and external degree of G(D) as follows

– intdeg G(D) = maximum degree of G(D)’s k × k minors.

– extdeg G(D) = sum of the row degrees of G(D).

The following two definitions will be essential in our discussion of

Convolutional codes.

CC Lab, EE, NCHU

Convolutional Codes 75

• DEFINITION. A k × n polynomial matrix G(D) is called

basic if, among all polynomial matrices of the form T (D)G(D),

where T (D) is a nonsingular k × k matrix over F (D), it has the

minimum possible internal degree.

• DEFINITION. A k × n polynomial matrix G(D) is called

reduced if, among all polynomial matrices of the form

T (D)G(D), where T (D) is unimodular, G(D) has the minimum

possible external degree. Since any unimodular matrix is a

product of elementary matrices, an equivalent definition is that a

matrix is reduced if its external degree cannot be reduced by a

sequence of elementary row operations.

CC Lab, EE, NCHU

Convolutional Codes 76

• THEOREM. Let G(D) be a k × n polynomial matrix.

1. If T (D) is any nonsingular k × k polynomial matrix, then

intdegT (D)G(D) = intdegG(D) + deg detT (D)

In particular, indegT (D)G(D) ≥ indegG(D), with equality if

and only if T (D) is unimodular.

2. intdegG(D) ≤ extegG(D).

CC Lab, EE, NCHU

Convolutional Codes 77

• THEOREM. A k × n polynomial matrix G(D) is basic if and

only if any one of the following six conditions is satisfied.

1. The invariant factors of G(D) are all 1.

2. The gcd of the k × k minors of G(D) is 1.

3. G(α) has rank k for any α in the algebraic closure of F .

4. G(D) has a right F [D] inverse, i.e. there exists a n× k

polynomial matrix H(D) such that G(D)H(D) = Ik.

5. If x(D) = u(D)G(D), and if x(D) ∈ F [D]n, then

u(D) ∈ F [D]k.

6. G(D) is a submatrix of a unimodular matrix, i.e. there a

(n− k)× n matrix L(D) such that the determinant of the

n× n matrix (
G(D)
L(D)) is a nonzeros element of F .

CC Lab, EE, NCHU

Convolutional Codes 78

• THEOREM. A k × n polynomial matrix G(D) is reduced if

and only if any one of the following three conditions is satisfied.

1. If we define the ”indicator matrix for the highest-degree terms

in each row” G by

Gij = coeffDei gij(D)

where ei is the degree of G(D)’s i-th row, then G has rank k.

2. extdegG(D) = intdegG(D)

3. The ”predictable degree property”: For any k-dimensional

polynomial vector, i.e. any u(D) = (u1(D), ..., uk(D)) ∈ F [D]k

deg(u(D)G(D)) = max
1≤i≤k

(degui(D) + deggi(D))

CC Lab, EE, NCHU

Convolutional Codes 79

EXAMPLE. Here are eight generator matrices for a (4, 2)

Convolutional code over GF (2).

1.

G1 =

⎡
⎣ 1

1+D+D2 1 1+D2

1+D+D2
1+D

1+D+D2

1 1+D+D2

D D 1
D

⎤
⎦

Basic× Reduced× intdeg× extdeg×

2.

G2 =

⎡
⎣ 1 1 + D + D2 1 + D2 1 + D

D 1 + D + D2 D2 1

⎤
⎦

Basic× Reduced× intdeg3 extdeg4

CC Lab, EE, NCHU

Convolutional Codes 80

3.

G3 =

⎡
⎣ 1 1 + D + D2 1 + D2 1 + D

0 1 + D D 1

⎤
⎦

Basic� Reduced× intdeg 1 extdeg 3

4.

G4 =

⎡
⎣ 1 D 1 + D 0

0 1 + D D 1

⎤
⎦

Basic� Reduced× intdeg 1 extdeg 2

CC Lab, EE, NCHU

Convolutional Codes 81

5.

G5 =

⎡
⎣ 1 + D 0 1 D

D 1 + D + D2 D2 1

⎤
⎦

Basic× Reduced� intdeg 3 extdeg 3

6.

G6 =

⎡
⎣ 1 1 1 1

0 1 + D D 1

⎤
⎦

Basic� Reduced� intdeg 1 extdeg 1

CC Lab, EE, NCHU

Convolutional Codes 82

7.

G7 =

⎡
⎣ 1 + D 0 1 D

1 D 1 + D 0

⎤
⎦

Basic× Reduced� intdeg 2 extdeg 2

8.

G8 =

⎡
⎣ 1 0 1

1+D
D

1+D

0 1 D
1+D

1
1+D

⎤
⎦

Basic× Reduced× intdeg× extdeg×

CC Lab, EE, NCHU

Convolutional Codes 83

• DEFINITION. Among all PGM’s for a given Convolutional

code C, those for which the external degree is as small as

possible are called canonical PGM’s. This minimal external

degree is called the degree of the code C, and denoted deg C.

• THEOREM. A PGM G(D) for the Convolutional code C is

canonical if and only if it is both basic and reduced.

• COROLLARY. The minimal internal degree of any PGM for a

given convolution code C is equal to the degree of C.

CC Lab, EE, NCHU

Convolutional Codes 84

• COROLLARY. If G is any basic generator matrix for C then

intdegG = degC.

• THEOREM. If e1 ≤ e2 ≤ ... ≤ ek are the row degrees of a

canonical generator matrix G(D) for a Convolutional code C, and

if f1 ≤ f2 ≤ ... ≤ fk are the row degrees of any other polynomial

generator matrix, say G′(D), for C, then ei ≤ fi, for i = 1, ..., k.

• THEOREM. The set of row degrees is the same for all

canonical PGM’s for a given code.

• Where (e1 ≤ e2 ≤ ... ≤ ek) are called the Forney indices of the

code.

CC Lab, EE, NCHU

Convolutional Codes 85

• The maximum of the Forney indices is called the memory of the

code.

• An (n, k, m) code is called optimal if it has the maximum

possible free distanceamong all codes with the same value of n, k

and m.

• EXAMPLE

1.

G6 =

⎡
⎣ 1 1 1 1

0 1 + D D 1

⎤
⎦

Basic� Reduced� intdeg 1 extdeg 1

Forney indices are (0, 1)

CC Lab, EE, NCHU

Convolutional Codes 86

The Smith form

• The goal of the Smith algorithm (form), which is often called the

invariant-factor algorithm, is to take an arbitrary k × n matrix G

(with k ≤ n) over a Euclidean domain R, and by a sequence of

elementary row and column operations, to reduce G to a k × n

diagonal matrix Γ = diag(γ1, . . . , γr), whose diagonal entries are

the invariant factors of G, i.e. γi = Δi/Δi−1, where Δi is the gcd

of the i× i minors of G. (We take Δ0 = 1 by convention)

CC Lab, EE, NCHU

Convolutional Codes 87

• Theorem:

Let G(D) be a b× c, b ≤ c, binary polynomial matrix (i.e.,

G(D)=(gij(D)), where gij(D) ∈ F2[D], 1 ≤ i ≤ b, 1 ≤ j ≤ c) of

rank r. Then G(D) can be written in the following manner:

G(D) = A(D)Γ(D)B(D)

where A(D) and B(D) are b× b and c× c, respectively, binary

polynomial matrices with unit determinants,

CC Lab, EE, NCHU

Convolutional Codes 88

and where Γ(D) is the b× c matrix

Γ(D) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1(D)

γ2(D)

. . .

γr(D)

0

. . .

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which is called the smith form of G(D), and whose nonzero

elements γi(D) ∈ F2[D], 1 ≤ i ≤ r, called the invariant-factors of

G(D), are unique polynomials that satisfy

γi(D)|γi+1(D), i = 1, 2, . . . , r − 1

CC Lab, EE, NCHU

Convolutional Codes 89

• Moreover, if we let Δi(D) ∈ F2[D] be the determinantal divisor

of G(D), that is, the greatest common divisor (gcd) of the i× i

subdeterminants (minors) of G(D), then

γi(D) =
Δi(D)

Δi−1(D)

where Δ0(D) = 1 by convention and i = 1, 2, . . . , r.

CC Lab, EE, NCHU

Convolutional Codes 90

• Two types of elementary operations:

– Type I

The interchange of two rows(or two columns).

– Type II

The addition to all elements in one row (or column) of the

corresponding elements in another row (or column) multiplied

by a fixed polynomial in D.

CC Lab, EE, NCHU

Convolutional Codes 91

• Example: To obtain the Smith form of the polynomial encoder

illustrated in Figure 1 we start with its encoding matrix

Figure 11: A rate R = 2/3 Convolutional encoder.

CC Lab, EE, NCHU

Convolutional Codes 92

G(D) =

⎡
⎣ 1 + D D 1

D2 1 1 + D + D2

⎤
⎦

and interchange columns 1 and 3:

⎡
⎣ 1 + D D 1

D2 1 1 + D + D2

⎤
⎦
⎡
⎢⎢⎣

0 0 1

0 1 0

1 0 0

⎤
⎥⎥⎦

=

⎡
⎣ 1 D 1 + D

1 + D + D2 1 D2

⎤
⎦

Now the element in the upper-left corner has minimum degree.

CC Lab, EE, NCHU

Convolutional Codes 93

To clear the rest of the first row, we can proceed with two
operations simultaneously:

⎡
⎣ 1 D 1 + D

1 + D + D2 1 D2

⎤
⎦
⎡
⎢⎢⎣

1 D 1 + D

0 1 0

0 0 1

⎤
⎥⎥⎦

=

⎡
⎣ 1 0 0

1 + D + D2 1 + D + D2 + D3 1 + D2 + D3

⎤
⎦

Next, we clear the rest of the first column:⎡
⎣ 1 0

1 + D + D2 1

⎤
⎦
⎡
⎣ 1 0 0

1 + D + D2 1 + D + D2 + D3 1 + D2 + D3

⎤
⎦

=

⎡
⎣ 1 0 0

0 1 + D + D2 + D3 1 + D2 + D3

⎤
⎦

CC Lab, EE, NCHU

Convolutional Codes 94

We divide 1 + D2 + D3 by 1 + D + D2 + D3:

1 + D2 + D3 = (1 + D + D2 + D3)1 + D

Thus, we add column 2 to column 3 and obtain:

⎡
⎣ 1 0 0

0 1 + D + D2 + D3 1 + D2 + D3

⎤
⎦
⎡
⎢⎢⎣

1 0 0

0 1 1

0 0 1

⎤
⎥⎥⎦

=

⎡
⎣ 1 0 0

0 1 + D + D2 + D3 D

⎤
⎦

CC Lab, EE, NCHU

Convolutional Codes 95

Now we interchange column 2 and 3:

⎡
⎣ 1 0 0

0 1 + D + D2 + D3 D

⎤
⎦
⎡
⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤
⎥⎥⎦

=

⎡
⎣ 1 0 0

0 D 1 + D + D2 + D3

⎤
⎦

Repeating the previous step gives

1 + D + D2 + D3 = D(1 + D + D2) + 1

and, hence, we multiply column 2 by 1 + D + D2,

CC Lab, EE, NCHU

Convolutional Codes 96

add the product to column 3, and obtain

⎡
⎣ 1 0 0

0 D 1 + D + D2 + D3

⎤
⎦
⎡
⎢⎢⎣

1 0 0

0 1 1 + D + D2

0 0 1

⎤
⎥⎥⎦

=

⎡
⎣ 1 0 0

0 D 1

⎤
⎦

Again we should interchange column 2 and 3:

⎡
⎣ 1 0 0

0 D 1

⎤
⎦
⎡
⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤
⎥⎥⎦ =

⎡
⎣ 1 0 0

0 1 D

⎤
⎦

CC Lab, EE, NCHU

Convolutional Codes 97

and, finally, by adding D times the column 2 to column 3 we
obtain the Smith form:

⎡
⎣ 1 0 0

0 1 D

⎤
⎦
⎡
⎢⎢⎣

1 0 0

0 1 D

0 0 1

⎤
⎥⎥⎦ =

⎡
⎣ 1 0 0

0 1 0

⎤
⎦ = Γ(D)

All invariant factors for this encoding matrix are equal to 1.

By tracing these steps backward and multiplying Γ(D) with the
inverses of the elementary matrices (which are the matrices
themselves), we obtain the matrix:

G(D) = A(D)Γ(D)B(D)

=

⎡
⎣ 1 0

1 + D + D2 1

⎤
⎦ Γ(D)

⎡
⎢⎢⎣

1 0 0

0 1 D

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤
⎥⎥⎦

CC Lab, EE, NCHU

Convolutional Codes 98

×

⎡
⎢⎢⎣

1 0 0

0 1 1 + D + D2

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0

0 1 1

0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1 D 1 + D

0 1 0

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 0 1

0 1 0

1 0 0

⎤
⎥⎥⎦

and we conclude that

A(D) =

⎡
⎣ 1 0

1 + D + D2 1

⎤
⎦

and

B(D) =

⎡
⎢⎢⎣

1 + D D 1

1 + D2 + D3 1 + D + D2 + D3 0

D + D2 1 + D + D2 0

⎤
⎥⎥⎦

CC Lab, EE, NCHU

Convolutional Codes 99

Thus, we have the following decomposition of the encoding
matrix G(D):

G(D) =

⎡
⎣ 1 0

1 + D + D2 1

⎤
⎦
⎡
⎣ 1 0 0

0 1 0

⎤
⎦

×

⎡
⎢⎢⎣

1 + D D 1

1 + D2 + D3 1 + D + D2 + D3 0

D + D2 1 + D + D2 0

⎤
⎥⎥⎦

CC Lab, EE, NCHU

Convolutional Codes 100

The extension of the Smith form

• Let G(D) be a b× c rational function matrix, and let

q(D) ∈ F2[D] be the least common multiple (lcm) of all

denominators in G(D). Then q(D)G(D) is a polynomial matrix

with Smith form decomposition

q(D)G(D) = A(D)Γq(D)B(D)

Dividing through by q(D), we obtain the so-called

invariant-factor decomposition of the rational matrix G(D):

G(D) = A(D)Γ(D)B(D)

where

Γ(D) = Γq(D)/q(D)

with entries in F2(D).

CC Lab, EE, NCHU

Convolutional Codes 101

Thus

Γ(D) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1(D)
q(D)

γ2(D)
q(D)

. . .

γr(D)
q(D)

0

. . .

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where γ1(D)
q(D) , γ2(D)

q(D) , γr(D)
q(D) are called the invariant-factors of

G(D).

CC Lab, EE, NCHU

Convolutional Codes 102

• Let
γi(D)

q(D)
=

αi(D)

βi(D)
, i = 1, 2, . . . , r

where the polynomials αi(D) and βi(D) are relatively prime.

Since γi(D)|γi+1(D), i = 1, 2, . . . , r − 1; that is,

q(D)
αi(D)

βi(D)
|q(D)

αi+1(D)

βi+1(D)

we have

αi(D)βi+1(D)|αi+1(D)βi(D)

⇒ αi(D)|αi+1(D) and βi+1(D)|βi(D), i = 1, 2, . . . , r − 1

CC Lab, EE, NCHU

Convolutional Codes 103

• Example:

The rate R = 2
3 rational encoding matrix

G(D) =

⎡
⎣ 1

1+D+D2
D

1+D3
1

1+D3

D2

1+D3
1

1+D3
1

1+D

⎤
⎦

has

q(d) = lcm(1 + D + D2, 1 + D3, 1 + D) = 1 + D3

Thus, we have

q(D)G(D) =

⎡
⎣ 1 + D D 1

D2 1 1 + D + D2

⎤
⎦

CC Lab, EE, NCHU

Convolutional Codes 104

Hence

G(D) =

⎡
⎣ 1 0

1 + D + D2 1

⎤
⎦
⎡
⎣ 1

1+D3 0 0

0 1
1+D3 0

⎤
⎦

×

⎡
⎢⎢⎣

1 + D D 1

1 + D2 + D3 1 + D + D2 + D3 0

D + D2 1 + D + D2 0

⎤
⎥⎥⎦

• The right-inverse of the generator matrix becomes

G−1(D) = B−1(D) · Γ−1(D) ·A−1(D)

The inverted quadratic scrambler matrices A−1(D) and B−1(D)

exist, since A(D) and B(D) have determinant 1.

CC Lab, EE, NCHU

Convolutional Codes 105

Another version of extended Smith form

• Beginning with the matrix G0 = G, it produces a sequence of

k × n matrices G1, G2, . . ., where Gi+1 is derived from Gi by

either an elementary row operation or an elementary column

operation. We can represent this algebraically as

Gi+1 = Ei+1GFi+1,

where Ei+1 and Fi+1 are k × k and n× n elementary matrices,

respectively. If Gi+1 is obtained from Gi via a row operation,

then Fi+1 = In, but if Gi+1is obtained from Gi via a column

operation, then Ei+1 = Ik. After a finite number N of steps, we

obtain GN = Γ.

CC Lab, EE, NCHU

Convolutional Codes 106

• The extended Smith algorithm builds on the Smith algorithm.

Whereas the Smith algorithm works only with the sequence

G0, G1, . . . , GN , the extended Smith algorithm also works with a

sequence of unimodular k × k matrices X0, . . . , XN , and a

sequence of unimodular n× n matrices Y0, . . . , YN .

• The sequences (Xi) and (Yi) are initialized as X0 = Ik, Y0 = In,

and updated via the rule

Xi+1 = Ei+1Xi

Yi+1 = YiFi+1

CC Lab, EE, NCHU

Convolutional Codes 107

• The following simple lemma is the key to the extended Smith

algorithm.

Lemma:

XiGYi = Gi for i = 0, 1, . . . , N

• If we specialize above equation with i = N , we get

XNGYN = Γ,

which is the desired “extended Smith diagonalization” of G.

CC Lab, EE, NCHU

Convolutional Codes 108

• A convenient way to implement the extended Smith algorithm is

to extend G to dimensions (n + k)× (n + k) as follows:

G
′

=

⎡
⎣ G Ik

In 0n×k

⎤
⎦

Then if the sequence of elementary row and column operations

generated by the Smith algorithm applied to G are performed on

the extended matrix G
′

, after i iterations, the resulting matrix

G
′

i has the form

G
′

i =

⎡
⎣ Gi Xi

Yi 0n×k

⎤
⎦

CC Lab, EE, NCHU

Convolutional Codes 109

• Example:

G = G0 =

⎡
⎣ 1 1 + D + D2 1 + D2 1 + D

D 1 + D + D2 D2 1

⎤
⎦

Then the corresponding matrix G
′

is

G
′
= G

′

0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 + D + D2 1 + D2 1 + D 1 0

D 1 + D + D2 D2 1 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CC Lab, EE, NCHU

Convolutional Codes 110

we obtained G
′

1, G
′

2, and G
′

3 from G
′

0 by successively adding

(1 + D + D2) times column 1 to column 2, (1 + D2) times column

1 to column 3, and (1 + D) times column 1 to column 4.

G
′

1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 + D2 1 + D 1 0

D 1 + D3 D2 1 0 1

1 1 + D + D2 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CC Lab, EE, NCHU

Convolutional Codes 111

G
′

2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 + D 1 0

D 1 + D3 D + D2 + D3 1 0 1

1 1 + D + D2 1 + D2 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G
′

3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0

D 1 + D3 D + D2 + D3 1 + D + D2 0 1

1 1 + D + D2 1 + D2 1 + D 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CC Lab, EE, NCHU

Convolutional Codes 112

Next, adding D times row 1 to row 2, we obtain

G
′

4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0

0 1 + D3 D + D2 + D3 1 + D + D2 0 1

1 1 + D + D2 1 + D2 1 + D 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Interchanging columns 2 and 4, we obtain

G
′

5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0

0 1 + D + D2 D + D2 + D3 1 + D3 0 1

1 1 + D 1 + D2 1 + D + D2 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CC Lab, EE, NCHU

Convolutional Codes 113

Finally, adding D times column 2 to column 3 and (1 + D) times
column 2 to column 4, we compute successively

G
′

6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0

0 1 + D + D2 0 1 + D3 D 1

1 1 + D 1 + D 1 + D + D2 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 D 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G
′

7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0

0 1 + D + D2 0 0 D 1

1 1 + D 1 + D D 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 D 1 + D 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CC Lab, EE, NCHU

Convolutional Codes 114

Thus the extended Smith decomposition of the original matrix G
is given by

⎡
⎣ 1 0

D 1

⎤
⎦·G·

⎡
⎢⎢⎢⎢⎢⎣

1 1 + D 1 + D D

0 0 0 1

0 0 1 0

0 1 D 1 + D

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎣ 1 0 0 0

0 1 + D + D2 0 0

⎤
⎦

CC Lab, EE, NCHU

Convolutional Codes 115

• The matrices X, Y , and Γ, contain much valuable information

about the code C and the generator matrix G. To extract this

information, however, we need to define several useful “pieces” of

these matrices, which we call Γk, Γ̃k, K, and H:

Γk = leftmost k columns of Γ

= diag(Γ1, . . . ,Γk) (dimensions: k × k).

Γ̃k = γk · Γ
−1
k =diag(γk/γ1, . . . , γk/γk)(dimensions: k × k).

K = leftmost k columns of Y . (dimensions: n× k).

H = rightmost r columns of Y . (dimensions: n× r).

CC Lab, EE, NCHU

Convolutional Codes 116

• Theorem: With the matrices Γr, Γ̃r, K, and H define as in

above equations, we have the following:

1. A basic encoder for C: Gbasic = Γ−1
k XG. (That is, Gbasic is

obtained by dividing the i-th row of XG by the invariant

factor γi, for i = 1, . . . , k.)

2. A polynomial inverse for Gbasic: K.

3. A polynomial pseudo-inverse for G, with factor γk: KΓ̃X. (In

particular, if G is already basic, i.e. if Γk = Ik, then KX is a

polynomial inverse for G.)

4. A basic encoder for C⊥ (parity-check matrix for C) HT .

CC Lab, EE, NCHU

Convolutional Codes 117

• Example: To illustrate the results of this appendix, we consider
the following generator matrix G for a (4,2) binary Convolutional
code:

G =

⎡
⎣ 1 1 + D + D2 1 + D2 1 + D

D 1 + D + D2 D2 1

⎤
⎦ .

We found the extended invariant-factor decomposition of G to
be XGY = Γ, where

Γ =

⎡
⎣ 1 0 0 0

0 1 + D + D2 0 0

⎤
⎦ , X =

⎡
⎣ 1 0

D 1

⎤
⎦ ,

Y =

⎡
⎢⎢⎢⎢⎢⎣

1 1 + D 1 + D D

0 0 0 1

0 0 1 0

0 1 D 1 + D

⎤
⎥⎥⎥⎥⎥⎦

.

CC Lab, EE, NCHU

Convolutional Codes 118

Thus

Γk =

⎡
⎣ 1 0

0 1 + D + D2

⎤
⎦ Γ̃k =

⎡
⎣ 1 + D + D2 0

0 1

⎤
⎦

K =

⎡
⎣ 1 0 0 0

1 + D 0 0 1

⎤
⎦

T

H =

⎡
⎣ 1 + D 0 1 D

D 1 0 1 + D

⎤
⎦

T

Using the prescriptions in Theorem, we now quickly obtain the

following.

– A basic encoder for C:

Gbasic = Γ−1
k

XG =

⎡
⎣ 1 1 + D + D2 1 + D2 1 + D

0 1 + D D 1

⎤
⎦

– A polynomial inverse for Gbasic:

K =

⎡
⎣ 1 0 0 0

1 + D 0 0 1

⎤
⎦

CC Lab, EE, NCHU

Convolutional Codes 119

– A polynomial pseudo-inverse for G, with factor
γ2 = 1 + D + D2:

KΓ̃kX =

⎡
⎣ 1 0 0 D

1 + D 0 0 1

⎤
⎦

– A (basic) encoder for C⊥:

HT =

⎡
⎣ 1 + D 0 1 D

D 1 0 1 + D

⎤
⎦

CC Lab, EE, NCHU

Convolutional Codes 120

Free distance and path enumerator

CC Lab, EE, NCHU

Convolutional Codes 121

Outline

• Distance measures

– Row and column distance

– Extended distance measures

CC Lab, EE, NCHU

Convolutional Codes 122

Column distance

• Definition(Column distance):

The column distance dc
j of order j of a generator matrix G(D) is

the minimum Hamming distance of the first j+1 code blocks of

two codewords v[j+1] = (v0, v1, ..., vj) and v
′

[j+1] = (v
′

0, v
′

1, ..., v
′

j),

where the information sequences used for encoding

u[j+1] = (u0, u1, ..., uj) and u
′

[j+1] = (u
′

0, u
′

1, ..., u
′

j) differ in the

first information block, i.e. u0
= u
′

0.

CC Lab, EE, NCHU

Convolutional Codes 123

• Because of the linearity of Convolutional codes, the column

distance is equal to the minimum Hamming weight of all

sequences v[j+1]:

dc
j = min

u0 �=0
wt(v[j+1])

where v[j+1] = (v0, v1, ..., vj) are the first j+1 code blocks of all

possible code sequences with u0
= 0.

• When we considering the semi-infinite generator matrix G of the

code, we obtain

dc
j = min

u0 �=0
wt(u[j+1] ·G

c
[j+1])

CC Lab, EE, NCHU

Convolutional Codes 124

with the k(j + 1)× n(j + 1) generator matrix

Gc
[j+1] =

⎡
⎢⎢⎢⎢⎢⎢⎣

G0 G1 ... Gj

G0 Gj−1

. . .
...

G0

⎤
⎥⎥⎥⎥⎥⎥⎦

CC Lab, EE, NCHU

Convolutional Codes 125

• Definition(Distance profile of the generator matrix):

The first m + 1 values of the column distance d = (dc
0, d

c
1, ..., d

c
m)

of a given generator matrix G(D) with memory m are referred to

as the distance profile of the generator matrix.

• Definition(Minimum distance):

The column distance dc
m of order m of a given generator matrix

G(D) with memory m is called the minimum distance dm.

CC Lab, EE, NCHU

Convolutional Codes 126

• Consider the state diagram of the generator matrix G(D). The

paths of length j + 1 that are used for the calculation of dc
j leave

the zero state σ0 at time t = 0 and are in an arbitrary state

σj+1 ∈ (0, 1, ..., 2v − 1) after j + 1 state transition. Consequently,

the path relevant for j=0 are a part of the paths relevant for j=1,

and so on. Therefore the column distance is a monotonically

increasing function in j,

dc
0 ≤ dc

1 ≤ ≤ dc
j ≤ ... ≤ dc

∞

where a finite limit dc
∞ for j →∞ exist.

CC Lab, EE, NCHU

Convolutional Codes 127

Row distance

• Definition(Row distance):

The row distance dr
j of order j of a generator matrix G(D) with

memory m is the minimum Hamming distance of the j+m+1

code blocks of two codewords v[j+m+1] = (v0, v1, ..., vj+m) and

v
′

[j+m+1] = (v
′

0, v
′

1, ..., v
′

j+m), where the two information

sequences used for encoding u[j+m+1] = (u0, u1, ..., uj+m) and

u
′

[j+m+1] = (u
′

0, u
′

1, ..., u
′

j+m) with (uj+1, ..., uj+m) =

(u
′

j+1, ..., u
′

j+m) are different in at least the first coordinate of the

j+1 information blocks.

CC Lab, EE, NCHU

Convolutional Codes 128

• The row distance can also be calculated as the minimum of the

Hamming weights of all sequences v[j+m+1], in analogy with the

column distance:

dr
j = min

u0 �=0
wt(v[j+m+1])

where v[j+m+1] = (v0, ..., vj , ..., vj+m) are terminated code

sequences of length j+m+1.

• We obtain

dr
j = min

u0 �=0
wt(u[j+m+1]G

r
[j+m+1])

with the information sequence

u[j+m+1] = (u0, ..., uj , uj+1, ..., uj+m), where (uj+1, ..., uj+m) is

equal to the termination sequence.

CC Lab, EE, NCHU

Convolutional Codes 129

• The k(j + m + 1)× n(j + m + 1) generator matrix Gr
[j+m+1] is

given by

Gr
[j+m+1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0 G1 G2 . . . Gj . . . Gj+m

G0 G1 Gj+m+1

. . .
...

G0 G1 . . . Gm

G0 . . . Gm − 1

. . .
...

G0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If the generator matrix G(D) of the code is polynomial then

Gj = 0 for j > m and (uj+1, ..., uj+m) = 0 is the termination

sequence.

CC Lab, EE, NCHU

Convolutional Codes 130

• There is one sequence that diverges from zero state at time t = 0

and returns to the zero state at time t = m and that has a

specific weight dr
0.

• Increasing the sequence length to j = 1 corresponds to increasing

the number of valid code sequences that must be considered in

finding the minimum-weight sequence. If a code sequence is

found for j = 1 that has a hamming weight less than dr
0 then it is

selected. Otherwise, we choose the original code sequence, and

remain in the zero loop of zero state for the required number of j

transitions without increasing the Hamming weight dr
0.

• Therefore the row distance is a monotonically decreasing function

in j, and we can write

dr
0 ≥ dr

1 ≥ ... ≥ dr
j ≥ ... ≥ dr

∞

where the limit j →∞ gives dr
∞ > 0.

CC Lab, EE, NCHU

Convolutional Codes 131

• The paths in the state diagram that were used for calculating the

column distance dc
∞ go from the zero state to the zero loop,

which is, according to the Hamming weight of the necessary state

transitions, the ’closest’. On the other hand, the row distance dr
∞

is the minimum Hamming weight of all paths in the state

diagram from zero state to the zero state and therefore in the

zero loop.

dc
0 ≤ dc

1 ≤ ≤ dc
j ≤ ≤ dc

∞ ≤ dr
∞ ≤ ... ≤ dr

j ≤ ... ≤ dr
0

• Theorem(Limit of row and column distance):

If G(D) is a non-catastrophic generator matrix then the following

relation holds true for the limits of the row and column distances:

dc
∞ = dr

∞

CC Lab, EE, NCHU

Convolutional Codes 132

∵ In the derivation of equation

dc
0 ≤ dc

1 ≤ ≤ dc
j ≤ ... ≤ dc

∞

, it was shown that the path dc
∞ returns to the zero loop of the

state diagram and remains there. Only one zero loop, namely

from zero directly to zero, exists for noncatastrophic generator

matrices. Therefore dc
∞ is the minimum Hamming weight of a

path leaving from and returning to zero. It is equal to the row

distance dr
∞, as shown in the derivation of equation

dr
0 ≥ dr

1 ≥ ... ≥ dr
j ≥ ... ≥ dr

∞

CC Lab, EE, NCHU

Convolutional Codes 133

Free distance

• Definition(Free distance):

The free distance df of a Convolutional code C with rate R = k
n

is defined as the minimum distance between two arbitrary

codewords of C:

df = min
v �=v′

dist(v, v
′

)

Due to linearity, the problem of calculating distances can be

interpreted as the problem of calculating Hamming weight.

• Theorem(Row, column and free distance):

If G(D) is a non-catastrophic generator matrix then the following

equation holds for the limits of the row and column distances:

dc
∞ = dr

∞ = df

CC Lab, EE, NCHU

Convolutional Codes 134

• Example(Row and column distance):

Figure 1 shows the column and row distances of the generator

matrix G(D) = (1 + D + D2 + D3 1 + D2 + D3) of a

Convolutional code with rate R = 1
2 and m=3.

Figure 12: Row and column distance

CC Lab, EE, NCHU

Convolutional Codes 135

G(D) = (1 1) + (1 0)D + (1 1)D2 + (1 1)D3

= G0 + G1D + G2D
2 + G3D

3

Column distance(j = 0, 1, 2, ..)

j = 0:

Gc
[1] = [11]⇒ dc

0 = min
u0 �=0

wt(u[j+1] ·G
c
[j+1]) = 2

j = 1:

Gc
[2] =

⎡
⎣ 1 1 1 0

0 0 1 1

⎤
⎦⇒ dc

1 = 3

CC Lab, EE, NCHU

Convolutional Codes 136

Row distance(j = 0, 1, 2, ...)

j = 0:

Gr
[j+m+1=0+3+1=4] =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 0 1 1 1 1

0 0 1 1 1 0 1 1

0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎦

⇒ dr
0 = min

u0 �=0
wt(u[j+m+1] ·G

r
[j+m+1]) = 7

∵ (uj+1, ..., uj+m) = (u1, u2, u3) = (000)

CC Lab, EE, NCHU

Convolutional Codes 137

Extended distance measures

• Definition(Extended column distance):

Let the generator matrix G of a Convolutional code C with rate

R = k
n be given. Then the extended column distance of order j is

dec
j = min

σ0=0,σt �=0,0<t≤j
{wt((u0, u1, ..., uj)G

c
[j+1])}

where

G
c
[j+1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0 G1 . . . Gm

G0 G1 . . . Gm

.
.
.

.
.
.

.
.
.

G0 G1 . . . Gm

G0 . . . Gm−1

.
.
.

.

.

.

G0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the k(j + 1)× n(j + 1) truncated generator matrix.

CC Lab, EE, NCHU

Convolutional Codes 138

• Just like the column distance dc
j , the extended column distance

dec
j is also a monotonically increasing function in j.

• For non-catastrophic generator matrices, the zero state and the

consequently the associated zero loop are only permitted after j

transitions, and a limit for j →∞ does not exist for the extended

column distance.

CC Lab, EE, NCHU

Convolutional Codes 139

Extended row distance

The state sequence S = (σ0, σ1, ..., σt, ..., σj , σj+1, ..., σj+m+1) used to

define the code segments starts and ends in the zero state, i.e. σ0 = 0

and σj+m+1 = 0.

• Definition(Extended row distance):

Let the generator matrix G of a Convolutional code C with rate

R = k
n be given. Then the extended row distance of order j is

der
j = min

uj �=0,σ0=0,σt �=0,0<t≤j
{wt((u0, u1, ..., uj)G

r
[j+m+1])}

where

G
r
[j+m+1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G0 G1 . . . Gm

G0 G1 . . . Gm

.
.
.

.
.
.

.
.
.

G0 G1 . . . Gm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is a k(j + m + 1)× n(j + 1) truncated generator matrix.

CC Lab, EE, NCHU

Convolutional Codes 140

Extended segment distance

The extended segment distance is defined by the state sequences

S = (σ0, σ1, ..., σm, σm+1, ..., σj+m+1)with σm and σj+m+1 can

assume arbitrary values. The state in between are not equal to the

zero state.

• Definition(Extended segment distance):

Let the generator matrix G of a Convolutional code C with rate

R = k
n be given. The extended segment distance of order j is

des
j = min

σt �=0,m<t≤j+m
{wt((u0, u1, ..., uj+m)Gs

[j+1])}

CC Lab, EE, NCHU

Convolutional Codes 141

where

G
s
[j+1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gm

Gm−1 Gm

.

.

. Gm−1

.
.
.

G0

.

.

.

.
.
. Gm

G0 . . . Gm−1

.
.
.

.

.

.

G0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a k(j + 1 + m)× n(j + 1) truncated generator matrix.

CC Lab, EE, NCHU

Convolutional Codes 142

Figure 13: Graphical representation of the generator matrices cor-

responding to the extended distance properties of Gec
[j+1],G

r
[j+1] and

Gs
[j+1](from left to right)

CC Lab, EE, NCHU

Convolutional Codes 143

Figure 14: Diagrams showing the calculation of the extended distance

measurements in trellis form:column, row and segment distances(from

top to bottom).j = 5,G(D) = (1 + D + D2 1 + D),m = 2.

CC Lab, EE, NCHU

Convolutional Codes 144

Weight Enumerating Function (WEF)

The state diagram can be modified to provide a complete description

of the Hamming weights of all nonzero codewords, that is a codeword

Weight Enumerating Function

• Zero weight branch around state S0 is deleted

• Each branch is labeled with a branch gain Xd,where d is the

weight of the n encoded bits on the branch

• The path gain is the product of the branch gains along a path,

and the weight of the associated codeword is the power of X in

the path gain

CC Lab, EE, NCHU

Convolutional Codes 145

CC Lab, EE, NCHU

Convolutional Codes 146

To determine the codeword WEF of a code by considering the

modified state diagram of the encoder as a signal flow graph and

applying Mason’s gain formula to compute its transfer function

A(X) =
∑

d

AdX
d

Ad is the number of codewords of weight d.

CC Lab, EE, NCHU

Convolutional Codes 147

• In a signal flow graph, a path connecting the initial state to the

final state that does not go through any state twice is called a

forward path

(Let Fi be the gain of the ith forward path)

• A closed path starting at any state and returning to that state

without going through any other state twice is called a cycle

(Let Ci be the gain of the ith cycle)

CC Lab, EE, NCHU

Convolutional Codes 148

let Ci be the gain of ith cycle, A set of cycles is nontouching if no

state belongs to more than one cycle in the set.

• {i} be the set of all cycles

• {i′, j′} be the set of all pairs of nontouching cycles

• {i′′′, j′′′, k′′} be the set of all triple of nontouching cycles, and so

on

CC Lab, EE, NCHU

Convolutional Codes 149

Define

Δ = 1−
∑

i

Ci +
∑
i′,j′

Ci′Cj′ −
∑

i′′,j′′,k′′

Ci′′Cj′′Ck′′ + · · ·

Δi is defined exactly like Δ butonly for that portion of the graph not

touching the ith forward path

A(X) =

∑
i FiΔi

Δ

CC Lab, EE, NCHU

Convolutional Codes 150

Example:Computing the WEF of a (2,1,3) code

Cycle 1: s1s3s7s6s5s2s4s1 (c1 = X8)

Cycle 2: s1s3s7s6s4s1 (c2 = X3)

Cycle 3: s1s3s6s5s2s4s1 (c3 = X7)

Cycle 4: s1s3s6s4s1 (c4 = X2)

Cycle 5: s1s2s5s3s7s6s4s1 (c5 = X4)

Cycle 6: s1s2s5s3s6s4s1 (c6 = X3)

Cycle 7: s1s2s4s1 (c7 = X3)

Cycle 8: s2s5s2 (c8 = X)

Cycle 9: s3s7s6s5s3 (c9 = X5)

Cycle 10: s3s6s5s3 (c10 = X4)

Cycle 11: s7s7 (c11 = X)

There are 11 cycles

CC Lab, EE, NCHU

Convolutional Codes 151

Cycle Pair 1: (Cycle 2,Cycle 8) (c2c8 = X4)

Cycle Pair 2: (Cycle 3,Cycle 11) (c3c11 = X8)

Cycle Pair 3: (Cycle 4,Cycle 8) (c4c8 = X3)

Cycle Pair 4: (Cycle 4,Cycle 11) (c4c11 = X3)

Cycle Pair 5: (Cycle 6,Cycle 11) (c6c11 = X4)

Cycle Pair 6: (Cycle 7,Cycle 9) (c7c9 = X8)

Cycle Pair 7: (Cycle 7,Cycle 10) (c7c10 = X7)

Cycle Pair 8: (Cycle 7,Cycle 11) (c7c11 = X4)

Cycle Pair 9: (Cycle 8,Cycle 11) (c8c11 = X2)

Cycle Pair 10: (Cycle 10,Cycle 11) (c10c11 = X5)

There are 10 pairs of nontouching cycles

CC Lab, EE, NCHU

Convolutional Codes 152

Cycle Triple 1: (Cycle 4, Cycle 8, Cycle 11) (C4, C8, C11 = X4)

Cycle Triple 2: (Cycle 7, Cycle 10, Cycle 11) (C7, C10, C11 = X8)

There are 2 triples of nontouching cycles

There are no other sets of nontouching cycles. Therefore

Δ = 1− (x8 + x3 + x7 + x2 + x4 + x3 + x3 + x + x5 + x4 + x) + (x4 +

x8 + x3 + x3 + x4 + x8 + x7 + x4 + x2 + x5)− (x4 + x8) = 1− 2x− x3

CC Lab, EE, NCHU

Convolutional Codes 153

Forward Path 1: s0s1s3s7s6s5s2s4s0 (F1 = X12)

Forward Path 2: s0s1s3s7s6s4s0 (F2 = X7)

Forward Path 3: s0s1s3s6s5s2s4s0 (F3 = X11)

Forward Path 4: s0s1s3s6s4s0 (F4 = X6)

Forward Path 5: s0s1s2s3s5s7s6s4s0 (F5 = X8)

Forward Path 6: s0s1s2s5s3s6s4s0 (F6 = X7)

Forward Path 7: s0s1s2s4s0 (F7 = X7)

There are 7 forward path

CC Lab, EE, NCHU

Convolutional Codes 154

Forward path 1 and 5 touch all states

Δ1 = Δ5 = 1

The subgraph not touching forward path 3 and 6 shown in (a)

Δ3 = Δ6 = 1−X

The subgraph not touching forward path 2 shown in (b)

Δ2 = 1−X

The subgraph not touching forward path 4 shown in (c)

Δ4 = 1− (X + X) + (X2) = 1− 2X + X2

The subgraph not touching forward path 7 shown in (d)

Δ7 = 1− (X + X4 + X5) + (X5) = 1−X −X4

CC Lab, EE, NCHU

Convolutional Codes 155

CC Lab, EE, NCHU

Convolutional Codes 156

A(X) =

∑
i FiΔi

Δ

=
X6 + X7 −X8

1− 2X −X3

= X6 + 3X7 + 5X8 + 11X9 + 25X10 + . . .

The codeword WEF A(X) provides a complete description of the

weight distribution of all nonzero codewords

In this case there is one such codeword of weight 6, three of weight 7,

five of weight 8, and so on

CC Lab, EE, NCHU

Convolutional Codes 157

Input-Output Weight Enumerating Function (IOWEF)

If the modified state diagram is augmented by labeling each branch

corresponding to a nonzero information block with Ww,where w is

the weight of k information bits on that branch, and labeling each

branch with L, then the codeword (IOWEF) is

A(W, X, L) =
∑
w,d,l

Aw,d,lW
wXdLl

CC Lab, EE, NCHU

Convolutional Codes 158

CC Lab, EE, NCHU

Convolutional Codes 159

A(W, X, L) =
X6W2L5 + X7W L4 − X8W2L5

1 − XW (L + L2) − X2W2(L4 − L3) − X3W L3 − X4W2(L3 − L4)

= X
6

W
2

L
5

+ X
7
(W L

4
+ W

3
L

6
+ W

3
L

7
) + X

8
(W

2
L

6
+ W

4
L

7
+ W

4
L

8
+ 2W

4
L

9
)

This implies that the codeword of weight 6 has length-5 branches

and an information weight of 2,one codeword of weight 7 has length-4

branches and information weight 1, another has length-6 branches

and information weight 3, the third has length-7 branches and

information weight 3, and so on

CC Lab, EE, NCHU

Convolutional Codes 160

Termination, tailbiting, and puncturing

CC Lab, EE, NCHU

Convolutional Codes 161

Punctured Convolutional Codes

1. Punctured convolutional codes are derived from the mother code

by periodically deleting certain code bits in the code sequence of

the mother code:

(nm, km, mm) p
−→

(np, kp, mp)

where P is an nm × kp/km puncturing matrix with elements

pij ∈ {0, 1}

2. A 0 in P means the deletion of a bit and a 1 means that this

position is remained the same in the puncture sequence

3. Let p = nmkp/km be the puncture period (the number of all

element in P)and w ≤ p be the number of 1 elements in P

CC Lab, EE, NCHU

Convolutional Codes 162

It is clear that w = np. The rate of the puncture code is now

Rp =
kp

np
=

kmp

nm

1

w
=

p

w
Rm

4. Since w ≤ p, we have Rm ≤ Rp

5. w can not be too small in order to assure that Rp ≤ 1

CC Lab, EE, NCHU

Convolutional Codes 163

Example of the Punctured Convolutional Code

1. Consider the (2, 1, 2) code with the generator matrix

G =

⎛
⎜⎜⎜⎝

11 10 11

11 10 11

. . .
. . .

⎞
⎟⎟⎟⎠

2. Let

P =

⎛
⎜⎜⎝

1 0 0 0 0 1

1 1 1 1 1 0

⎞
⎟⎟⎠

be the punctured matrix

3. The code rate of the punctured code is
kp

np
= 6

7

CC Lab, EE, NCHU

Convolutional Codes 164

4. If lth code bit is removed then the respective

column of the generator matrix of the mother code must be deleted

5.

11 01 01 01 01 10 11 01 01 01 01 10 11 01

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

CC Lab, EE, NCHU

Convolutional Codes 165

6. We can obtain the generator matrix of the punctured code by

deleting those un-bold columns in the above matrix

Gp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1

1 0 1

1 0 1

1 0 1

1 1 1 1

1 1 0 1

1 1 0 1

1 0 1

1 0 1

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

CC Lab, EE, NCHU

Convolutional Codes 166

7. The above punctured code has mp = 2

8. Punctured convolutional codes are very important in partical

applications, and are used in many areas

CC Lab, EE, NCHU

Convolutional Codes 167

Optimal decoding: Viterbi and BCJR decoding

CC Lab, EE, NCHU

Convolutional Codes 168

• We will discuss three decoding algorithms:

1. Viterbi decoding: 1967 by Viterbi

2. SOVA decoding: 1989 by Hagenauer

3. BCJR decoding: 1974 by Bahl etc.

• These algorithms are operated on the trellis of the codes and the

complexity depends on the number of states in the trellis.

• We can apply these algorithms on block and convolutional codes

since the former has the regular trellis and the latter has the

irregular trellis.

• Viterbi and SOVA decoding minimize the codeword error

probability and BCJR minimize the information bit error

probability.

CC Lab, EE, NCHU

Convolutional Codes 169

The Viterbi algorithm

• Assume that an information sequence u = (u0, u1, . . . , uh−1) of

the length K∗ = kh is encoded.

• Then a codeword v = (v0, v1, . . . , vh+m−1) of length

N = n(h + m) is generated after the convolutional encoder.

• Thus, with zero-biting of mk zero bits, we have a [n(h + m), kh]

linear block code.

• After the discrete memoryless channel (DMC), a sequence

r = (r0, r1, . . . , rh+m−1) is received. We will focus on a BSC, a

binary-input/Q-ary output, and AWGN channels.

• A (ML) decoder for a DMC chooses v̂ as the codeword v that

maximizes the log-likelihood function log p(r|v).

CC Lab, EE, NCHU

Convolutional Codes 170

• Since the channel is memoryless, we have

p(r|v) =

h+m−1∏
l=0

p(rl|vl) =

N−1∏
l=0

p(rl|vl)

log p(r|v) =

h+m−1∑
l=0

log p(rl|vl) =

N−1∑
l=0

log p(rl|vl)

• We define the bit metric, branch metric, and path metric as the

log-likelihood function of the corresponding conditional

probability functions as follows:

M(rl|vl) = log p(rl|vl),

M(rl|vl) = log p(rl|vl),

M(r|v) = log p(r|v).

CC Lab, EE, NCHU

Convolutional Codes 171

• Then we can write the path metric M(r|v) as the sum of the

branch metrics

M(r|v) =

h+m−1∑
l=0

M(rl|vl) =

h+m−1∑
l=0

log p(rl|vl)

or the sum of the bit metrics

M(r|v) =

N−1∑
l=0

M(rl|vl) =

N−1∑
l=0

log p(rl|vl)

• Similarly, a partial metric for the first t branch of a path can be

written as

M([r|v]t) =

t−1∑
l=0

M(rl|vl) =

nt−1∑
l=0

M(rl|vl)

CC Lab, EE, NCHU

Convolutional Codes 172

• The basic operations of the Viterbi algorithm is the addition,

comparison, and selection (ACS).

• At each time unit t, considering each state st and 2k previous

state st−1 connecting to st, we compute the (optimal) partial

metric of st by adding the branch metric connecting between st

and st−1 to the partial metric of st−1 and selecting the largest

metric.

• We store the optimum path (survivor) with the partial metric for

each state st at time t.

• In other words, we have to store 2ν survivor pathes along with its

optimal partial metric from time m to time h.

CC Lab, EE, NCHU

Convolutional Codes 173

• The above algorithm, when applied to the received sequence r

from a DMC, find the path through the trellis with the largest

metric, that is the maximum likelihood path (codeword).

• The final survivor v̂ in the Viterbi algorithm is the maximum

likelihood path; that is

M(r|v̂) ≥M(r|v), all v
= v̂

CC Lab, EE, NCHU

Convolutional Codes 174

Figure 15: Elimination of the maximum likelihood path contradicts to

the definition of optimal metric

CC Lab, EE, NCHU

Convolutional Codes 175

• Consider a (3, 1, 2) convolutional code with

G(D) = [1 + D, 1 + D2, 1 + D + D2]

with m = 2 and h = 5.

• With zero-biting, we have a [3(5 + 2), 5] = [21, 5] linear block

code.

• The first m = 2 unit and the last m = 2 unit of the trellis

correspond to the departure of the initial state s0 and the return

of the final state s0.

• The central units correspond to the replica of the state diagram

with 2k = 2 branches leaving and entering each state.

• Each branch is labelled with ui/vi of k-bit input ui and n-bit

output vi.

CC Lab, EE, NCHU

Convolutional Codes 176

Viterbi Algorithm for a Binary-input, Quaternary-Output DMC

Consider the binary-input, quaternary-output (Q=4) DMC

CC Lab, EE, NCHU

Convolutional Codes 177

vl \ rl 01 02 12 11

0 −0.4 −0.52 −0.7 −1.0

1 −1.0 −0.7 −0.52 −0.4

vl \ rl 01 02 12 11

0 10 8 5 0

1 0 5 8 10

Metric table for the binary/Quaternary channel

CC Lab, EE, NCHU

Convolutional Codes 178

CC Lab, EE, NCHU

Convolutional Codes 179

The quaternary received sequence is

r = (111201, 111102, 111101, 111111, 011201, 120211, 120111)

The final survivor is

v̂ = (111, 010, 110, 011, 000, 000, 000)

The decoded information sequence is

û = (1, 1, 0, 0, 0)

CC Lab, EE, NCHU

Convolutional Codes 180

Viterbi Algorithm for a BSC

• In BSC with transition probability p < 1/2, the received

sequence r is binary and the log-likelihood function becomes

log p(r|v) = d(r,v) log
p

1− p
+ N log(1− p),

where d(r, v) is the Hamming distance between r and v.

• Because log p
1−p < 0 and N log(1− p) is a constant for all v, an

MLD for a BSC chooses v as the codeword v̂ that minimizes the

Hamming distance

d(r,v) =

h+m−1∑
l=0

d(rl,vl) =

N−1∑
l=0

d(rl, vl)

CC Lab, EE, NCHU

Convolutional Codes 181

CC Lab, EE, NCHU

Convolutional Codes 182

The received sequence is

r = (110, 110, 110, 111, 010, 101, 101)

The final survivor is

v̂ = (111, 010, 110, 011, 111, 101, 011)

The decoded information sequence is

û = (1, 1, 0, 0, 1)

That final survivor has a metric of 7 means that no other path

through the trellis differs from r in fewer than seven positions.

CC Lab, EE, NCHU

Convolutional Codes 183

• In the BSC case, maximizing the log-likelihood function is

equivalent to finding the codeword v that is closest to the

received sequence r in Hamming distance.

• In the AWGN case, maximizing the log-likelihood function is

equivalent to finding the codeword v that is closest to the

received sequence r in Euclidean distance.

CC Lab, EE, NCHU

Convolutional Codes 184

Viterbi Algorithm for an AWGN

• Consider the AWGN channel with binary input, i.e.,

v = (v0, v1, · · · , vN−1),

where vi ∈ {1,−1}.

• The bit metric M(rl|vl) for an AWGN with binary input of unit

energy and PSD N0/(2Es) is

p(rl|vl) =

√
Es

πN0
e−

Es
N0

(rl−vl)
2

CC Lab, EE, NCHU

Convolutional Codes 185

• The path metric can be simplified as

M(r|v) = log p(r|v)

= −
Es

N0

N−1∑
l=0

(rl − vl)
2 +

N

2
log

Es

πN0
.

• A codeword v minimize the Euclidean distance
∑N−1

l=0 (rl − vl)
2

also maximize the log-likelihood function log p(r|v).

• We can define a new path metric of v as

M(r|v) =

N−1∑
l=0

(rl − vl)
2

and the Viterbi algorithm finds the optimal path v with

minimum Euclidean distance from r.

CC Lab, EE, NCHU

Convolutional Codes 186

• The path metric can also be simplified as

M(r|v) = log p(r|v)

= −
Es

N0

N−1∑
l=0

(r2
l − 2rlvl + v2

l) +
N

2
log

Es

πN0

=
2Es

N0

N−1∑
l=0

rl · vl −
Es

N0
(|r|2 + N) +

N

2
log

Es

πN0

• A codeword v maximize the correlation r · v also maximize the

log-likelihood function log p(r|v).

• We can define a new path metric of v as M(r|v) =
∑N−1

l=0 rl · vl

and the Viterbi algorithm finds the optimal path v with

maximum correlation from r.

CC Lab, EE, NCHU

Convolutional Codes 187

The Soft-Output Viterbi Algorithm

• In a series or parallel concatenated decoding system, usually one

decoder passes reliability information about its decoded outputs

to the other decoder, which refer to the soft in/soft out decoding.

• The combination of the hard-decision output and the reliability

indicator is called a soft output.

CC Lab, EE, NCHU

Convolutional Codes 188

• At time unit l = t + 1, the partial path metric that must be

maximized by the Viterbi algorithm for a binary-input,

continous-output AWGN channel given the partial received

sequence [r]t+1 = (r0, r1, . . . , rt) is given as

M([r|v]t+1) = ln{p([r|v]t+1)p([v]t+1)}

• A priori probability p([v]t+1) is included since these will not be

equally likely when a priori probability of the information bits

are not equally likely

CC Lab, EE, NCHU

Convolutional Codes 189

M([r|v]t+1) = log{[
t−1∏
l=0

p(rl|vl)p(ul)]p(rt|vt)p(ut)}

= log{[

t−1∏
l=0

p(rl|vl)}+ {

n−1∑
j=0

log[p(r
(j)
t |v

(j)
t)] + log[p(ut)]}

By multiplying each term in the second sum by 2 and introducing

constants C
(j)
r and Cu as follows:

{

n−1∑
j=0

[2 log[p(r
(j)
t |v

(j)
t)]− C(j)

r] + [2 log[p(ut)]− Cu]}

where the constants

C(j)
r ≡ log[p(r

(j)
t |v

(j)
t = +1)]+log[p(r

(j)
t |v

(j)
t = −1)], j = 0, 1, . . . , n−1

Cu ≡ log[p(ut = +1)] + log[p(ut = −1)]

CC Lab, EE, NCHU

Convolutional Codes 190

Similarly, we modify the first sum by the same way and obtain the

modified partial path metric M∗([r|v]t) as

M∗([r|v]t+1) = M∗([r|v]t) +

n−1∑
j=0

{2 log[p(r
(j)
t |v

(j)
t)]− C(j)

r }

+{2 log[p(ut)]− Cu}

= M∗([r|v]t−1) +

n−1∑
j=0

v
(j)
t log[

p(r
(j)
t |v

(j)
t = +1)

p(r
(j)
t |v

(j)
t = −1)

]

+ut log[
p(ut = +1)

p(ut = −1)
]

CC Lab, EE, NCHU

Convolutional Codes 191

• The log-likelihood ratio, or L-value, of a received symbol r at the

output with binary inputs v = ±1 is defined as

L(r) = log[
p(r|v = +1)

p(r|v = −1)
]

• The L-value of an information bit u is define as

L(u) = log[
p(u = +1)

p(u = −1)
]

• A large positive L(r) indicates a high reliability that v = 1 and a

large negative L(r) indicates a high reliability that v = −1.

CC Lab, EE, NCHU

Convolutional Codes 192

• Since he bit metric M(rl|vl) for an AWGN with binary input of

unit energy and PSD N0/(2Es) (SNR=1/(N0/Es) = Es/N0) is

p(rl|vl) =

√
Es

πN0
e−

Es
N0

(rl−vl)
2

,

the L-value of r is thus

L(r) = log[
p(r|v = +1)

p(r|v = −1)
] = (4Es/N0)r

• Defining LC ≡ 4Es/N0 as the channel reliability factor, the

modified metric for SOVA decoding can be written by

M∗([r|v]t+1) = M∗([r|v]t) +

n−1∑
j=0

Lcv
(j)
t r

(j)
t + utL(ut)

CC Lab, EE, NCHU

Convolutional Codes 193

• Assume that a comparison is being made at state

si, i = 0, 1, . . . , 2ν − 1,

between the maximum likelihood (ML) path [v]t and an incorrect

path [v′]t at time l = t

• Define the metric difference between [v]t and [v′]t as

Δt−1(Si) =
1

2
{M∗([r|v]t)−M∗([r|v′]t)}

• The probability P (C) that the ML path is correctly seleted at

time t is given by

P (C) =
p([v|r]t)

p([v|r]t) + p([v′|r]t)

CC Lab, EE, NCHU

Convolutional Codes 194

Since

p([v|r]t) =
p([r|v]t)p([v]t)

p(r)
=

eM([r|v]t)

p(r)

and

p([v′|r]t) =
p([r|v′]t)p([v′]t)

p(r)
=

eM([r|v′]t)

p(r)

P (C) =
eΔt−1(Si)

1 + eΔt−1(Si)

Finally,the log-likelihood ratio is

log{
P (C)

[1− P (C)]
} = Δt−1(Si)

CC Lab, EE, NCHU

Convolutional Codes 195

A reliability vector at time l = m + 1 for state Si as follows:

Lm+1(Si) = [L0(Si), L1(Si), . . . , Lm(Si)]

Ll(Si) ≡

⎧⎨
⎩ Δm(Si) , ul
= u′

l

∞ , ul
= u′
l

l = 0, 1, . . . , m

the reliability of a bit position is either∞, if it is not affected by the

path decision

CC Lab, EE, NCHU

Convolutional Codes 196

CC Lab, EE, NCHU

Convolutional Codes 197

• The above SOVA decoding is one-way version since we have to

store the optimal survivor, the optimal partial metric, and

reliability vector for each state st in time unit t.

• We can have two-way version for Viterbi and SOVA algorithm.

• In two-way version, we have to do forward recursion and

backward recursion simultaneously and store the optimal forward

metric and optimal backward metric, but we do not have to store

the optimal path.

• We make the final decision on each information bit by adding the

optimal forward metric, optimal backward metric, and the

branch metric.

CC Lab, EE, NCHU

Convolutional Codes 198

Step 1: Forward recursion

• step 1-1:

– i = 0;

– partial path metric μf (s0
0) = 0 ; μf (s0

1) = μf (s0
2) = μf (s0

3) = ∞

• step 1-2:

– i = i + 1

– for l = 0, 1, 2, 3

μf (si
l) = min{μf (si−1

0) + Branch(si−1
0 , s

i
l),

μf (si−1
1) + Branch(si−1

1 , s
i
l),

μf (si−1
2) + Branch(si−1

2 , s
i
l),

μf (Si−1
3) + Branch(si−1

3 , s
i
l)}

where Branch(·, ·) is the branch metric.

• step 1-3: Go to step 2 until i = h + m.

CC Lab, EE, NCHU

Convolutional Codes 199

Step 2: Backward recursion

• step 2-1:

– i = h + m;

– partial path metric μh+m(sτ
0) = 0 ;

μh+m(sτ
1) = μh+m(sτ

2) = μh+m(sτ
3) = ∞

• step 2-2:

– i = i − 1

– for l = 0, 1, 2, 3

μτ (si
l) = min{μτ (si+1

0) + Branch(si+1
0 , s

i
l)}

μτ (si+1
1) + Branch(si+1

1 , s
i
l),

μτ (si+1
2) + Branch(si+1

2 , s
i
l),

μτ (si+1
3) + Branch(si+1

3 , s
i
l)}

where Branch(·, ·) is the branch metric.

• step 2-3: Go to step 2 until i = 0.

CC Lab, EE, NCHU

Convolutional Codes 200

Step 3: Soft decision

• step 3-1: i = 0

• step 3-2:

– i = i + 1

–

λ
0
i = mins,s̄{μf (Si−1

s) + Branch0(S
i−1
s , S

i
s̄) + μγ(Si

s̄)}

where Branch0(S
i−1
s , Si

s̄) is the branch metric from node Si−1
s to

Si
s̄ which corresponds to ci = 0 (if no such branch exists, the

branch metric is assigned infinity)

–

λ
1
i = mins,s̄{μf (Si−1

s) + Branch1(S
i−1
s , S

i
s̄) + μγ(Si

s̄)}

where Branch1(S
i−1
s , Si

s̄)is the branch metric from node Si−1
s to Si

s̄

which corresponds to ci = 1

• step 3-3: Λ(i) = λ0
i − λ1

i

CC Lab, EE, NCHU

Convolutional Codes 201

The complexity of SOVA

• We can modify the SOVA algorithm to reduce the decoding

complexity.

• The computational complexity of the SOVA is upper-bounded by

twive of the VA.

• In fact, the computational complexity of the SOVA is about 1.5

times of the VA.

CC Lab, EE, NCHU

Convolutional Codes 202

The BCJR Algorithm

• In 1974 Bahl, Cocke, Jelinek, and Ravi introduced a MAP

decoder, called the BCJR algorithm

• The computation complexity of the BCJR algorithm is greater

than the Viterbi algorithm

• Viterbi decoding is preferred in the case of equally likely

information bits.When the information bits are not equally,

however better performance is achieved with MAP decoding.

CC Lab, EE, NCHU

Convolutional Codes 203

We describe the BCJR algorithm for the case of rate R = 1/n

convolutional codes used on a binary-input, continous-output AWGN

channel and on a DMC.

Our presentation is based on the log-likelihood ratios, or L-values.

The decoder input are the received sequence r and a priori L-value of

the information bits La(ul), l = 0, 1, . . . , h− 1.

CC Lab, EE, NCHU

Convolutional Codes 204

As in the case of the SOVA, we do not assume that the information

bits are equally likely. The algorithm calculates the a posteriori

L-values

L(ul) ≡ log[
P (ul = +1|r)

P (ul = −1|r)
]

called the APP L-values, of each information bits, and the decoder

output is given by

ûl =

⎧⎪⎪⎨
⎪⎪⎩

+1 if L(ul) > 0

, l = 0, 1, . . . , h− 1

−1 if L(ul) < 0

In iterative decoding, the APP L-values can be taken as the decoder

outputs, resulting in a SISO decoding algorithm.

CC Lab, EE, NCHU

Convolutional Codes 205

We begin our development of the BCJR algorithm by rewriting the

APP value P (ul = +1|r) as follows:

P (ul = +1|r) =
p(ul = +1, r)

P (r)
=

∑
u∈U

+
l

p(r|v)P (u)∑
u

p(r|v)P (u)

Where U+
l is the set of all information sequence u such that ul = +1,

v is the transmitted codeword corresponding to the information

sequence u, and p(r|v) is the pdf of the received sequence r given v

CC Lab, EE, NCHU

Convolutional Codes 206

Rewriting P (ul = −1|r) in the same way, we can write the expression

for the APP L-value as

L(ul) = ln

[∑
u∈U

+
l

p(r|v)P (u)∑
u∈U

−
l

p(r|v)P (u)

]

U−
l is the set of all information sequence u such that ul = −1

CC Lab, EE, NCHU

Convolutional Codes 207

First, making use of the trellis structure of the code, we can

reformulate p(ul = +1|r) as follow:

P (ul = +1|r) =
p(ul = +1, r)

P (r)
=

∑
(s,s′)∈Σ+

l
p(sl = s′, sl+1 = s, r)

P (r)

where Σ+
l is the set of all state pairs sl = s′ and sl+1 = s that

correspond to the input bit ul = +1 at time l. Reformulating the

expression p(ul = −1|r) in the same way, we can now write the APP

L-value as

L(ul) = ln

{ ∑
(s,s′)∈Σ

+
l

p(sl=s′,sl+1=s,r)∑
(s,s′)∈Σ

−
l

p(sl=s′,sl+1=s,r)

}

where Σ−
l is the set of all state pairs sl = s′ and sl+1 = s that

correspond to the input bit ul = −1 at time l.

CC Lab, EE, NCHU

Convolutional Codes 208

The joint pdf’s p(s′, s, r) can be evaluated recursively.

p(s′, s, r) = p(s′, s, rt<l, rl, rt>l)

where rt<l represents the portion of the received sequence r before

time l, and rt>l represents the portion of the received sequence r

after time l. Application of Bayes’ rule yields

⇒ p(s′, s, r) = p(rt>l|s
′, s, rt<l, rl)p(s′, s, rt<l, rl)

= p(rt>l|s
′, s, rt<l, rl)p(s, rl|s

′, rt<l)p(s′, rt<l)

= p(rt>l|s)P (s, rl|s
′)p(s′, rt<l)

CC Lab, EE, NCHU

Convolutional Codes 209

where the last equality follows from the fact that probability of the

received branch at time l depend only on the state and input bit at

time l.

Define :

αl(s
′) ≡ p(s′, rt<l)

γl(s
′, s) ≡ p(s, rl|s

′)

βl+1(s) ≡ p(rt>l|s)

P (s′, s, r) = βl+1(s)γl(s
′, s)αl(s

′)

CC Lab, EE, NCHU

Convolutional Codes 210

Forward recursion:

αl+1(s) = p(s, rt<l+1) =
∑

s′∈σl

p(s′, s, rt<l+1)

=
∑

s′∈σl

p(s, rl|s
′, rt<l)p(s′, rt<l)

=
∑

s′∈σl

p(s, rl|s
′)p(s′, rt<l)

=
∑

s′∈σl

γl(s
′, s)αl(s

′)

CC Lab, EE, NCHU

Convolutional Codes 211

Backward recursion:

βl(s
′) = P (rt>l−1|s

′) =
∑

s∈σl+1

P (rt>l−1, s|s
′) =

∑
s∈σl+1

P (rl, s, s
′)

P (s′)

=
∑

s∈σl+1

P (rl, s, s
′, rt>l)

P (s′)
=
∑

s∈σl+1

P (rt>l|s, s
′, rl)P (s, s′, rl)

P (s′)

=
∑

s∈σl+1

P (rt>l|s)P (s, s′, rl)

P (s′)
=
∑

s∈σl+1

P (rt>l|s)P (s, s′, rl)

P (s′)

=
∑

s∈σl+1

βl+1(s)P (s, rl|s
′)P (s′)

P (s′)
=
∑

s∈σl+1

βl+1(s)γl(s, s
′)

CC Lab, EE, NCHU

Convolutional Codes 212

We can write the branch matric γl(s
′, s) as

γl(s, s
′) = P (s, rl|s

′) =
p(s′, s, rl)

p(s′)

=
[

p(s,s′)
p(s′)

] [
p(s′,s,rl)
p(s,s′)

]
= P (s|s′)P (rl|s

′, s) = P (ul)P (rl|vl)

For a continous-output AWGN channel, if s′ → s is a valid state

transition,

γl(s
′s) = P (ul)p(rl|vl) = P (ul)

(√
Es

πN0

)n

e−
Es
N0

‖rl−vl‖
2

where ‖ rl − vl ‖
2

is the squared Eucliden distance between the

received branch rl and the transmitted branch vl at time l

CC Lab, EE, NCHU

Convolutional Codes 213

The constant term
(√

Es

πN0

)n

always appears raised to the power h

in the expression for the pdf p(s′, s, r). Thus,
(√

Es

πN0

)nh

will be a

factor of every term in the numerator and denominator summations

of L(ul), and its effect will cancel. The result in the modified branch

metric:

γl(s
′s) = P (ul)e

− Es
N0

‖rl−vl‖
2

CC Lab, EE, NCHU

Convolutional Codes 214

We expression a priori probabilities p(ul = ±1) as exponential term

by writing:

p(ul = ±1) =
[p(ul = +1)/p(ul = −1)]±1

1 + [p(ul = +1)/p(ul = −1)]±1

=
e±La(ul)

1 + e±La(ul)

=
e−La(ul)/2

1 + e−La(ul)
eulLa(ul)/2

= Ale
ulLa(ul)/2

CC Lab, EE, NCHU

Convolutional Codes 215

then

γl(s, s
′) = Ale

ulLa(ul)/2e−(Es/N0)‖rl−vl‖
2

= Ale
ulLa(ul)/2e(2Es/N0)(rl·vl)−‖rl‖

2−‖vl‖
2

= Ale
−(‖rl‖

2+n)eulLa(ul)/2e(Lc/2)(rl·vl)

= AlBle
ulLa(ul)/2e(Lc/2)(rl·vl), l = 0, 1, . . . , h− 1

γl(s
′, s) = P (ul)e

−(Es/N0)‖rl−vl‖
2

= e−(Es/N0)‖rl−vl‖
2

= Ble
(Lc/2)(rl·vl), l = h, h + 1, . . . , K − 1

where Bl ≡ ‖ rl ‖
2

+ n is a constant independent of the codeword vl,

and Lc = 4ES/N0 is the channel reliability factor.

CC Lab, EE, NCHU

Convolutional Codes 216

Using the log-domain metric:

γ∗
l (s′, s) ≡ ln γl(s

′, s) =

⎧⎨
⎩

ulLa(ul)
2 + Lc

2 rl · vl l = 0, 1, . . . , h− 1

Lc

2 rl · vl l = h, h + 1, . . . , K − 1

CC Lab, EE, NCHU

Convolutional Codes 217

We define a max calculate function:

max∗(x, y) = ln(ex + ey) = max(x, y) + ln(1 + e−|x−y|)

CC Lab, EE, NCHU

Convolutional Codes 218

α∗
l+1(s) ≡ lnαl+1(s) = ln

∑
s′∈σl

γl(s
′, s)αl(s

′)

= ln
∑

s′∈σl

e[γ∗
l (s′,s)+α∗

l (s′)]

= max∗
s′∈σl

[γ∗
l (s′, s) + α∗

l (s
′)]

l = 0, 1, . . . , K − 1

α∗
0(s) ≡ lnα0(s) =

⎧⎨
⎩ 0, s = 0

−∞, s
= 0

CC Lab, EE, NCHU

Convolutional Codes 219

β∗
l (s) ≡ lnβl(s

′) = ln
∑

s∈σl+1

γl(s
′, s)βl+1(s)

= ln
∑

s∈σl+1

e[γ∗
l (s′,s)+β∗

l+1(s)]

= max∗
s′∈σl+1

[γ∗
l (s′, s) + β∗

l+1(s)]

l = K − 1, K − 2, . . . , 0

β∗
K(s) ≡ lnβK(s) =

⎧⎨
⎩ 0, s = 0

−∞, s
= 0

CC Lab, EE, NCHU

Convolutional Codes 220

Termination using MAX-LOG

P (s′, s, r) = eβ∗
l+1(s)+γ∗

l (s′,s)+α∗
l (s′)

and

L(ul) = ln

{ ∑
(s′,s)∈Σ+

l

eβ∗
l+1(s)+γ∗

l (s′,s)+α∗
l (s′)

}

− ln

{ ∑
(s′,s)∈Σ−

l

eβ∗
l+1(s)+γ∗

l (s′,s)+α∗
l (s′)

}

CC Lab, EE, NCHU

Convolutional Codes 221

Log-Domain BCJR Algorithm

1. Initial the forward and backward metrics α∗
0(s) and β∗

k(s)

2. compute the branch metrics γ∗
l (s′, s) , l = 0, 1, . . . , K − 1

3. compute the forward metrics α∗
l+1(s) , l = 0, 1, . . . , K − 1

4. compute the backward metrics β∗
l (s′) , l = K − 1, K − 2, . . . , 0

5. compute4 the APP L-values L(ul), l = 0, 1, . . . , h− 1

6. (Optional) compute the hard decisions ûl , l = 0, 1, . . . , h− 1

CC Lab, EE, NCHU

Convolutional Codes 222

Ex: BCJR decoding of a (2,1,1) systematic recursive Convolutional

code on an AWGN channel

Figure 16: (2,1,1) systematic feedback encoder

CC Lab, EE, NCHU

Convolutional Codes 223

Figure 17: decoding trellis for the (2,1,1) encoder

CC Lab, EE, NCHU

Convolutional Codes 224

γ∗
0(S0, S0) = −

1

2
La(u0) +

1

2
r0 · v0

=
1

2
(−0.8− 0.1) = −0.45

γ∗
0(S0, S1) = +

1

2
La(u0) +

1

2
r0 · v0

=
1

2
(0.8 + 0.1) = 0.45

γ∗
1(S0, S0) = −

1

2
La(u0) +

1

2
r0 · v0

=
1

2
(−1.0 + 0.5) = −0.25

γ∗
1(S0, S1) = +

1

2
La(u0) +

1

2
r0 · v0

=
1

2
(1.0− 0.5) = 0.25

CC Lab, EE, NCHU

Convolutional Codes 225

γ∗
1(S1, S1) = −

1

2
La(u1) +

1

2
r1 · v1

=
1

2
(−1.0− 0.5) = −0.75

γ∗
1(S1, S0) = +

1

2
La(u1) +

1

2
r1 · v1

=
1

2
(1.0 + 0.5) = 0.75

γ∗
2(S0, S0) = −

1

2
La(u2) +

1

2
r2 · v2

=
1

2
(−1.8 + 1.1) = 0.35

γ∗
2(S0, S1) = +

1

2
La(u2) +

1

2
r2 · v2

=
1

2
(−1.8 + 1.1) = −0.35

CC Lab, EE, NCHU

Convolutional Codes 226

γ∗
2(S1, S1) = −

1

2
La(u2) +

1

2
r2 · v2

=
1

2
(1.8 + 1.1) = 1.45

γ∗
2(S1, S0) = +

1

2
La(u2) +

1

2
r2 · v2

=
1

2
(−1.8− 1.1) = −1.45

γ∗
3(S0, S0) =

+1

2
r3 · v3

=
1

2
(−1.6 + 1.6) = 0

γ∗
3(S1, S0) =

+1

2
r3 · v3

=
1

2
(1.6 + 1.6) = 1.6

CC Lab, EE, NCHU

Convolutional Codes 227

compute the log-domain forward metrics

α∗
1(S0) = [γ∗

0(S0, S0) + α∗
0(S0)] = −0.45 + 0 = −0.45

α∗
1(S1) = [γ∗

0(S0, S1) + α∗
0(S0)] = 0.45 + 0 = 0.45

α∗
2(S0) = max∗{[γ∗

1(S0, S0) + α∗
1(S0)], [γ

∗
1(S1, S0) + α∗

1(S1)]}

= max∗{[(−0.25) + (−0.45)], [(0.75) + (0.45)]}

= max∗(−0.70, +1.20) = 1.20 + ln(1 + e−|−1.9|) = 1.34

α∗
2(S1) = max∗{[γ∗

1(S0, S1) + α∗
1(S0)], [γ

∗
1(S1, S1) + α∗

1(S1)]}

= max∗(−0.20,−0.30) = −0.20 + ln(1 + e−|0.1|) = 0.44

CC Lab, EE, NCHU

Convolutional Codes 228

compute the log-domain backward metrics

β∗
3(S0) = [γ∗

3 (S0, S0) + β∗
4(S0)] = 0 + 0 = 0

β∗
3(S1) = [γ∗

3 (S1, S0) + β∗
4(S0)] = 1.60 + 0 = 1.60

β∗
2(S0) = max∗{[γ∗

2 (S0, S0) + β∗
3(S0)], [γ

∗
2(S0, S1) + β∗

3(S1)]}

= max∗{[(0.35) + (0)], [(−0.35) + (1.60)]}

= max∗(0.35, 1.25) = 1.25 + ln(1 + e−|−0.9|) = 1.59

β∗
2(S1) = max∗{[γ∗

2 (S1, S0) + β∗
3(S0)], [γ

∗
2(S1, S1) + β∗

3(S1)]}

= max∗(−1.45, 3.05) = 3.05 + ln(1 + e−|−4.5|) = 3.06

β∗
1(S0) = max∗{[γ∗

1 (S0, S0) + β∗
2(S0)], [γ

∗
1(S0, S1) + β∗

2(S1)]}

= max∗(1.34, 3.31) = 3.44

β∗
1(S1) = max∗{[γ∗

1 (S1, S0) + β∗
2(S0)], [γ

∗
1(S1, S1) + β∗

2(S1)]}

= max∗(2.34, 2.31) = 3.02

CC Lab, EE, NCHU

Convolutional Codes 229

Finally compute the APP L-values for the three information bits

L(u0) = [β
∗
1 (S1) + γ

∗
0 (S0, S1) + α

∗
0(S0)] − [β

∗
1 (S0) + γ

∗
0 (S0, S0) + α

∗
0(S0)]

= (3.47) − (2.99) = +0.48

L(u1) = max
∗
{[β

∗
2 (S0) + γ

∗
1 (S1, S0) + α

∗
1(S1)], [β

∗
2 (S1) + γ

∗
1 (S0, S1) + α

∗
1(S0)]}

−max
∗
{[β

∗
2 (S0) + γ

∗
1 (S0, S0) + α

∗
1(S0)], [β

∗
2 (S1) + γ

∗
1 (S1, S1) + α

∗
1(S1)]}

= max
∗
[(2.79), (2.86)] − max

∗
[(0.89), (2.76)]

= (3.52) − (2.90) = +0.62

L(u2) = max
∗
{[β

∗
3 (S0) + γ

∗
2 (S1, S0) + α

∗
2(S1)], [β

∗
3 (S1) + γ

∗
2 (S0, S1) + α

∗
2(S0)]}

−max
∗
{[β

∗
3 (S0) + γ

∗
2 (S0, S0) + α

∗
2(S0)], [β

∗
3 (S1) + γ

∗
2 (S1, S1) + α

∗
2(S1)]}

= max
∗
[(−1.01), (2.59)] − max

∗
[(1.69), (3.49)]

= (2.62) − (3.64) = −1.02

The hard-decision outputs of the BCJR decoder for the three

information bits:

û = (+1, +1,−1)

CC Lab, EE, NCHU

Convolutional Codes 230

EX:BCJR decoding of a (2,1,2) Nonsystematic
Convolutional code on a DMC

Assume a binary-input, 8-ary output DMC with transition

probabilities p(r
(j)
l |v

(j)
l) given by the following table:

v
(j)
l \ r

(j)
l 01 02 03 04 14 13 12 11

0 0.434 0.197 0.167 0.111 0.058 0.023 0.008 0.002

1 0.002 0.008 0.023 0.058 0.111 0.167 0.197 0.434

CC Lab, EE, NCHU

Convolutional Codes 231

Let u = (u0, u1, u2, u3, u4, u5) denote the input vector of length

K = h + m = 6 and v = (v0, v1, v2, v3, v4, v5) the codeword length

N = nK = 12

p(ul = 0) =

⎧⎨
⎩ 2/3, l = 0, 1, 2, 3 (informationbits)

1, l = 4, 5 (terminationbits)

The information bits are not equally likely

The received vector is given by

r = (1401, 0413, 1404, 0414, 0412, 0102)

CC Lab, EE, NCHU

Convolutional Codes 232

Figure 18: decoding trellis for the (2,1,2) code with K=6 and N=12

CC Lab, EE, NCHU

Convolutional Codes 233

compute the (probability-domain) branch metrics

γ0(S0, S0) = p(u0 = 0)p(1401|00) = (2/3)p(14|0)p(01|0)

= (2/3)(0.058)(0.434) = 0.01678

γ0(S0, S1) = p(u0 = 1)p(1401|11) = (1/3)p(14|1)p(01|1)

= (1/3)(0.111)(0.002) = 0.000074

... =
...

CC Lab, EE, NCHU

Convolutional Codes 234

Figure 19: branch metric values γl(S
′, S)

CC Lab, EE, NCHU

Convolutional Codes 235

compute the (probability-domain) normalized forward metrics

α1(S0) = γ0(S0, S0)α0(S0) = (0.01678)(1) = 0.01678

α1(S1) = γ0(S0, S1)α0(S0) = (0.000074)(1) = 0.000074

a1 = α0(S0) + α1(S1) = 0.01678 + 0.000074 = 0.016854

A1(S0) = α1(S0)/a1 = (0.01678)/(0.016854) = 0.9956

A1(S1) = 1−A1(S0) = 1− 0.9956 = 0.0044

... =
...

CC Lab, EE, NCHU

Convolutional Codes 236

Figure 20: normalized forward metric values αl(S)

CC Lab, EE, NCHU

Convolutional Codes 237

compute the (probability-domain) normalized backward metrics

β5(S0) = γ5(S0, S0)β6(S0) = (0.0855)(1) = 0.0855

β5(S2) = γ5(S2, S0)β6(S0) = (0.000016)(1) = 0.000016

b5 = β5(S0) + β5(S2) = 0.0855 + 0.000016 = 0.085516

B5(S0) = β5(S0)/b5 = (0.0855)/(0.085516) = 0.9998

B5(S2) = 1−B5(S0) = 1− 0.9998 = 0.0002

... =
...

CC Lab, EE, NCHU

Convolutional Codes 238

Figure 21: normalized backward metric values βl(S
′)

CC Lab, EE, NCHU

Convolutional Codes 239

compute the APP L-value

L(u0) = ln{
B1(S1)γ0(S0, S1)A0(S0)

B1(S0)γ0(S0, S0)A0(S0)
}

= ln{
(0.8162)(0.000074)(1)

(0.1838)(0.01678)(1)
} = −3.933

L(u1) = ln{
B2(S1)γ1(S0, S1)A1(S0) + B2(S3)γ1(S1, S3)A1(S1)

B2(S0)γ1(S0, S0)A1(S0) + B2(S2)γ1(S1, S2)A1(S1)
}

= ln{
(0.2028)(0.003229)(0.9956) + (0.5851)(0.006179)(0.0044)

(0.1060)(0.001702)(0.9956) + (0.1060)(0.0008893)(0.0044)
}

= +1.311

L(u2) = −1.234

L(u3) = −8.817

û = (û0, û1, û2, û3) = (0, 1, 1, 0)

CC Lab, EE, NCHU

Convolutional Codes 240

Suboptimal decoding: sequential decoding

CC Lab, EE, NCHU

Convolutional Codes 241

Suboptimum Decoding Of Convolutional Code

The Viterbi and BCJR decoding are not achievable in practice at

rates close to capacity. This is because the decoding effort is fixed

and grows exponentially with constraint length, and thus only short

constraint length codes can be used.

CC Lab, EE, NCHU

Convolutional Codes 242

The ZJ Algorithm

1. Load the stack with the origin node in the tree,whose metric is

taken to be zero

2. Compute the metric of the successors of the top path in the stack

3. Delete the top path from the stack

4. Insert the new paths from the stack and rearrange the stack in

order of decreasing metric values

5. If the top in the stack ends at a terminal node in the tree, stop.

Otherwise, return to step 2

CC Lab, EE, NCHU

Convolutional Codes 243

ex:

The code tree for the (3, 1, 2) feed forward encoder with

G(D) =
(

1 + D 1 + D2 1 + D + D2
)

is shown below, and the information sequence of length h = 5.

CC Lab, EE, NCHU

Convolutional Codes 244

CC Lab, EE, NCHU

Convolutional Codes 245

Bit Metric For BSC

For a BSC with transition probability p, p(rl = 0) = p(rl = 1) = 1/2

for all l, and the bit metrics are given by

M(rl|vl) =

⎧⎨
⎩ log22p−R rl
= vl

log22(1− p)−R rl = vl

CC Lab, EE, NCHU

Convolutional Codes 246

ex: For R=1/3 and p=0.1,

M(rl|vl) =

⎧⎨
⎩ −2.65

+0.52

vi \ ri 0 1

0 +1 -5

1 −5 +1

CC Lab, EE, NCHU

Convolutional Codes 247

Consider the application of the ZJ algorithm to the code tree, assume

a codeword is transmitted from this code over a BSC with p = 0.10,

and the sequence

r = (010, 010, 001, 110, 100, 101, 011)

is received Using the integer metric table, we shown the contents of

the stack aftereach step of the algorithm and decoding process in

next slide

CC Lab, EE, NCHU

Convolutional Codes 248

CC Lab, EE, NCHU

Convolutional Codes 249

CC Lab, EE, NCHU

Convolutional Codes 250

CC Lab, EE, NCHU

Convolutional Codes 251

CC Lab, EE, NCHU

Convolutional Codes 252

The final decoding path is

v̂ = (111, 010, 001, 110, 100, 101, 011)

corresponding to the information sequence û = (11101)

Note that v̂ disagrees with r in only 2 positions, the fraction of error

in r is 2/21 = 0.095 which is roughly equal to the channel transition

probability of p = 0.10

CC Lab, EE, NCHU

Convolutional Codes 253

The situation is somewhat different when the received sequence r is

very noisy.

From the same code, channel, matric table assume that the sequence

r = (110, 110, 110, 111, 010, 101, 101)

is received. The contents of the stack after each step of the algorithm

are shown:

CC Lab, EE, NCHU

Convolutional Codes 254

CC Lab, EE, NCHU

Convolutional Codes 255

The algorithm terminates after 20 decoding steps, and the final

decoded path is

v = (111, 010, 110, 011, 111, 101, 011)

corresponding to the information sequence

û = (11001)

CC Lab, EE, NCHU

Convolutional Codes 256

In this example, the sequence decoder performs 20 computations,

whereas the Viterbi algorithm would again require only 15

computations

This is because the number of computations performed by a

sequential decoder is a random variable, the computation load of the

Viterbi algorithm is fixed.

The fraction of errors in the received sequence r is 7/21 = 0.333

which is much greater than the channel transition probability of

p = 0.10

CC Lab, EE, NCHU

Trellises of Codes

Communication & Coding Laboratory

Dept. of Electrical Engineering,
National Chung Hsing University

E-mail: g9364106@mail.nchu.edu.tw

Trellises for Linear Block Codes 1

• Chapter 8: Trellises of Codes

1. Introduction

2. Finite-state machine model and trellis representation of a code

3. Bit-level trellises for binary linear block codes

4. State labeling

5. Structural properties of bit-level trellises

6. State labeling and trellis construction based on the

parity-check matrix

7. Trellis complexity and symmetry

8. Trellis sectionalization and parallel decomposition

9. Cartesian product

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 2

Introduction

• Constructing and representing codes with graphs have long been

interesting problems to many coding theorist.

⇒ The most commonly known graphical representation of a code

is the trellis representation.

• A code trellis diagram is simply an edge–labeled directed graph

in which every path represents a codeword (or a code sequence

for a convolutional code).

• This representation makes it possible to implement maximum

likelihood decoding (MLD) of a code with a significant reduction

in decoding complexity.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 3

The history of trellis representation

• Trellis representation was first introduced by Forney in 1973 as a

means of explaining the decoding algorithm for convolutional

codes devised by Viterbi.

• Trellis representation of linear block codes was first presented by

Bahl, Cocke, Jelinek, and Raviv in 1974.

• In 1988, Forney showed that some block codes, such as RM codes

and some lattice codes, have relatively simple trellis structures.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 4

Finite-state machine model

• Let Γ = 0,1,2,... denote the entire encoding interval (or span)

that consists of a sequence of encoding time instants.

• A unit encoding interval:

The interval between two consecutive time instants.

• During this unit encoding interval, code symbols are generated at

the output of the encoder based on
⎧⎨
⎩

The current input information symbols

The past information symbols that are stored in the memory

, according to a certain encoding rule.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 5

• A specific state of the encoder at that time instant is defined by

the information symbols stored in the memory at any encoding

time define .

• The state of the encoder at time-i is defined by those information

symbols, stored in the memory at time–i, that affect the current

output code symbols during the interval from time–i to

time–(i + 1) and future output code symbols.

• A state transition:

As new information symbols are shifted into the memory some

old information symbols may be shifted out of the encoder, and

there is a transition from one state to another state.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 6

• With there definitions of a state and a state transition, the

encoder can be modeled as a finite-state machine, as shown in

Figure 1.

Figure 1: A finite-state machine model for an encoder with finite

memory.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 7

Trellis diagram

• The dynamic behavior of the encoder can be graphically

represented by a state diagram in time.

• It consists of levels of nodes and edges connecting the nodes of

one level to the nodes of the next level.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 8

Figure 2: Trellis representation of a finite-state encoder.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 9

Trellis representation of a code

• This state transition, in the trellis diagram, is represented by a

directed edge (commonly called a branch). Each branch has a

label.

• The set of allowable states at a given time instant i is called the

state space of the encoder at time-i, denoted by Σi(C).

• A state si ∈ ∑
i(C) is said to be reachable if there exists an

information sequence that takes (drives) the encoder from the

initial state s0 to the state si at time-i.

• In the trellis, every node at level-i for i ∈ Γ is connected by a

path (defined as a sequence of connected branches) from the

initial node.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 10

• Every node in the trellis has at least one incoming branch except

for the initial node and at least one outgoing branch except for a

node that represents the final state of the encoder at the end of

the entire encoding interval.

• In this graphical representation of a code, there is a one-to-one

correspondence between a codeword (or code sequence) and a

path in the code trellis.

• Every path in the code trellis represents a codeword.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 11

• For i ∈ Γ, let

Ii: The input information block

Oi: The output code block

, during the interval from time-i to time-(i + 1).

• The dynamic behavior of the encoder for a linear code is

governed by two functions:

1. Output function:

Oi = fi(si, Ii),

where fi(si, Ii)�=fi(si, I
′

i) for Ii �=I
′

i .

2. State transition function:

si+1 = gi(si, Ii),

where si ∈ Σi(C) and si+1 ∈ Σi+1(C) are called the current

and next states, respectively.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 12

• A code trellis is said to be time-invariant if there exists a finite

period {0, 1, ..., v} ⊂ Γ and a state space Σ(C) such that

1. Σi(C) ⊂ Σ(C) for 0 < i < v, and Σi(C) = Σ(C) for i ≥ v

2. fi = f and gi = g for all i ∈ Γ.

• In general:

Block code A trellis diagram is time-varying.

convolutional code A trellis diagram is usually time-invariant.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 13

Figure 3: A time-varying trellis diagram for a block code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 14

Figure 4: A time-invariant trellis diagram for a convolutional code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 15

Bit-level trellis for binary block codes

• Definition:

An n-section bit-level trellis diagram for a binary linear block code C of

length n, denote by T , is a directed graph consisting of n + 1 levels of nodes

(called states) and branches (also called edges) such that:

1. For 0 ≤ i ≤ n, the nodes at the ith level represent the states in the state

space
∑

i(C) of the encoder E(C) at time-i.

– At time-0 (or the zeroth level) there is only one node, denoted by s0,

called the initial node (or state).

– At time-n (or the nth level), there is only one node, denoted by sf (or

sn), called the final node (or state).

2. For 0 ≤ i < n, a branch in the section of the trellis T between the ith

level and the (i + 1)th level (or time–i and time–(i + 1)) connects a state

si ∈
∑

i(C) to a state si+1 ∈
∑

i+1(C) and is labeled with a code bit vi

that represents the encoder output in the bit interval from time-i to

time–(i + 1). A branch represents a state transition.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 16

3. Except for the initial node, every node has at least one, but no more

than two, incoming branches. Except for the final node, every node has

at least one, but no more than two, outgoing branches. The initial

node has no incoming branches. The finial node has no

outgoing branches. Two branches diverging from the same node have

different labels; they represent two different transitions from the same

starting state.

4. There is a directed path from the initial node s0 to the final node sf

with a label sequence (v0, v1, . . . , vn−1) if and only if (v0, v1, . . . , vn−1) is

a codeword in C.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 17

• To Define

ρi(C) � log2 |Σi(C)|,
which is called the ”state space dimension at time-i”.

• We simply use ρi for ρi(C) for simplicity. The sequence

(ρ0,ρ1,...,ρn) is called the state space dimension profile.

• Example:

From Figure 3 we find that the state space complexity profile and

the state space dimension profile for the (8, 4) RM code are

(1, 2, 4, 8, 4, 8, 4, 2, 1) and (0, 1, 2, 3, 2, 3, 2, 1, 0), respectively.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 18

• To facilitate the code trellis construction, we arrange the

generator matrix G in a special form.

Let v = (v0, v1, . . . , vn−1) be a nonzero binary n-tuple.

• The first nonzero component of v is called the leading 1 of v, and

the last nonzero component of v is called the trailing 1 of v.

• A generator matrix G for C is said to be in trellis oriented form

(TOF) if the following two conditions hold:

1. The leading 1 of each row of G appears in a column before the

leading 1 of any row below it.

2. No two rows have their trailing 1’s in the same column.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 19

• Any generator matrix for C can be put in TOF by two steps of

Gaussian elimination.a

• Example:

Consider the first-order RM code of length 8, RM(1,3). It is an

(8, 4) code with the following generator matrix b:

G =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎦

.

aNote that a generate matrix in TOF is not necessarily in systematic form.
bIt is not in TOF.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 20

By interchanging the second and the fourth rows, we have

G
′ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

We add the fourth row of the matrix to the first, second, and

third rows. These additions result in the following matrix in

TOF:

GTOGM =

⎡
⎢⎢⎢⎢⎢⎣

g0

g1

g2

g3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

where TOGM stands for trellis oriented generator matrix.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 21

• Let g = (g0, g1, . . . , gn−1) be a row in GTOGM for code C.

1. Let Ø(g) = (i, i + 1, . . . , j) denote the smallest index interval

that contains all the nonzero components of g.

2. This say that gi = 1 and gj = 1, and they are the leading and

trailing 1’s of g, respectively.

3. This interval Ø(g) = (i, i + 1, . . . , j) is called the digit (or bit)

span of g.

4. We define the time span of g, denoted by τ(g), as the

following time interval: τ(g) � (i, i + 1, . . . , j + 1).

5. For simplicity, we write Ø(g) = [i, j], and τ(g) = [i, j + 1], we

define the active time span of g, denoted by τa(g), as the time

interval. τa(g) � [i + 1, j], for j > i.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 22

• We define the active time span of g, denote by τa(g), as the time

interval

τa(g)
Δ
=

⎧⎨
⎩

[i + 1, j], for j > i

Ø(empty set), for j = i.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 23

• Example: To consider the TOGM of the (8, 4) RM code

GTOGM =

⎡
⎢⎢⎢⎢⎢⎣

g0

g1

g2

g3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

– We can find that the bit spans of the rows are Ø(g0) = [0, 3],

Ø(g1) = [1, 6], Ø(g2) = [2, 5], Ø(g3) = [4, 7].

– The time spans of the rows are τ(g0) = [0, 4], τ(g1) = [1, 7],

τ(g2) = [2, 6], τ(g3) = [4, 8].

– The active time spans of the rows are τa(g0) = [1, 3],

τa(g1) = [2, 6], τa(g2) = [3, 5], τa(g3) = [5, 7].

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 24

• Now, we give a mathematical formulation of the state space of

the n-section bit-level trellis for an (n, k) linear code C over

GF (2) with a TOGM GTOGM.

• At time-i, 0 ≤ i ≤ n, we divide the rows of GTOGM into three

disjoint subsets:

1. Gp
i consists of those rows of GTOGM whose bit spans are

contained in the interval [0, i − 1].

2. Gf
i consists of those rows of GTOGM whose bit spans are

contained in the interval [i, n − 1].

3. Gs
i consists of those rows of GTOGM whose active time spans

contain time-i.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 25

• Example: To consider the TOGM of the (8, 4) RM code

GTOGM =

⎡
⎢⎢⎢⎢⎢⎣

g0

g1

g2

g3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

At time–2, we find that

Gp
2 = φ, Gf

2 = {g2, g3} , Gs
2 = {g0, g1} ,

where φ denotes the empty set. At time–4, we find that

Gp
4 = {g0} , Gf

4 = {g3} , Gs
4 = {g1, g2} ,

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 26

• Let Ap
i , A

f
i , and As

i denote the subsets of information bits,

a0, a1, . . . , ak−1, that correspond to the rows of Gp
i , Gf

i , and Gs
i ,

respectively.

• The bits in As
i are the information bits stored in the encoder

memory that affect the current output code bit vi and the future

output code bits beyond time-i. There information bits in As
i

hence define a state of the encoder E(C) for the code C at time-i.

• Let ρi � |As
i | = |Gs

i |.
Then, there are 2ρi distinct states in which the encoder E(C) can

reside at time–i; each state is defined by a specific combination of

the ρi
a information bits in As

i
b.

aThe parameter ρi is the dimension of the state space
∑

i(C).
bThe set As

i is called the state defining information set at time–i

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 27

Table 1: Partition of the TOGM of the (8, 4) RM code

Time i G
p
i G

f
i Gs

i ρi

0 φ {g0, g1, g2, g3} φ 0

1 φ {g1, g2, g3} {g0} 1

2 φ {g2, g3} {g0, g1} 2

3 φ {g3} {g0, g1, g2} 3

4 {g0} {g3} {g1, g2} 2

5 {g0} φ {g1, g2, g3} 3

6 {g0, g2} φ {g1, g3} 2

7 {g0, g1, g2} φ {g3} 1

8 {g0, g1, g2, g3} φ φ 0

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 28

• For 0 ≤ i < n, suppose the encoder E(C) is in state si ∈ Σi(C).

From time-i to time-(i + 1), E(C) generates a code bit vi and

moves from state si to a state si+1 ∈ Σi+1(C).

• Let

Gs
i = g

(i)
1 , g

(i)
2 , ..., g(i)

ρi

and

As
i = a

(i)
1 , a

(i)
2 , . . . , a(i)

ρi
,

where ρi = |As
i | = |Gs

i |. The current state si of the encoder is

defined by a specific combination of the information bits in As
i .

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 29

• Let g∗ denote the row in Gf
i whose leading 1 is at bit position i.

Let g∗i denote the ith component of g∗. Then, g∗i = 1.

• Let a∗ denote the information bit that corresponds to row g∗.

• The output code bit vi generated during the bit interval between

time-i and time-(i + 1) is given by

vi = a∗ + Σρi

l=1a
(i)
l · g(i)

l,i ,

where g
(i)
l,i is the ith component of g

(i)
l in Gs

i .

• Note that the information bit a∗ begins to affect the output of

the encoder E(C) at time-i. For this reason, bit a∗ is regarded as

the current input information bit.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 30

• The output code bit vi can have two possible values depending

on the current input information bit a∗.

• Suppose there is no such row g∗ in Gf
i . Then, the output code

bit vi at time-i is given by

vi = Σρi

l=1a
(i)
l · g(i)

l,i .

that is, a∗ = 0 (this is called a dummy information bit).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 31

• Example: To consider the TOGM of the (8, 4) RM code

GTOGM =

⎡
⎢⎢⎢⎢⎢⎣

g0

g1

g2

g3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

– From Table 1 we find that at time–2, G
p
2 = φ, G

f
2 = {g2, g3}, and

Gs
2 = {g0, g1}. Therefore, As

2 = {a0, a1}, the information bit a0 and

a1 define the state of the encoder at time–2, and there are four

distinct state defined by four combinations of values of a0 and a1,

{00, 01, 10, 11}.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 32

– We also find that g∗ = g2. Hence, the current input information bit

at time–2 is a∗ = a2. The current output code bit v2 is given by

v2 = a2 +a0 · g02 + a1 · g12

= a2 +a0 · 1 + a1 · 1

= a2 +a0,

where a2 denotes the current input.

– For every state defined by a0 and a1, v2 has two possible values

depending on a2. In the trellis there are two branches diverging

from each state at time–2, as shown in Figure 3.

– Now, consider time–3. For i = 3, we find that G
p
3 = φ, G

f
3 = {g3},

and Gs
3 = {g0, g1, g2}. Therefore, As

3 = {a0, a1, a2}, and the

information bits in As
3 define eight states at time–3, as shown in

Figure 3.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 33

– There is no row g∗ in G
f
3 with leading 1 at bit position i = 3.

Hence, we set the current input information bit a∗ = 0. The

output code bit v3 is given by vi = Σρi
l=1a

(i)
l · g

(i)
l,i ,

v3 = a0 · g03 + a1 · g13 + a2 · g23

v3 = a0 · 1 + a1 · 1 + a2 · 1

= a0 + a1 + a2

.

– In the trellis, there is only one branch diverging from each of the

eight states, as shown in Figure 3.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 34

• Let g0 denote the row in Gs
i whose trailing 1 is at bit position-i,

that is, the ith component g0
i of g0 is the last nonzero component

of g0 a.

• Let a0 be the information bit in As
i that corresponds to row g0.

Then, at time–(i + 1),

Gs
i+1 =

(
Gs

i \ {g0}) ∪ {g∗}

and

As
i+1 = (As

i \ {a0}) ∪ {a∗}
The information bits in As

i+1 define the state space Σi+1(C) at

time-(i + 1).

aNote that this row g0 may not exist.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 35

• Now, we want to construct the (i + 1)th section from time-i to

time-(i + 1). The state space Σi(C) is known. The (i + 1)th

section is constructed as follows:

1. Determine Gs
i+1 and As

i+1. Form the state space Σi+1(C) at

time-(i + 1).

2. For each state si ∈Σi(C), determine its state transition(s)

based on the change from As
i to As

i+1. Connect si to its

adjacent state(s) in Σi+1(C) by branches.

3. For each state transition, determine the output code bit vi

from the output function of vi = a∗ + Σρi

l=1a
(i)
l · g(i)

l,i or

vi = Σρi

l=1a
(i)
l · g(i)

l,i , and label the corresponding branch in the

trellis with vi.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 36

• Example: To consider the TOGM of the (8, 4) RM code

GTOGM =

⎡
⎢⎢⎢⎢⎢⎣

g0

g1

g2

g3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

– Suppose the trellis for this code has been constructed up to time–4.

At this point, we find from Table 1 that Gs
4 = {g1, g2}. The state

space
∑

4(C) is defined by As
4 = {a1, a2}. There are four states at

time–4, which are determined by the four combinations of a1 and

a2 : {(0, 0), (0, 1), (1, 0), (1, 1)}.

– To construct the trellis section from time–4 to time–5, we find that

there is no row g0 in Gs
4 = {g1, g2}, but there is a row g∗ in

G
f
4 = {g3}, which is g3.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 37

– Therefore, at time–5, we have

G
s
5 = {g1, g2, g3}

and

A
s
5 = {a1, a2, a3}.

The state space
∑

5(C) is then defined by the three bits in As
5.

The eight states in
∑

5(C) are defined by the eight combinations of

a1, a2, , and a3 :

{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

– Suppose the current state s4 at time–4 is defined by (a1, a2). Then

the next state at time–5 is either the state s5 defined by

(a1, a2, a3 = 0) or the state s′5 defined by (a1, a2, a3 = 1). The

output code bit v4 is given by

v4= a3 +a1 · 1 + a2 · 1.

which has two values depending on whether the current input bit

a3 is 0 or 1.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 38

– Connecting each state at time–4 to its two adjacent states at

time–5 by branches and labeling each branch with the

corresponding code bit v4 for either a3 = 0 or a3 = 1, we complete

the trellis section from time–4 to time–5. To construct the next

trellis section from time–5 to time–6, we first find that there is a

row g0 in Gs
5 = {g1, g2, g3}, which is g2, and there is no row g∗ in

G
f
5 = φ. Therefore,

G
s
6 = G

s
5 {g2} = {g1, g3},

and

A
s
6 = {a1, a3}.

– From the change from As
5 to As

6, we find that two states defined by

(a1, a2 = 0, a3) and (a1, a2 = 1, a3) at time–5 move into the same

state defined by (a1, a3) at time–6.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 39

– The two connecting branches are labeled with

v5= 0 +a1 · 0 + (a2 = 0) · 1 + a3 · 1,

and

v5= 0 +a1 · 0 + (a2 = 1) · 1 + a3 · 1,

respectively, where 0 denotes the dummy input. This complete

the construction of the trellis section from time–5 to time–6.

Continue with this construction process until the trellis terminates

at time–8.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 40

State labeling

• In a code trellis, each state is labeled by a fixed sequence (or a

given name).

• This labeling can be accomplished by using a k-tuple l(s) with

components corresponding to the k information bits, a0, a1,...,

ak−1, in a message.

• At time–i, all the components of l(s) are set to zero except for

the components at the positions corresponding to the

information bits in As
l = {a(i)

1 , a
(i)
2 , . . . , a

(i)
ρi }.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 41

• Example:

Consider the (8,4) code given in before Example. At time–4, the

state-defining information set is As
4 = {a1, a2}.

– There are four states corresponding to four combinations of

a1 and a2. Therefore, the label for each of these four states is

given by (0, a1, a2, 0).

– At time–5, As
5 = {a1, a2, a3}, and there are eight states. The

label for each of these eight states is given by (0, a1, a2, a3).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 42

• The trellis construction procedure:

Suppose the trellis T has been constructed up to section-i. At this

point, Gs
i , As

i , and
∑

i(C) are known. The (i + 1)th section is

constructed as follows:

1. Determine Gs
i+1 and As

i+1 from Gs
i+1 =

(
Gs

i \ {g
0}

)
∪ {g∗} and

As
i+1 = (As

i \ {a
0}) ∪ {a∗}.

2. Form the state space
∑

i+1(C) at time–(i + 1) and label each state

in
∑

i+1(C) based on As
i+1. The state in

∑
i+1(C) form the nodes

of the code trellis T at the (i + 1)th level.

3. For each state si ∈
∑

i(C) at time–i, determined its transition(s)

to the state(s) in
∑

i+1(C) based on the information bits a∗ and

a0. For each transition from a state si ∈
∑

i(C) to a state

si+1 ∈
∑

i+1(C), connect the state si to the state si+1 by a branch

(si, si+1).

4. For each state transition (si, si+1), determine the output code bit

vi and label the branch (si, si+1) with vi.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 43

• Example: To consider the TOGM of the (8, 4) RM code

GTOGM =

⎡
⎢⎢⎢⎢⎢⎣

g0

g1

g2

g3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

– For 0 ≤ i ≤ 8, we determined the submatrix Gs
i and the

state-defining information set As
i as listed in Table 2.

– From As
i we form the label for each state in

∑
i(C) as shown in

Table 2. The state transitions from time–i to time–(i + 1) are

determined by change from As
i to As

i+1.

– Following the trellis construction procedure given described, we

obtain the 8-section trellis diagram for the (8.4) RM code as shown

in Figure 5. Each state in the trellis is labeled by a 4-tuple.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 44

i Gs
i a∗ a0 As

i State label

0 φ a0 − φ (0000)

1 {g0} a1 − {a0} (a0000)

2 {g0, g1} a2 − {a0, a1} (a0a100)

3 {g0, g1, g2} − a0 {a0, a1, a2} (a0a1a20)

4 {g1, g2} a3 − {a1, a2} (0a1a20)

5 {g1, g2, g3} − a2 {a1, a2, a3} (0a1a2a3)

6 {g1, g3} − a1 {a1, a3} (0a10a3)

7 {g3} − a3 {a3} (000a3)

8 φ − − φ (0000)

Table 2: State–defining sets and labels for the 8–section

trellis for (8, 4) RM code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 45

Figure 5: The 8–section trellis diagram for (8, 4) RM code with state

labeling by the state–defining information set.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 46

• Let (ρ0, ρ1, . . . , ρn) be the state space dimension profile of the

trellis. We define

ρmax(C)
Δ
= max

0≤i≤n
ρi,

which is simply the maximum state dimension of the trellis.

• Because ρi = |Gs
i | = |As

i | for 0 ≤ i ≤ n, and Gs
i is a submatrix of

the generator matrix of C, we have

ρmax(C) ≤ k.

• For each state si ∈
∑

i(C), we form a ρmax(C)–tuple, denote by

l(si), in which the first ρi components are simply a
(i)
1 , a

(i)
2 , . . . ,

a
(i)
ρi , and the remaining ρmax(C) − ρi components are set to 0;

that is,

l(si) � (a
(i)
1 , a

(i)
2 , . . . , a(i)

ρi
, 0, 0, . . . , 0).

Then, l(si) is the label for the state si.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 47

• Example:

For the (8, 4) RM code, the state space dimension profile of its

8–section trellis is (0, 1, 2, 3, 2, 3, 2, 1, 0).

– Hence, ρmax(C) = 3. Using 3 bits for labeling the states as

described previously, we give the state labels in Table 3.

– Compared with the state labeling given in before example, 1

bit is saved.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 48

i As
i State label

0 φ (000)

1 {a0} (a000)

2 {a0, a1} (a0a10)

3 {a0, a1, a2} (a0a1a2)

4 {a1, a2} (a1a20)

5 {a1, a2, a3} (a1a2a3)

6 {a1, a3} (a1a30)

7 {a3} (a300)

8 φ (000)

Table 3: State labeling for the (8, 4) RM code

using ρmax(C) = 3 bits.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 49

• Example:

Consider the second-order RM code of length 16.

It is a (16, 11) code with a minimum distance of 4. We obtain the
following TOGM:

GTOGM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 50

– From this TOGM, we easily find the state space dimension

profile, (0, 1, 2, 3, 3, 4, 4 , 4, 3, 4, 4, 4, 3, 3, 2, 1, 0).

– The maximum state space dimension is ρmax(C) = 4.

– We can use 4 bits to label the trellis states.

The state-defining information sets and state labels at each time

instant are given in Table 4, shown in Figure 6.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 51

i Gs
i a∗ a0 As

i State label

0 φ a0 − φ (0000)

1 {g0} a1 − {a0} (a0000)

2 {g0, g1} a2 − {a0, a1} (a0a100)

3 {g0, g1, g2} a3 a0 {a0, a1, a2} (a0a1a20)

4 {g1, g2, g3} a4 − {a1, a2, a3} (a1a2a30)

5 {g1, g2, g3, g4} a5 a2 {a1, a2, a3, a4} (a1a2a3a4)

6 {g1, g3, g4, g5} a6 a1 {a1, a3, a4, a5} (a1a3a4a5)

7 {g3, g4, g5, g6} − a4 {a3, a4, a5, a6} (a3a4a5a6)

8 {g3, g5, g6} a7 − {a3, a5, a6} (a3a5a60)

9 {g3, g5, g6, g7} a8 a6 {a3, a5, a6, a7} (a3a5a6a7)

10 {g3, g5, g7, g8} a9 a5 {a3, a5, a7, a8} (a3a5a7a8)

11 {g3, g7, g8, g9} − a7 {a3, a7, a8, a9} (a3a7a8a9)

12 {g3, g8, g9} a10 a3 {a3, a8, a9} (a3a8a90)

13 {g8, g9, g10} − a9 {a8, a10} (a8a9a100)

14 {g8, g10} − a8 {a10} (a8a1000)

15 {g10} − a10 φ (a10000)

16 φ − − φ (0000)

Table 4: State-defining sets and labels for the 16–section

trellis for the (16, 11) RM code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 52

Figure 6: 16–section trellis for the (16, 11) RM code with state

labeling by the state-defining information sets.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 53

Structure properties of trellises

• For 0 ≤ i < j < n, let Ci,j denote the subcode of C consisting of

those codewords in C whose nonzero components are confined to

the span of j − i consecutive positions in the set

{i, i + 1, . . . , j − 1}.
• Clearly, every codeword in Ci,j is of the form

(0, 0, . . . , 0︸ ︷︷ ︸
i

, vi, vi+1, . . . , vj−1, 0, 0, . . . , 0︸ ︷︷ ︸
n−j

),

and Ci,j is a subcode of C.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 54

• The two subcodes C0,i and Ci,n are spanned by the rows in Gp
i

and Gf
i , respectively, and they are called the past and future

subcodes of C with respective to time–i.

• For a linear code B, let k(B) denote its dimension. Then,

k(C0,i) = |Gp
i |, and k(Ci,n) = |Gf

i |.
• The dimension of the state space

∑
i(C) at time-i is

ρi(C) = |Gs
i |,

then, it follows from the definitions of Gs
i , Gp

i , and Gf
i that

ρi(C) = k − |Gp
i | − |Gf

i |
= k − k(C0,i) − k(Ci,n).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 55

• The direct–sum of C0,i and Ci,n
a, denote by C0,i ⊕ Ci,n, is a

subcode of C with dimension k(C0,i) + k(Ci,n). The partition

C/(C0,i ⊕ Ci,n) consists of

|C/(C0,i ⊕ Ci,n)| = 2k−k(C0,i)−k(Ci,n)

= 2ρi

• Let Si denote the subspace of C that is spanned by the rows in

the submatrix Gs
i . Then, each codeword in Si is given by

v = (a
(i)
1 , a

(i)
2 , . . . , a(i)

ρi
) · Gs

i

= a
(i)
1 · g(i)

1 + a
(i)
2 · g(i)

2 + . . . + a(i)
ρi

· g(i)
ρi

where a
(i)
l ∈ As

i for 1 ≤ l ≤ ρi.
b

aNote that C0,i and Ci,n have only the all zero codeword 0 in common.

b
We see that there is one-to-one correspondence between v and the state si ∈∑

i(C) defined by (a
(i)
1 , a

(i)
2 , . . . , a

(i)
ρi

).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 56

• It follows from the definitions of Gp
i , Gf

i , and Gs
i that

C = Si ⊕ (C0,i ⊕ Ci,n)

The 2ρi codewords in Si can be used as the representatives for

the cosets in the partition C/(C0,i ⊕ Ci,n). Therefore, Si is the

coset representative space for the partition C/(C0,i ⊕ Ci,n).

• For 0 ≤ i < j < n, let pi,j(C) denote the linear code of length

j − i obtained from C by removing the first i and last n − j

components of each codeword in C. Every codeword in pi,j(C) is

of the form

(vi, vi+1, . . . , vj−1).

This code is called a punctured(or truncated) code of C.

• Let Ctr
i,j denote the punctured code of the subcode Ci,j ; that is,

Ctr
i,j � pi,j(Ci,j)

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 57

• It follows from the structure of the TOGM GTOGM that

k(pi,j(C)) = k − k(C0,i) − k(Cj,n)

and

k(Ctr
i,j) = k(Ci,j).

Consider the punctured code p0,i(C).

• From k(pi,j(C)) = k − k(C0,i) − k(Cj,n) we find that

k(p0,i(C)) = k − k(Ci,n).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 58

State labeling and trellis construction

based on the parity-check matrix

• Consider a binary (n, k) linear block code C with a parity-check

matrix

H = [h0,h1, . . . ,hj , . . . ,hn−1] ,

where, for 0 ≤ j < n, hj denotes the jth column of H and is a

binary (n − k)-tuple.

• A binary n-tuple v = (v0, v1, . . . , vn−1) is a codeword in C if and

only if

v · HT = (0, 0, . . . , 0︸ ︷︷ ︸
n−k

).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 59

• Let 0n−k denote the all-zero (n − k)-tuple (0, 0, ..., 0).

For 0 ≤ i < n, let Hi denote the submatrix that consists of the

first i columns of H; that is,

Hi = [h0,h1, . . . ,hi−1] .

• It is clear that the rank of Hi is at most n − k; that is,

Rank(Hi) ≤ n − k.

• For each codeword c ∈ Ctr
0,i,

c · HT
i = 0n−k.

Therefore, Ctr
0,i is the null space of Hi.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 60

• Let L(s0,si) denote the set of paths in the trellis T for C that

connect the initial state s0 to a state si in the state space
∑

i(C)

at time i.

• Definition: For 0 ≤ i < n, the label of a state si ∈
∑

i(C) based

on a parity-check matrix H of C, denoted by l(si), is defined as

the binary (n − k)-tuple

l(si) � a · HT
i ,

for any a ∈ L(s0, si).

– For i = 0, Hi = φ, and the initial state s0 is labeled with the

all-zero (n − k)–tuple, 0n−k.

– For i = n, L(s0, sf) = C, and the final state sf is also labeled

with 0n−k.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 61

• For every path (v0, v1, . . . , vi−1) ∈ L(s0, si), the path

(v0, v1, . . . , vi−1, vi) obtained by concatenating (v0, v1, . . . , vi−1)

with the branch vi is a path that connects the initial state s0 to

the state si+1 through the state si.

• Hence, (v0, v1, . . . , vi−1, vi) ∈ L(s0, si+1). Then, it follows from

the preceding definition of a state label that

l(si+1) = (v0, v1, . . . , vi−1, vi) · HT
i+1

= (v0, v1, . . . , vi−1) · HT
i + vi · hT

i

= l(si) + vi · hT
i

• The foregoing expression simply says that given the label of the

starting state si, and the output code bit vi during the interval

between time–i and time–(i + 1), the label of the destination

state si+1 is uniquely determined.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 62

A procedure for constructing the n–section bit-level trellis diagram

for a binary (n, k) linear block code C by state labeling using the

parity-check matrix of the code.

The (i + 1)-section of the code trellis is constructed by taking the

following four steps:

1. Identify the special row g∗ in the submatrix Gf
i and its

corresponding information bit a∗. Identify the special row g0

in the submatrix Gs
i . Form the submatrix Gs

i+1 by including

g∗ in Gs
i and excluding g0 from Gs

i .

2. Determine the set of information bits

As
i+1 = (a

(i+1)
1 , a

(i+1)
2 , . . . , a(i+1)

ρi+1
)

that correspond to the rows in Gs
i+1. Define and label the

states in
∑

i+1(C).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 63

3. For each state si ∈
∑

i(C), form the next output vi code bit

from either vi = a∗ +
∑ρi

l=1 a
(i)
l · g(i)

l,i (if there is such a row g∗

in Gf
i at time-i) or vi =

∑ρi

l=1 a
(i)
l · g(i)

l,i (if there is such no row

g∗ in Gf
i at time-i).

4. For each possible value of vi, connect the state si to the state

si+1 ∈ ∑
i+1(C) with label

l(si+1) = l(si) + vi · hT
i .

Label the connecting branch, denoted by L(si, si+1), with vi.

This completes the construction of the (i + 1)th section of the

trellis.

Repeat the preceding steps until the entire code trellis is

constructed.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 64

• Example:

Suppose we choose the parity-check matrix as follows:

H =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎦

.

– Using this parity-check matrix for state labeling and following

the foregoing trellis construction steps, we obtain the

8–section trellis with state label shown in Figure 7.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 65

Figure 7: An 8–section trellis for the (8, 4) RM code

with state labeling by the parity–check matrix.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 66

– To illustrate the construction process, we assume that the

trellis has been completed up to time–3.

– At this instant, Gs
3 = {g0, g1 , g2} and As

3 = {a0, a1, a2} are

known. The eight states in
∑

3(C) are defined by the eight

combinations of a0, a1, and a2.

– These eight states and their labels are given in Table 5.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 67

State defined by (a0, a1, a2) State label

s
(0)
3 (000) (0000)

s
(1)
3 (001) (1010)

s
(2)
3 (010) (1001)

s
(3)
3 (011) (0011)

s
(4)
3 (100) (1011)

s
(5)
3 (101) (0001)

s
(6)
3 (110) (0010)

s
(7)
3 (111) (1001)

Table 5: Labels of the states at time–3 for the (8, 4) RM

code based on the parity-check matrix.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 68

– The submatrix H4 is

H4 =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1

0 0 0 0

0 0 1 1

0 1 0 1

⎤
⎥⎥⎥⎥⎥⎦

.

From p0,4(vj), with 0 ≤ j ≤ 3 and H4, we can determine the

labels of the four states, s
(0)
4 , s

(1)
4 , s

(2)
4 , and s

(3)
4 , in

∑
4(C),

which are given in Table 6.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 69

State defined by (a1, a2) State label

s
(0)
4 (00) (0000)

s
(1)
4 (01) (0001)

s
(2)
4 (10) (0010)

s
(3)
4 (11) (0011)

Table 6: Labels of states at time–4 for the (8, 4) RM code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 70

– Now, suppose the encoder is in the state s
(2)
3 with label

l(s
(2)
3) = (1001) at time–3.

– Because no such row g∗ exists at time i = 3, the output code

bit v3 is computed as follows:

v3 = a0 · g03 + a1 · g13 + a2 · g23

= 0 · 1 + 1 · 1 + 0 · 1
= 1.

– The state s
(2)
3 is connected to the state in

∑
4(C) with label

l(s
(2)
3) + v3 · hT

3 = (1001) + 1 · (1011)

= (0010),

which is state s
(2)
4 , as shown in Figure 8.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 71

Figure 8: State labels at the two ends of the fourth section of

the trellis for the (8, 4) RM code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 72

• State labeling based on the parity-check matrix requires n-k bits

to label each state of the trellis. Therefore, we show that

ρmax(C) ≤ min{k, n − k}.

• State labeling using ρmax(C) bits to label each state in the trellis

is the most economical labeling method.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 73

Trellis complexity and symmetry

• Trellis complexity is, in general, measured in terms of the state

and branch complexities.

• For a binary (n, k) linear block code C, ρmax(C) must satisfy the

following bound:

ρmax(C) ≤ min{k, n − k}.

This bound was first proved by Wolf. In general, this bound is

quite loose.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 74

• For example:

– To Consider the (8, 4) RM code. For this code, k = n − k = 4;

however, ρmax(C) = 3.

– The third-order RM code RM(3, 6) of length 64 is a (64, 42)

linear code. For this code, min{k, n − k} = 22; however

ρmax(C) = 14.

• We see that there is a big gap between the bound and ρmax(C);

however, for cyclic (or shortened cyclic) codes, the bound

min{k, n − k} gives the exact state complexity.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 75

• Let C⊥ denote the dual code of C.

C⊥ is an (n, n − k) linear block code. For 0 ≤ i < n, let
∑

i(C
⊥)

denote the state space of C⊥ at time-i.

• There is a one-to-one correspondence between the state in∑
i(C

⊥) and the cosets in the partition p0,i(C
⊥)/C⊥,tr

0,i , where

C⊥,tr
0,i denotes the truncation of Ctr

0,i, in the interval [0, i − 1].

Therefore, the dimension of
∑

i(C
⊥) is given by

ρi(C
⊥) = k(p0,i(C

⊥) − k(C⊥,tr
0,i).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 76

• Note that p0,i(C
⊥) is the dual code of Ctr

0,i, and C⊥,tr
0,i is the dual

code of p0,i(C). Therefore

k(p0,i(C
⊥)) = i − k(Ctr

0,i)

= i − k(C0,i)

and k(C⊥,tr
0,i) = i − k(p0,i(C)).

• It follows that ρi(C
⊥) = k(p0,i(C

⊥) − k(C⊥,tr
0,i) through

k(C⊥,tr
0,i) = i − k(p0,i(C)) that

ρi(C
⊥) = k(p0,i(C)) − k(C0,i).

Because k(p0,i(C)) = k − k(Ci,n), we have

ρi(C
⊥) = k − k(C0,i) − k(Ci,n).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 77

• From

ρi(C) = k − k(C0,i)− k(Ci,n) and ρi(C
⊥) = k − k(C0,i)− k(Ci,n),

we find that for 0 ≤ i ≤ n,

ρi(C
⊥) = ρi(C).

⇒This expression says that C and its dual code C⊥ have the

same state complexity.

• We can analyze the state complexity of a code trellis from either

the code or its dual code.

– In general, they have different branch complexities

– They have the same state complexity.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 78

• Example:

The dual code of this the first-order code RM code RM(1, 4) of

length 16. It is a (16, 5) code with a minimum distance of 8. Its

TOGM is

GTOGM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

– From this matrix, we find the state space dimension profile of

the code,

(0, 1, 2, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 2, 1, 0),

which is exactly the same as the state space dimension profile

of the trellis od the (16, 11) RM code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 79

– The state-defining information sets and state labels are given

in Table 7.

– The 16–section trellis for the code is shown in Figure 9.

– State labeling is done based on the state-defining information

sets.

– State labeling based on the parity–check matrix of the code

would require 11 bits.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 80

i Gs
i a∗ a0 As

i State label

0 φ a0 − φ (0000)

1 {g0} a1 − {a0} (a0000)

2 {g0, g1} a2 − {a0, a1} (a0a100)

3 {g0, g1, g2} − − {a0, a1, a2} (a0a1a20)

4 {g0, g1, g2} a3 − {a0, a1, a2} (a0a1a20)

5 {g0, g1, g2, g3} − − {a0, a1, a2, a3} (a0a1a2a3)

6 {g0, g1, g2, g3} − − {a0, a1, a2, a3} (a0a1a2a3)

7 {g0, g1, g2, g3} − a0 {a0, a1, a2, a3} (a0a1a2a3)

8 {g1, g2, g3} a4 − {a1, a2, a3} (a1a2a30)

9 {g1, g2, g3, g4} − − {a1, a2, a3, a4} (a1a2a3a4)

10 {g1, g2, g3, g4} − − {a1, a2, a3, a4} (a1a2a3a4)

11 {g1, g2, g3, g4} − a3 {a1, a2, a3, a4} (a1a2a3a4)

12 {g1, g2, g4} − − {a1, a2, a4} (a1a2a40)

13 {g1, g2, g4} − a2 {a1, a2, a4} (a1a2a40)

14 {g1, g4} − a1 {a1, a4} (a1a400)

15 {g4} − a4 {a4} (a4000)

16 φ − − φ (0000)

Table 7: State-defining sets and labels for the 16–section

trellis for (16, 5) RM code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 81

Figure 9: A 16-section trellis for (16, 5) RM code with state

labeling by the state-defining information set.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 82

• Let T be an n-section trellis for an (n, k) code C with state space

dimension profile (ρ0, ρ1, . . . , ρn).

• The trellis T is said to be minimal if for any other n-section

trellis T ′ for C with state space dimension profile (ρ′0, ρ
′
1, . . . , ρ

′
n)

the following inequality holds:

ρi ≤ ρ′i,

for 0 ≤ i ≤ n.

• A minimal trellis is unique within isomorphism.

• A minimal trellis results in a minimal total number of states in

the trellis. In fact, the inverse is also true: a trellis with a

minimum total number of states in a minimal trellis.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 83

• From

ρi(C) = k− | Gp
i | − | Gf

i |
= k − k(C0,i) − k(Ci,n)

we see that the state space dimension ρi at time-i depends on the

dimensions of the past and future codes,C0,i and Ci,n.

⇒ For a given code C, k(C0,i) and k(Ci,n) are fixed.

• Given an (n, k) linear code C, a permutation of the orders of the

bit (or symbol) positions result in an equivalent code C ′ with the

same weight distribution and the same error performance;

however, different permutations of bit positions may result in

different dimensions for C0,i, Ci,n and ρi at time-i.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 84

• A permutation that yields the smallest state space dimension at

every time of the code trellis is called an optimum permutation

(or bit ordering).

⇒ Optimum permutation is hard to find.

⇒ Optimum permutations for RM codes are known, but they

are unknown for other classes of codes.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 85

• The branch complexity of an n-section trellis diagram for an

(n, k) linear code C is defined as the total number of branches in

the trellis.

• An n-section trellis diagram for an (n, k) linear block code is said

to be a minimal branch (or edge) trellis diagram if it has the

smallest branch complexity.

• A minimal trellis diagram has the smallest branch complexity.

• We define

Ii(a
∗) =

⎧⎨
⎩

1, if a∗ � Af
i

2, if a∗ � Af
i

Let ε denote the total number of branches in T .

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 86

• Then

ε =

n−1∑
i=0

|
∑

i

(C)| · Ii(a
∗)

=
n−1∑
i=0

2ρi · Ii(a
∗).

For 0 ≤ i < n, 2ρi · Ii(a
∗) is simply the number of branches in the

ith section of trellis T .

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 87

• Example:

To consider the TOGM of the (8, 4) RM code

GTOGM =

⎡
⎢⎢⎢⎢⎢⎣

g0

g1

g2

g3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

.

– From Table 2 we find that

I0(a
∗) = I1(a

∗) = I2(a
∗) = I4(a

∗) = 2

and

I3(a
∗) = I5(a

∗) = I6(a
∗) = I7(a

∗) = 1.

– The state space dimension profile of the 8–section trellis for the

code is (0, 1, 2, 3, 2, 3, 2, 1, 0).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 88

– From ε =
∑n−1

i=0 2ρi · Ii(a
∗) we have

ε = 20 · 2 + 21 · 2 + 22 · 2 + 23 · 1 + 22 · 2 + 23 · 1 + 22 · 1 + 21 · 1

= 2 + 4 + 8 + 8 + 8 + 8 + 4 + 2

= 44.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 89

• Consider an (n, k) cyclic code C over GF (2) with generator

polynomial

g(X) = 1 + g1X + g2X + . . . + gn−k−1X
n−k−1 + Xn−k.

A generator matrix for this code is given in
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 g1 g2 . . . gn−k 0 0

0 g0 g1 gn−k 0 . . . 0

0 0 g0 gn−k 0 . . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0 0 gn−k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 90

• For convenience, we reproduce it here

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

g0

g1

.

.

.

gk−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 g1 g2 gn−k−1 1 0 0 . . . 0

0 1 g1 g2 gn−k−1 1 0 . . . 0

. . .

0 0 . . . 0 1 g1 g2 gn−k−1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

• We readily see that the generator matrix is already in

trellis–oriented form.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 91

• For 0 ≤ i < k, the time span of the i-row gi is

τ(gi) = [i, n − k + 1 + i].

(or the bit span φ(gi) = [i, n − k + i]). The active time spans of

all the rows have the same length, n − k.

• Now, we consider the n-section bit-level trellis for this (n, k)

cyclic code. There are two cases to be considered:

1. k > n − k.

2. k ≤ n − k.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 92

• Consider the case k > n − k, we see that the maximum state

space dimension is ρmax(C) = n− k, and the state space profile is

(0, 1, . . . , n − k − 1, n − k, . . . , n − k, n − k − 1, . . . , 1, 0)

• Consider the case k ≤ n − k, we see that the maximum state

space dimension is ρmax(C) = k, and the state space profile is

(0, 1, . . . , k − 1, k, . . . , k, k − 1, . . . , 1, 0)

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 93

• Combining the results of the preceding two cases, we conclude

that for an (n, k) cyclic code, the maximum state space

dimension is

ρmax(C) = min[k, n − k].

• This is to say that a code in cyclic form has the worst state

complexity; that is, it meets the upper bound on the state

complexity.

To reduce the state complexity of a cyclic code, a proper

permutation on the bit position is needed.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 94

• Example:

Consider the (7, 4) cyclic hamming code generated by

g(x) = 1 + X + x3.

Its generator matrix in TOF is

G =

⎡
⎢⎢⎢⎢⎢⎣

g0

g1

g2

g3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

⎤
⎥⎥⎥⎥⎥⎦

.

– By examining the generator matrix, we find that the trellis

state space dimension profile is (0, 1, 2, 3, 3, 2, 1, 0). Therefore,

ρmax(C) = 3.

– The 7-section trellis for this code is shown in Figure 10, the

state-defining information sets and the state labels are given

in Table 8.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 95

Figure 10: The 7-section trellis diagram for the (7, 4)

Hamming code with 3-bit state label.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 96

i Gs
i a∗ a0 As

i State label

0 φ a0 − φ (000)

1 {g0} a1 − {a0} (a000)

2 {g0, g1} a2 − {a0, a1} (a0a10)

3 {g0, g1, g2} a3 a0 {a0, a1, a2} (a0a1a2)

4 {g1, g2, g3} − a1 {a1, a2, a3} (a1a2a3)

5 {g2, g3} − a2 {a2, a3} (a2a30)

6 {g3} − a3 {a3} (a300)

7 φ − − φ (000)

Table 8: State–defining sets and state labels for the 8 section

trellis for (8, 4) RM code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 97

Next, we derive a special symmetry structure for trellises of some

linear block codes. This structure is quite useful for implementing a

trellis-based decoder, especially in gaining decoding speed.

• Consider the TOGM of a binary (n, k) linear block code of even

length n,

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

g0

g1

...

gk−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

g00 g01 . . . g0,n−1

g10 g11 . . . g1,n−1

...
...

. . .
...

gk−1,0 gk−1,1 . . . gk−1,n−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 98

• Suppose the TOGM G has the following symmetry property:

– For each row g in G with bit span φ(g) = [a, b], there exists a

row g
′

in G with bit span φ(g
′

) = [n − 1 − b, n − 1 − a].

– With this symmetry in G, we can readily see that for

0 ≤ i ≤ n/2, the number of rows in G that are active at

time-(n − i) is equal to the number of rows in G that are

active at time-i.

This implies that

|
∑
n−i

(C)| = |
∑

i

(C)| or ρn−i = ρi

for 0 ≤ i ≤ n/2.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 99

• We can permute the rows of G such that the resultant matrix,

denoted by G
′

, is in a reverse trellis-oriented form:

1. The trailing 1 of each row appears in a column before the

trailing 1 of any row below it.

2. No two rows have their leading 1’s in the same column.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 100

• If we rotate the matrix G
′

180◦ counterclockwise, we obtain a

matrix G” in which the ith row g”
i is simply the (k − 1− i)th row

g
′

k−1−i of G
′

in reverse ordera.

• From the foregoing, we see that G” and G are structurally

identical in the sense that φ(g”
i) = φ(gi) for 0 ≤ i < k.

• Consequently, the n–section trellis T for C has the following

mirror symmetry:

The last n/2 sections of T form the mirror image of the first n/2

sections of T (not including the path labels).

aThe trailing 1 of g
′

k−1−i
becomes the leading 1 of g”

i , and the leading 1 of g
′

k−1−i

becomes the trailing 1 of g”
i

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 101

• Example:

To consider the TOGM of the (8, 4) RM code

GTOGM =

⎡
⎢⎢⎢⎢⎢⎣

g0

g1

g2

g3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

.

– Examining the rows of GTOGM, we find that φ(g0) = [0, 3],

φ(g3) = [4, 7], and g0 and g3 are symmetrical with each other.

– Row g1 has bit span [1, 6] and is symmetrical with itself. Row

g2 has bit span [2, 5] and is also symmetrical with itself.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 102

– We obtain the following matrix in reverse trellis–oriented

form:

G
′ =

⎡
⎢⎢⎢⎢⎢⎣

g′

0

g′

1

g′

2

g′

3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0

0 1 0 1 1 0 1 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

.

– Rotating G′ 180◦ counterclockwise, we obtain the following

matrix:

G” =

⎡
⎢⎢⎢⎢⎢⎣

g”0

g”1

g”2

g”3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 103

• For the case in which n is odd, if the TOGM GTOGM of a binary

(n, k) code C has the mirror symmetry property, then the last

(n − 1)/2 sections of the n-section trellis T for C form the mirror

image of the first (n − 1)/2 sections of T .

• The trellises of all cyclic codes have mirror-image symmetry.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 104

Trellis sectionalization and parallel

decomposition

• In a bit-level trellis diagram, every time instant in the encoding

interval Γ = [0, 1, 2, . . . , n].

• It is possible to sectionalize a bit-level trellis with section

boundary locations at selected instants in Γ.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 105

• This sectionalization result in a trellis in which a branch may

represent multiple code bits, and two adjacent states may be

connected by multiple branches.

• For a positive integer v ≤ n, let

Λ � {t0, t1, t2, . . . , tv}

be a subset of v + 1 time instants in the encoding interval

Γ = {0, 1, 2, . . . , n} for an (n, k) linear block code C with

0 = t0 < t1 < t2 < . . . < tv = n.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 106

• A v-section trellis diagram for C with section boundaries at the

locations(time instants) in Λ, denoted by T (Λ), can be obtained

from the n-section trellis T by

1. To delete every state in Σt(C) for t ∈ {0, 1, ..., n} \ Λ and

every branch entering or leaving a deleted state.

2. For 1 ≤ j ≤ v, connecting a state s ∈ ∑
tj−1

to a state

s ∈ ∑
tj

by a branch with label α if and only if there is a path

with label α from state s to state s
′

in the n-section trellis T .

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 107

• In this v-section trellis, a branch connecting a state s ∈ ∑
tj−1

to

a state s
′ ∈ ∑

tj
represents (tj − tj−1) code symbols.

• The state space
∑

tj−1
(C) at time-tj−1, the state space

∑
tj

(C)

at time-tj , and all the branches between states in
∑

tj−1
(C) and

states in
∑

tj
(C), form the jth section of T (Λ).

• If the lengths of all the sections are the same, T (Λ) is said to be

uniformly sectionalized.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 108

• If the section boundary locations t0, t1, . . . , tv are chosen at the

places where ρt1 , ρt2 , . . . , ρtv−1 are small, then the resultant

v-section code trellis T (Λ) has a small state space complexity

• However, sectionalization, in general, results in an increase in

branch complexity.

It is important to properly choose the section boundary locations

to provide a good trade-off between state and branch complexities.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 109

• Example:

Consider the 16–section trellis for the (16, 11) RM code shown in

Figure 11.

– Suppose we choose v = 4 and the section boundary set

Λ = {0, 4, 8, 12, 16}.
– The result is a 4-section trellis as shown in Figure 12. Each

section is 4 bits long.

– The state space dimension profile for this 4–section trellis is

(0, 3, 3, 3, 0), and the maximum state space dimension is

ρ4,max(C) = 3.

– The trellis consists of two parallel and structurally identical

subtrellises without cross-connections between them.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 110

Figure 11: A 4–section trellis for the (8, 4) RM code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 111

Figure 12: A 4–section minimal trellis diagram T ({0, 4, 8, 12, 16})
for the (16, 11) RM code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 112

Parallel decomposition

• For long codes with large dimensions, it is very difficult to

implement any trellis-based MLD algorithm based on a full code

trellis on (an) integrated circuit(IC) chip(s) for hardware

implementation.

• Parallel decomposition:

To overcome this implementation difficulty, one possible

approach is to decompose the minimal trellis diagram of a code

into parallel and structurally identical subtrellises of smaller

dimensions without cross connections between them so that each

subtrellis with reasonable complexity can be put on a single IC

chip of reasinable size.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 113

Parallel decomposition should be done in such a way that the

maximum state space dimension of the minimal trellis of a code

is not exceeded.

• Advantages:

– Complexity:

Because all the subtrellis are structurally identical, we can

devise identical decoders of much smaller complexity to

process these subtrellises in parallel.

– Speed:

This method speeds up the decoding process.

– Implementation:

Parallel decomposition resolves wire routing problem in IC

implementation and reduces internal communication.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 114

• Suppose we choose a subcode C1 of C by removing a row g from

the GTOGM of C.

⇒ The generator matrix G1 for this subcode is G1 = GTOGM \ {g}.
• Let dim(C) and dim(C1) denote the dimensions of C and C1,

respectively.

⇒ dim(C1) = dim(C)−1 = k − 1.

• The state space dimension ρi(C) is equal to the number of rows

of G whose active time spans contain the time index i.

⇒
⎧⎨
⎩

ρi(C1) = ρi(C) − 1 for i ∈ τa(g)

ρi(C1) = ρi(C) for i /∈ τa(g)

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 115

• We define the following index set:

Imax(C)
Δ
= {i : ρi(C) = ρmax(C), for 0 ≤ i ≤ n}

• Theorem:

If there exists a row g in the GTOGM for an (n, k) linear code C

such that τa(g) ⊇ Imax(C), then the subcode C1 of C generated

by GTOGM \ {g} has a minimal trellis T1 with maximum state space

dimension ρmax(C1) = ρmax(C) − 1, and

Imax(C1) = Imax(C) ∪ {i : ρi(C) = ρmax(C) − 1, i � τa(g)}.a

a

Theorem can be applied repeatedly until either the desired level of decompo-

sition is achieved or no row in the generator matrix can be found to satisfy

the condition in Theorem.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 116

• Because G is in TOF, G1 = G \ {g} is also in TOF. If the

condition of Theorem holds, then it follows from the foregoing

that it is possible to construct a trellis for C that consists of two

parallel and structurally identical subtrellises, one for C1 and the

other for its coset C1 ⊕ g.

• Each subtrellis is a minimal trellis and has maximum state space

dimension equal to ρmax(C).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 117

• Example:

Consider the (8, 4) RM code with TOGM

GTOGM =

⎡
⎢⎢⎢⎢⎢⎣

g0

g1

g2

g3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

.

– Its state space dimension profile is (0, 1, 2, 3, 2, 3, 2, 1, 0) and

ρmax(C) = 3. The index set Imax is Imax(C) = {3, 5}.
– By examming GTOGM, we find only the second row g1, whose

active time span, τa(g1) = [2, 6], contains Imax(C) = {3, 5}.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 118

– Suppose we remove g1 from GTOGM. The resulting matrix is

G1 =

⎡
⎢⎢⎣

1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎦ ,

which generates an (8, 3) subcode C1 of the (8, 4) RM code C.

– From G1 we can construct a minimal 8–section trellis T1 for

C1, as shown in Figure 13 (the upper subtrellis).

– The state space dimension profile of T1 is (0, 1, 1, 2, 1, 2, 1, 1, 0)

and ρmax(C) = 2. Adding g1 = (01011010) to every path in

T1, we obtain the minimal 8–section trellis T ′
1 for the coset

g1 ⊕ C1, as shown in Figure 13 (the lower subtrellis).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 119

– The trellises T1 and T ′
1 form a parallel decomposition of the

minimal 8–section trellis T for the (8, 4) RM code. We see

that the state space dimension profile of T1 ∪ T ′
1 is

(0, 2, 2, 3, 2, 3, 2, 2, 0).

– Clearly, T1 ∪ T ′
1 is not a minimal 8-section trellis for the (8, 4)

RM code: however, its maximum state space dimension is still

ρmax(C) = 3.

– If we sectionalize T1 ∪ T ′
1 at locations Λ = {0, 2, 4, 6, 8}, we

obtain the minimal 4-section trellis for the code, as shown in

Figure 11.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 120

Figure 13: Parallel decomposition of the minimal 8-section trellis

for the (8, 4) RM code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 121

• Theorem:

Let GTOGM be the TOGM of an (n, k) linear block code C over

GF (2). Define the following subset of rows of GTOGM:

R(C) � {g ∈ GTOGM : τa(g) ⊇ Imax(C)}.

For any integer r with 1 ≤ r ≤| R(C) |, there exists a subcode of

Cr of C such that

ρmax(Cr) = ρmax(C) − r and dim(Cr) = dim(C) − r

if and only if there exists a subset Rr ⊆ R(C) consisting of r

rows of R(C) such that for every i with ρi(C) > ρmax(Cr), there

exist at least ρi(C) − ρmax(Cr) rows in Rr whose active time

spans contains i. The subcode Cr is generated by GTOGM \Rr, and

the set of coset representatives for C/Cr is generated by Rr.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 122

• Corollary:

In decomposing a minimal trellis diagram for a linear block code

C, the maximum number of parallel isomorphic subtrellises one

can obtain such that the total state space dimension at any time

does not exceed ρmax(C) is upper bounded by 2|R(C)|.

• Corollary:

The logarithm base-2 of the number of parallel isomorphic

subtrellises in a minimal v-section trellis with section boundary

locations in Λ = {t0, t1, t2, . . . , tv} for a binary (n, k) linear block

code C is given by the number of rows in the GTOGM whose active

time spans contain the section boundary locations, t1,t2, ..., tv−1.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 123

• Example:

To consider the (16, 11) RM code. Suppose we sectionalize the

bit–level trellis at locations in Λ = {0, 4, 8, 12, 16}. Examining

the TOGM of the code, we find only row

g3 = (0001111010001000)

whose active time span, τa(g3) = [4, 12], consider {4, 8, 12}.
Therefore, the 4-section trellis T ({0, 4, 8, 12, 16}) consists of two

parallel isomorphic subtrellises.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 124

Cartesian product

• Consider the interleaved code Cλ = C1 ∗ C2 ∗ . . . ∗ Cλ, which is

constructed by interleaving λ linear block code, C1, C2, . . . , Cλ, of

length n.

• For 1 ≤ j ≤ λ, let Tj be an n-section trellis for Cj . For 0 ≤ i ≤ n,

let
∑

i(Cj) denote the state space of Tj at time-i.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 125

• The Cartesian product of T1, T2, . . . , Tλ, denote by

Tλ � T1 × T2 × . . . × Tλ, is constructed as follows:

1. For 0 ≤ i ≤ n, form the Cartesian product of
∑

i(C1),∑
i(C2), . . . ,

∑
i(Cλ),

∑
i(C

λ) �
∑

i(C1) ×
∑

i(C2) × . . . ×
∑

i(Cλ)

= {(s
(1)
i , s

(2)
i , . . . , s

(λ)
i) : s

(j)
i ∈

∑
i(Cj) for 1 ≤ j ≤ λ}.

Then,
∑

i(C
λ) forms the state space of Tλ at time-i, i.e., the

λ-tuple in
∑

i(C
λ) form the nodes of Tλ at level-i.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 126

2. A state (s
(1)
i , s

(2)
i , . . . , s

(λ)
i) in

∑
i(C

λ) is adjacent to a state

(s
(1)
i+1, s

(2)
i+1, . . . , s

(λ)
i+1) in

∑
i+1(C

λ) if and only if sj
i is adjacent

to sj
i+1 for 1 ≤ j ≤ λ. Let lj � l(sj

i , s
j
i+1) denote the label of

the branch that connects the state sj
i to the state sj

i+1 for

1 ≤ j ≤ λ. We connect the state (s
(1)
i , s

(2)
i , . . . , s

(λ)
i) ∈ ∑

i(C
λ)

to the state (s
(1)
i+1, s

(2)
i+1, . . . , s

(λ)
i+1) ∈ Σi+1(C

λ) by a branch

that is labeled by the following λ-tuple:

(l1, l2, . . . , lλ).

This label is simply a column of the array of
⎡
⎢⎢⎢⎢⎢⎢⎣

v1,0 v1,1 . . . , v1,n−1

v2,0 v2,1 . . . , v2,n−1

..

.

vλ,0 vλ,1 . . . vλ,n−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 127

• The constructed Cartesian product Tλ = T1 × T2 × . . . × Tλ

is an n-section trellis for the interleaved code

Cλ = C1 ∗ C2 ∗ . . . ∗ Cλ

in which each section is of length λ.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 128

• Example:

Let C be the (3, 2) even parity-check code whose generator

matrix in trellis-oriented form is

GTOGM =

⎡
⎣ 1 1 0

0 1 1

⎤
⎦ .

– The 3–section bit level trellis T fot this code can easily be

constructed form GTOGM and is shown in Figure 14(a).

– Suppose the code is interleaved to a depth of λ = 2. Then, the

interleaved code C2 = C ∗ C is a (6, 4) linear code.

– The Cartesian product T × T results in 3–section trellis T 2 for

C2, as shown in Figure 14(b).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 129

Figure 14: (a) The minimal 3–section bit level trellis for (3, 2)

even parity-check code, (b) A 3–section trellis for the

interleaved (3, 2) code of depth 2.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 130

• Let C1 be an (n1, k1) linear code, and let C2 be an (n2, k2) linear

code. The product C1 × C2 is then an (n1n2, k1k2) linear block

code.

• To construct a trellis for the product code C1 × C2, we regard

the top k2 rows of the product array shown in Figure 15 as an

interleaved array with codewords from the same code C1.

• We then construct an n1-section trellis for the interleaved code,

Ck2
1 = C1 ∗ C1 ∗ ... ∗ C1︸ ︷︷ ︸

k2

using the Cartesian product. Each k2–tuple branch label in the

trellis is encoded into a codeword in C2.

• The result is an n1-section trellis for the product C1 × C2, each

section is n2–bit in length.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 131

Figure 15: Code array for the product code C1 × C2.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 132

• Example:

Let C1 and C2 both be the (3, 2) even parity-check code. Then,

the product C1 × C2 is a (9, 4) linear code with a minimum

distance 4.

– Using the Cartesian product construction method given

above, we first construct the 3–section trellis for the

interleaved code C2
1 = C1 ∗C1, which is shown in Figure 14(b).

– we encode each branch label in this trellis based on the

C2 = (3, 2) code. The result is a 3–section trellis for the

product code C1 × C2, as shown in Figure 16.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 133

Figure 16: A 3–section trellis for the product (3, 2) × (3, 2).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 134

• Let C1 and C2 be an (n, k1, d1) and an (n, k2, d2) binary linear

block code with generator matrix, G1 and G2, respectively.

• Suppose C1 and C2 have only the all-zero codeword 0 in

common; that is, C1 ∩ C2 = {0}.
• Their direct-sum, denoted by C1 ⊕ C2, is defined as follows:

C � C1 ⊕ C2 � {u + v : u ∈ C1, v ∈ C2}.

• Then, C = C1 ⊕ C2 is an (n, k1 + k2) code with minimum

distance dmin ≤ min{d1, d2} and generator matrix

G =

⎡
⎣ G1

G2

⎤
⎦ .

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 135

• Let T1 and T2 be the n-section trellis for C1 and C2, respectively.

Then, an n-section trellis T for the direct-sum code C = C1 ⊕ C2

can be constructed by taking the Cartesian product of T1 and T2.

• The formation of state spaces for T and the condition for state

adjacency between states in T are the same as for forming the

trellis for an interleaved code by taking the Cartesian product of

the trellis for the component codes. The difference is branch

labeling.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 136

• For two adjacent states(s
(1)
i , s

(2)
i) and (s

(1)
i+1, s

(2)
i+1) in T at time-i

and time-(i + 1), let lj � l(s
(j)
i , s

(j)
i+1) be the label of the branch

that connects the state s
(j)
i and the state s

(j)
i+1 for 1 ≤ j ≤ 2.

• We connect the state (s
(1)
i , s

(2)
i) and the state (s

(1)
i+1, s

(2)
i+1) with a

branch that is labeled with l1 + l2 = l(s
(1)
i , s

(1)
i+1) + l(s

(2)
i , s

(2)
i+1).

• The described product of two trellises is also known as the

Shannon product.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 137

• Example:

Let C1 and C2 be two linear block codes of length 8 generated by

G1 =

⎡
⎣ 1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

⎤
⎦

and

G2 =

⎡
⎣ 0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎦

respectively. It is easy to check that C1 ∩ C2 = {0}.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 138

The direct–sum C1 ⊕ C2 is generated by

G =

⎡
⎣ G1

G2

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

,

which is simply the TOGM for the (8, 4, 4) RM code given in

before example.

– Both G1 and G2 are TOF. Based on G1 and G2, we construct

the 8–section trellises T1 and T2 for C1 and C2 as shown in

Figure 17 and 18, respectively.

– Taking the Shannon product of T1 and T2, we obtain an

8–section trellis T1 × T2 for the direct–sum C1 ⊕ C2 as shown

in Figure 19, which is simply the 8–section minimal trellis for

the (8, 4, 4) RM code as shown in Figure 5.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 139

Figure 17: The 8–section minimum trellis for the code generate

by G1 =

⎡
⎣ 1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

⎤
⎦

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 140

Figure 18: The 8–section minimum trellis for the code generate

by G2 =

⎡
⎣ 0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎦

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 141

Figure 19: The Shannon product of the trellis of Figures 17 and 18.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 142

• The Shannon product can be generalized to construct a trellis for

a code that is a direct-sum of m linear block codes.

• For a positive integer m � 2, and 1 � j � m, let Cj be an

(N, Kj , dj) linear code.

• Suppose C1, C2, . . . , Cm satisfy the following condition: for 1 � j,

j
′

� m, and j�= j
′

,

Cj ∩ Cj
′ = {0}.

• This condition simply implies that for vj ∈ Cj with 1 � j � m,

v1 + v2 + . . . + vm = 0

if and only if v1 = v2 = . . . = vm = 0.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 143

• The direct-sum of C1, C2, . . . , Cm is defined as

C � C1 ⊕ C2 ⊕ . . . ⊕ Cm

= {v1 + v2 + . . . + vm : vj ∈ Cj , 1 ≤ j ≤ m}.

• Then, C = C1 ⊕ C2 ⊕ . . . ⊕ Cm is an (N, K, d) linear block code

with

K = K1 + K2 + . . . + Km and d ≤ min
1≤j≤m

{dj}.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 144

• Let Gj be the generator matrix of Cj for 1 ≤ j ≤ m.

Then, C = C1 ⊕ C2 ⊕ . . . ⊕ Cm is generated by the following

matrix:

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

G1

G2

...

Gm

⎤
⎥⎥⎥⎥⎥⎥⎦

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 145

• The construction of an n-section trellis T for the direct-sum

C = C1 ⊕ C2 ⊕ . . . ⊕ Cm is the same as that for the direct-sum of

two codes.

• Let (s
(1)
i , s

(2)
i , . . . , s

(m)
i) and (s

(1)
i+1, s

(2)
i+1, . . . , s

(m)
i+1) be two adjacent

states in T .

• The branch connecting (s
(1)
i , s

(2)
i , . . . , s

(m)
i) to (s

(1)
i+1, s

(2)
i+1, . . . ,

s
(m)
i+1) is labeled with

l(s
(1)
i , s

(1)
i+1) + l(s

(2)
i , s

(2)
i+1) + . . . + l(s

(m)
i , s

(m)
i+1),

where for 1 ≤ j ≤ m, l(s
(j)
i , s

(j)
i+1) is the label of the branch that

connects the state s
(j)
i and the state s

(j)
i+1 in the trellis Tj for the

jth code Cj .

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 146

• Example:

Again, we consider the (8, 4, 4) RM code generated by the

following TOGM:

G =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

.

– For 1 ≤ j ≤ 4, let Cj be the (8, 1, 4) code generated by the jth

row of G. Then, the direct–sum, C1 ⊕ C2 ⊕ C3 ⊕ C4, gives the

(8, 4, 4) RM code.

– The 8–section minimal trellises for the four component codes

are shown in Figure 20.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 147

– The Shannon products T1 × T2 and T3 × T4 generate the

trellises for C1 ⊕ C2 and C3 ⊕ C4, respectively, as shown in

figure 17 and 18.

– The Shannon product (T1 × T2) × (T3 × T4) results in the

overall trellis for the (8, 4, 4) RM code shown in Figure 19.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 148

Figure 20: The 8–section minimal trellises for

the four component codes.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 149

• Let T denote the minimal n-section trellis for C, and ρi(C)

denote the state space dimension of T at time-i for 0 ≤ i ≤ n.

Then,

ρi(C) ≤
m∑

j=1

ρi(Cj).

• If the equality holds for 0 ≤ i ≤ n, then the Shannon product T1

× T2 ×. . .× Tm is the minimal n-section trellis for the direct-sum

C = C1 ⊕ C2 ⊕ . . . ⊕ Cm.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 150

• For 1 ≤ j ≤ m, let Tj be the minimal N -section trellis for the

component code Cj .

Then, the Shannon product T1 × T2 × . . . × Tm is the minimal

N -section trellis for C if and only if the following condition

holds: for 0 ≤ i ≤ N , 1 ≤ j, j
′ ≤ m, and j �= j

′

,

p0,i(Cj) ∩ p0,i(Cj
′) = {0}.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 151

• Example:

Suppose we sectionalize each of the two 8-section trellises of

Figures 17 and 18 into 4 sections, each of length 2. The resultant

4–section trellises are shown in Figure 21, and the Shannon

product of these two 4–section trellises gives a 4–section trellis,

as shown in Figure 22, which is the same as the 4-section trellis

for the (8, 4, 4) RM code shown in Figure 11.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 152

Figure 21: The 4–section trellises for the trellises of

Figures 17 and 18.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 153

Figure 22: A 4–section trellises for the (8, 4, 4) RM code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 154

14.1 THE VITERBI DECODING ALGORITHM

• The decoder processes the trellis from the initial state to the final

state serially, section by section.

• The survivors at each level of the code trellis are extended to the

next through the connecting branches between the two levels.

• The paths that enter a state at the next level are compared, and

the most probable path is chosen as the survivor.

• This process continues until the end of the trellis is reached.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 155

• The number of computations required to decode a received

sequence can be enumerated easily.

• In a bit-level trellis, each branch represents one code bit, and

hence a branch metric is simply a bit metric.

• Let Na denote the total number of additions required to process

the trellis T. Then,

Na =

n−1∑
i=0

2ρi .Ii(a
∗) (1)

where 2ρi is number of states at the ith level of the code trellis

T, a∗ is the current input information bit at time-i, and

Ii(a
∗) = 1, if a∗ �Af

i

Ii(a
∗) = 2, if a∗ �Af

i

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 156

• If there is an oldest information bit a0 to be shifted out from the

encoder memory at time-i, then there are two branches entering

each state si+1 of the trellis at time-i + 1.

• Define

Ji(a
0) = 0, if a0 �As

i

Ji(a
0) = 1, if a0 �As

i ,

where As
i is the state-defining information set at time-i.

• Let Nc denote the total number of comparisons required to

determine the survivors in the decoding process. Then,

Nc =

n−1∑
i=0

2ρi+1 .Ji(a
0). (2)

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 157

• The total number of computations(additions and comparisons)

required to decode a received sequence based on the bit-level

trellis T using the Viterbi decoding algorithm is Na + Nc.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 158

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 159

• The total number of computations(additions and comparisons)

required to process a sectionalized trellis T(Λ) depends on the

choice of the section boundary location set Λ = [t0, t1, ...,tv].

• A sectionalization of a code trellis that given the smallest total

number of computations is called an ”optimal sectionalization”

for the code.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 160

• For any two integers x and y with 0 ≤ x < y ≤ n, the section

from time-x to time-y in any sectionalized trellis T(Λ) with x,y ∈
Λ and x+1, x+2, ..., y-1 � Λ is identical.

• Let ϕ(x,y) denote the number of computations of the Viterbi

decoding algorithm to process the trellis section from time-x to

time-y. Let ϕmin(x,y) denote the smallest number of

computations of the Viterbi decoding algorithm to process the

trellis section from time-x to time-y.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 161

• It follows from the definitions of ϕ(x,y) and ϕmin(x,y) that

ϕmin(0, y) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min{ϕ(0, y), min{0<x<y}{ϕmin(0, x) + ϕ(x, y)}},
for1 < y ≤ n

ϕ(0, 1),

fory = 1.

For every y ∈ {1, 2, ...,n}, ϕmin(0,y) can be computed as follows.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 162

• Example: Consider the second-order RM code of length 64 that

is a (64,22) code with minimum Hamming distance 16. We find

that the boundary location ser Λ = {0, 8, 16, 32, 48, 56, 61, 63,

64} results in an optimum sectionalization. With this optimum

sectionalization, ϕmin(0,64) is 101786.

With the section boundary location set Λ = {0, 8, 16, 24, 32, 40,

48, 56, 64}, requires a total of 119935 computations.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 163

14.4.1 The MAP Algorithm Based on a Bit-level Trellis

• Assume BPSK transmission. Let v = (v0, v1, ..., vn−1) be a

codeword and c = (c0, c1, ..., cn−1) be its corresponding bipolar

signal sequence, where for 0 ≤ i < n, ci = 2vi − 1 = ±1. Let r =

(r0, r1, ..., rn−1) be the soft-decision received sequence.

• Log-likelihood ratio(LLR), which is defined as

L(vi) � log
p(vi = 1|r)
p(vi = 0|r) , (3)

where p(vi|r) is the a posteriori probability of vi given the

received sequence r.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 164

• The estimated code bit vi is then given by the sign of its LLR as

follows:

vi =

⎧⎨
⎩

1, ifL(vi) > 0,

0, ifL(vi) ≤ 0.
(4)

the larger the |L(vi)|, the more reliable the hard decision of vi.

Therefore, L(vi) represents the soft information associated with

the decision on vi.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 165

• In the n-section bit-level trellis T for C, let Bi(C) denote the set

of all branches (si, si+1) that connect the state in state space

Σi(C) at time-i and the states in state space Σi+1(C) at

time-(i + 1).

• Let B0
i (C) and B1

i (C) denote the two disjoint subsets of Bi(C)

that correspond to code vi=0 and vi=1, respectively. Clearly,

Bi(C) = B0
i (C) ∪ B1

i (C) (5)

for 0 ≤ i < n. Based on the structure of linear codes,

|B0
i (C)| = |B1

i (C)|.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 166

• For (s
′

, s) ∈ Bi(C), we define the joint probabilities

λi(s
′

, s) � p(si = s
′

, si+1 = s, r) (6)

for 0 ≤ i < n. Then, the joint probabilities p(vi, r) for vi = 0 and

vi = 1 are given by

p(vi = 0, r) =
∑

(s′
,s)∈B0

i (C)

λi(s
′

, s), (7)

p(vi = 1, r) =
∑

(s′
,s)∈B1

i (C)

λi(s
′

, s). (8)

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 167

• In fact, the LLR of vi can be computed directly from the joint

probabilities p(vi = 0, r) and p(vi = 1, r), as follows:

L(vi) � log
p(vi = 1, r)

p(vi = 0, r)
. (9)

for 0 ≤ j ≤ l ≤ n. let rj,l denote the following section of the

received sequence r:

rj,l � (rj , rj+1, ..., rl−1) (10)

• For any state s ∈ ∑
i(C), we define the probabilities

αi(s) � p(si = s, r0,i) (11)

βi(s) � p(ri,n|si = s). (12)

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 168

• It follows from the definitions of αi(s) and βi(s) that

α0(s0) = βn(sf) = 1. (13)

For any two adjacent states s
′

and s with s
′ ∈ ∑

i+1(C), we

define the probability

γi(s
′

, s) � p(si+1 = s, ri|si = s
′

) (14)

= p(si+1 = s|si = s
′

)p(ri|(si, si+1) = (s
′

, s)).

For a memoryless channel, it follows from the definitions of

λi(s
,, s), αi(s), βi(s), and γi(s

′

, s) that for 0 ≤ i < n,

λi(s
,, s) = αi(s

′

)γi(s
′

, s)βi+1(s). (15)

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 169

• Then, it follows from (7), (8), and (15) that we can express (9) as

follows:

L(vi) � log

∑
(s′

,s)∈B1
i (C) αi(s

′

)γi(s
′

, s)βi+1(s)∑
(s′

,s)∈B0
i (C) αi(s

′)γi(s
′ , s)βi+1(s)

. (16)

• For a state s ∈ ∑
i(C), let Ω

(c)
i−1(s) and Ω

(d)
i+1(s) denote the sets of

states in
∑

i−1(C) and in
∑

i+1(C), respectively, that are

adjacent to s, as shown in Figure 14.9.

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 170

• Then αi(s) and βi(s) can be expressed as follows:

1. For 0 ≤ i ≤ n,

αi(s) =
∑

s
′∈Ω

(c)
i−1(s)

p(si−1 = s
′

, si = s, ri−1, r0,i−1) (17)

=
∑

s
′∈Ω

(c)
i−1(s)

αi−1(s
′

)γi−1(s
′

, s);

2. For 0 ≤ i ≤ n,

βi(s) =
∑

s
′∈Ω

(d)
i+1(s)

p(ri, ri−1,n, si+1 = s
′ |si = s) (18)

=
∑

s
′∈Ω

(d)
i+1(s)

γi(s, s
′

)βi+1(s
′

).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 171

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 172

• The state transition probability γi(s
′

, s) depends on the

probability distribution of the information bits and the channel.

Assume that each information bit is equally likely to be 0 or 1.

Then, all the states in
∑

i(C) are equiprobable, and the

transition probability

p(si+1 = s|si = s
′

) =
1

Ω
(d)
i+1(s

′)
(19)

For an AWGN channel with zero mean and two-sided power

spectral density N0

2 , the conditional probability

p(ri|(si, si+1) = (s
′

, s)) =
1√
πN0

exp{−(ri − ci)
2

N0
}, (20)

where ci = 2vi - 1, and vi is the code bit on the branch(s
′

, s).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 173

• We can use

wi(s
′

, s) � exp{−(ri − ci)
2

N0
} (21)

to replace γi(s
′

, s) in computing αi(s), βi(s), λi(s
′

, s), p(vi = 1, r),

and p(vi = 0, r). We call wi(s
′

, s) the weight of the branch (s
′

,s).

• Consequently, For each state s ∈ ∑
i+1(C) compute and store

αi+1(s) =
∑

s
′∈Ω

(c)
i (s)

αi(s
′

)ωi(s
′

, s). (22)

βi(s) =
∑

s
′∈Ω

(d)
i+1(s)

ωi(s, s
′

)βi+1(s
′

). (23)

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 174

• Then, to carry out the MAP decoding algorithm, use the

following three steps:

1. Perform the forward recursion process to compute the forward

state probabilities, αi(s)
,s, for 0 ≤ i ≤ n.

2. Perform the backward recursion process to compute the

backward state probabilities, βi(s)
,s, for 0 ≤ i ≤ n.

3. Decoding is also performed during the backward recursion. As

soon as the probabilities βi+1(s)
,s for all state s ∈ ∑

i+1(C) have

been computed, evaluate the probabilities λi(s
′

, s),s for all

branches (s
′

, s) ∈ Bi(C).

Department of Electrical Engineering, National Chung Hsing University

Trellises for Linear Block Codes 175

• From (7) and (8) compute the joint probabilities p(vi = 0, r) and

p(vi = 1, r). Then, compute the LLR of vi from (9) and decode

vi based on the decision rule given by (4).

Department of Electrical Engineering, National Chung Hsing University

Factor Graphs

Coding and Communication Laboratory

Dept. of Electrical Engineering,
National Chung Hsing University

Factor Graphs 1

• Chapter 9: Factor Graphs

1. Introduction

2. Factor graphs

3. An example

4. Sum product algorithm

5. Code realization: behavior and probability modeling

6. Trellis decoding for trellis-based realization

7. Iterative decoding for LDPC, turbo, and RA codes

CC Lab., EE, NCHU

Factor Graphs 2

Reference

1. Kschischang, Factor graphs and sum-product algorithm

2. Kschischang, Codes defined on graphs

3. Wiberg, Codes and iterative decoding on general graphs

4. Wiberg, Codes and decoding on general graphs

5. Forney, Codes and graphs: normal realizations

6. Forney, Codes on Graphs: News and Views

7. Tanner, A recursive approach to low complexity codes

8. Loeliger, An introduction to factor graphs

9. Schlegel, Trellis and turbo coding: chapter 8

CC Lab., EE, NCHU

Factor Graphs 3

Introduction

CC Lab., EE, NCHU

Factor Graphs 4

CC Lab., EE, NCHU

Factor Graphs 5

1. A factor graph is a graphical representation of any function, in

particular for a complicated global function which is a product of

some simple local functions.

In other words, a factor graph expresses how a global function of

many variables factors into a product of local functions of a

subset of some variables.

f(x1, x2, x3, x4, x5)

= fA(x1) · fB(x2) · fc(x1, x2, x3) · fD(x3, x4) · fE(x3, x5).

CC Lab., EE, NCHU

Factor Graphs 6

2. The sum product algorithm operated on the factor graph

attempts to computer (1) exact marginal functions associated

with the global function when the factor graph is cycle free or (2)

almost exact marginal function with low complexity iterative

processing when the factor graph has cycles.

CC Lab., EE, NCHU

Factor Graphs 7

3. For coding, factor graphs provide a nice graphical description

of any realization of codes and the sum product algorithms

represent the optimal or near optimal decoding of codes.

4. For any linear code C (block or convolutional codes), we can

associate C with at least two realizations and its corresponding

factor graphs:

• one based on the parity check matrix of C,

(check-based realization: Tanner factor graph with cycles)

• the other based on the trellis of C.

(trellis-based realization: Wiberg factor graph without cycles).

5. We can then apply the sum product decoding algorithms on

these two factor graphs.

CC Lab., EE, NCHU

Factor Graphs 8

check realization and its factor graph

The binary linear code C[6, 3, 3] = {x ∈ F 6
2 : H · x = 0} with

H =

⎡
⎢⎢⎣

1 0 1 1 0 0

1 1 0 0 1 0

0 1 1 0 0 1

⎤
⎥⎥⎦

[(x1, x2, . . . , x6) ∈ C] (a complicated function)

= [x1 ⊕ x3 ⊕ x4 = 0] · [x1 ⊕ x2 ⊕ x5 = 0] · [x2 ⊕ x3 ⊕ x6 = 0]

CC Lab., EE, NCHU

Factor Graphs 9

[(x1, x2, . . . , x6) ∈ C] (a complicated function)

= [x1 ⊕ x3 ⊕ x4 = 0] · [x1 ⊕ x2 ⊕ x5 = 0] · [x2 ⊕ x3 ⊕ x6 = 0]

This factor graph is also called a Tanner graph.

The factor graph for a given code based on a r × n H has r check

nodes and n symbol nodes.

CC Lab., EE, NCHU

Factor Graphs 10

For a binary code, we have simple parity check nodes and

binary-valued symbol nodes (bit nodes).

The factor graph is not unique since a linear code has many

parity check matrices associated with it.

The factor graph with parity check matrices for C[6, 3, 3] is in

general not cycle free and supports suboptimal iterative decoding

with low complexity.

We can combined these three simple check nodes into a single

complex global (6, 3) check node whose factor graph is now cycle

free and support optimal noniterative decoding with high

complexity.

CC Lab., EE, NCHU

Factor Graphs 11

• (a) A factor graph with cycles: three simple (4, 3, 2) single parity

check with iterative decoding

• (b) A cycle-free factor graph: a complicated global (7, 4, 3)

Hamming check with optimum decoding

CC Lab., EE, NCHU

Factor Graphs 12

A r × n parity check matrix with constant ρ � n row weights

and constant γ � r column weights, i.e., a factor graph in which

every check node has degree ρ and every symbol node has degree

γ, is called a regular (γ, ρ) LDPC code.

A (3, 4) regular LDPC code with n = 12 and r = 9.

CC Lab., EE, NCHU

Factor Graphs 13

trellis realization and its factor graph

The same C[6, 3, 3] linear code with trellis and factor graph:

This factor graph is also called a Wiberg graph.

CC Lab., EE, NCHU

Factor Graphs 14

[(x1, x2, . . . , x6) ∈ C, (s0, s1, . . . , s6) ∈ S] = [(s0, x1, s1) ∈ T1] ·
[(s1, x2, s2) ∈ T2] · [(s2, x3, s3) ∈ T3] · [(s3, x4, s4) ∈ T4] ·
[(s4, x5, s5) ∈ T5] · [(s5, x6, s6) ∈ T6] · [(s6, x7, s7) ∈ T7]

E.g., T2 = {(0, 0, 00), (0, 1, 10), (1, 0, 11), (1, 1, 01)}

Besides the n symbol nodes and n trellis-section check nodes, we

also have n + 1 state nodes.

The state nodes are not binary-valued. For a good code, the

number of states is prohibitively large.

CC Lab., EE, NCHU

Factor Graphs 15

The factor graph based on the trellis of C is cycle free but also

not unique since there are many trellises realizations of a code

even though the ordering of the codeword bits is fixed.

Since the minimal trellis of C always exists for fixed ordering, the

corresponding factor graph for the minimal trellis is unique.

The problem of finding an optimal minimal trellis among all

permutations of bit positions is extremely difficult. Right now,

only Reed Muller codes of natural ordering with optimal minimal

trellis have been found.

We can also consider the tailbiting trellises for C whose factor

graph is with one cycle.

Finding a good tailbiting trellis for C is a very active research.

CC Lab., EE, NCHU

Factor Graphs 16

6. Many Shannon capacity approaching codes, such as turbo codes,

LDPC codes, RA codes, are all well understood as codes defined

on factor graph:

(a) Turbo codes (1993): Berrou

(b) LDPC codes (1963): Gallager

(c) RA codes (1998): McEliece

CC Lab., EE, NCHU

Factor Graphs 17

A factor graph of LDPC codes with random permutation Π

CC Lab., EE, NCHU

Factor Graphs 18

A factor graph of turbo codes with random permutation Π

CC Lab., EE, NCHU

Factor Graphs 19

A factor graph of RA codes with random permutation

CC Lab., EE, NCHU

Factor Graphs 20

7. Many decoding algorithms, such as BCJR, SOVA, Viterbi, and

iterative decoding for turbo codes and LDPC codes, can all be

viewed as the specific instances of sum product algorithm.

8. Beside coding, many other known algorithms in AI and signal

processing can also be viewed as instances of sum product

algorithm that operates by passing messages in the factor graph.

CC Lab., EE, NCHU

Factor Graphs 21

9. Factor graphs are bipartite graphs:

The nodes (vertices) of factor graphs are divided into two groups

such that there are no edges (branches) connections inside each

group, but only edges connected between nodes in different

groups.

10. In the case of factor graphs for coding, these groups are

(a) variable nodes (symbol nodes, visible nodes, bit nodes)

(b) auxiliary nodes (state nodes, hidden nodes, latent nodes)

(c) function nodes (constraints nodes, factor nodes, check nodes)

Each node can be thought of a processor doing the calculation of

the messages and each edge is a channel of passing the messages

in two directions.

CC Lab., EE, NCHU

Factor Graphs 22

Algebraic vs. Graphic coding

• Algebraic coding =⇒ coding theory

• Graphic coding =⇒ coding practice

• Algebraic coding and Graphic coding are two important

disciplines in error correcting codes.

• Coding theory and coding practice are indispensable subject in

communication engineering.

• More connection and twists between algebraic coding (coding

theory) and graphic coding (coding practice) are expected and

need to be explored.

CC Lab., EE, NCHU

Factor Graphs 23

History

• In 1981, Tanner introduced bipartite graphs to describe any

linear block code with r × n parity check matrix H, in particular

for regular low density parity check codes with constant column

and row weight.

• The bipartite graph of codes has n codeword bit nodes as one

group and r parity check nodes as the other group, representing

parity check constraints. The edge is connected from the i check

node to the j bit node iff hi,j = 1.

• Tanner also presented the fundamentals of two iterative decoding

on graphs, i.e., the min-sum and sum-product algorithms.

CC Lab., EE, NCHU

Factor Graphs 24

• In 1995, Wiberg et al. introduced analogous graphs for any codes

with trellis structure by adding hidden state variables to

Tanner’s graphs.

• In 1999, Aji and McEliece present an equivalent definition:

generalized distributive law (GDL).

• In 2001, Kschischang et al. introduced factor graph notations.

• In 2001, Forney introduced the normal graphs.

CC Lab., EE, NCHU

Factor Graphs 25

• The artificial intelligence community also developed graphical

methods of solving probabilistic inference problems, termed

probability propagation.

• Pearl presented an algorithm in 1986 under the name belief

propagation in Bayesian Networks, for use in acyclic or

cycle-free graphs.

• Fact: many algorithms used in digital communications and

signal processing are all special instances of a more general

message-passing algorithm, the sum-product algorithm,

operating on factor graphs.

CC Lab., EE, NCHU

Factor Graphs 26

Factor vs. Normal graphs

• A realization of a code/system is a mathematical

characterization of the code/system.

• Given a code, we can have at least two different realizations of

the code, i.e., the check realization and the trellis realization.

• For each realization, we can associate it with different graphs,

e.g., the factor graphs and the normal graphs.

• For coding, factor graphs by Kschischang and normal graphs by

Forney are two different graphical representations of any

realization of a code C.

CC Lab., EE, NCHU

Factor Graphs 27

• The normal graph replaces the symbol nodes by an edge of

degree 1 and the state nodes by an edge of degree 2.

• We can easily transform a factor graph into a normal graph and

vice versa.

• For a beginner, we suggest him to understand the factor graphs

first.

• For an expert, you might learn the factor and normal graphs

simultaneously.

• It seems that the normal graphs is more natural than factor

graph in coding society.

CC Lab., EE, NCHU

Factor Graphs 28

Factor graphs

CC Lab., EE, NCHU

Factor Graphs 29

Factor graphs

• Let x = (x1, x2, . . . , xn) be a collection of variables.

– Each xi takes on values in Ai, 1 ≤ i ≤ n, usually |Ai| < ∞.

– xi could be visible or hidden nodes.

– For check-based factor graph, Ai = F2, 1 ≤ i ≤ n.

– For trellis-based factor graph, besides Ai = F2 for visible bit

node xi, we could have a state space As = F ks

2 , where ks is

the state dimension of the s-th state space for hidden state

node xs.

CC Lab., EE, NCHU

Factor Graphs 30

• Let g(x) = g(x1, . . . , xn) be a real-valued function of these

variables.

– I.e., g(x) a function with domain

S = A1 × A2 × . . . × An

and codomain R.

– The domain S of g is also called the configuration space and

each element of S is a particular configuration of g.

– We can compute n marginal functions gi(x), i.e., for each a ∈ Ai,

the value of gi(a) is obtained by summing the value of global

function g(x1, . . . , xn) over all configurations of the variables

which have xi = a.

CC Lab., EE, NCHU

Factor Graphs 31

• Let g be a function of three variables x1, x2, and x3, then the

“summary for x2” is denoted by∑
∼{x2}

g(x1, x2, x3) :=
∑

x1∈A1

∑
x3∈A3

g(x1, x2, x3).

• Therefore, the i-th marginal function is denoted by

gi(xi) :=
∑

∼{xi}

g(x1, . . . , xn).

• Assuming that g(x) can be factored into some local functions and

with the help of distributive law of product operation over sum

operation, we are seeking an efficient algorithm operate on the

factor graph of g(x) to compute gi(xi).

CC Lab., EE, NCHU

Factor Graphs 32

• A complicated global function g(x1, . . . , xn) can be factored into

a product of several simple local functions, each having some

subset of {x1, . . . , xn} as arguments:

g(x1, . . . , xn) =
∏
j∈J

fj(Xj)

where Xj is a subset of {x1, . . . , xn}, and fj(Xj) is the j-th

function having the elements of Xj as arguments.

CC Lab., EE, NCHU

Factor Graphs 33

Definition. A factor graph is a bipartite graph that expresses the

structure of the factorization g(x1, . . . , xn) =
∏

j∈J fj(Xj).

A factor graph has a variable node for each variable xi, a factor node

for each local function fj , and an edge-connecting variable node xi

to factor node fj if and only if xi is an argument of fj .

CC Lab., EE, NCHU

Factor Graphs 34

• More precisely, given a global function g(x) = g(x1, . . . , xn)

factored into some local functions fE(xE), E ∈ Q

g(x1, . . . , xn) =
∏

E∈Q

fE(xE),

a factor graph of g(x) is a bipartite graph with vertex set S ∪ Q

and edge set {{i, E} : i ∈ S, E ∈ Q, i ∈ E}, where S={variable

nodes} and Q={function nodes}.

CC Lab., EE, NCHU

Factor Graphs 35

Example: g(x1, x2, x3, x4) = fA(x1)fB(x1, x2, x3)fC(x3, x4)fD(x3)

1

g

3 42

2

31

4

fDfCfBfA

S = {x1, x2, x3, x4} and Q = {fA, fB , fC , fD}

CC Lab., EE, NCHU

Factor Graphs 36

Notations

• In coding, it is preferred to separate the variable nodes into

symbol and state nodes and call the function nodes as constraint

or check nodes.

• In other words, we have three nodes: symbol, state, and check

nodes in coding application.

• The edge is connected from the i-th check node to the k-th

symbol node or the j-th state node if the i-th constraint node is

involved with the k-th symbol and the j-th state nodes.

CC Lab., EE, NCHU

Factor Graphs 37

• Then the extended code (full behavior) is the set of all

symbol/state configurations satisfying all local constraints.

• The code (partial behavior) is the symbol configurations

(codewords) that appears as part of symbol/state configurations

in the extended code.

CC Lab., EE, NCHU

Factor Graphs 38

• In factor graphs, symbol, state, and check nodes are three

different nodes and can be thought as processors doing the

calculation of the message.

CC Lab., EE, NCHU

Factor Graphs 39

• In normal graphs, we only have check nodes which purely do the

computation; symbol edges are purely for input/output and state

edges are purely for message passing.

CC Lab., EE, NCHU

Factor Graphs 40

An example

CC Lab., EE, NCHU

Factor Graphs 41

�

�

�

�Example 1 (A Simple Factor Graph)

Let g(x) be a function of five variables, and suppose that g(x)

can be expressed as a product

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)

·fD(x3, x4)fE(x3, x5),

where J = {A, B, C, D, E}, XA = {x1}, XB = {x2},
XC = {x1, x2, x3}, XD = {x3, x4}, and XE = {x3, x5}.

CC Lab., EE, NCHU

Factor Graphs 42

Figure 1: A factor graph for

g(x) = fA(x1) · fB(x2) · fC(x1, x2, x3) · fD(x3, x4) · fE(x3, x5).

CC Lab., EE, NCHU

Factor Graphs 43

Expression trees

• Now, we can compute the first marginal function g1(x1) as

g1(x1) = fA(x1)

(∑
x2

fB(x2)

(∑
x3

fC(x1, x2, x3)

·

(∑
x4

fD(x3, x4)

) (∑
x5

fE(x3, x5)

)))

or, in summary notation

g1(x1) = fA(x1) ×
∑

∼{x1}

⎛
⎝fB(x2)fC(x1, x2, x3) ×

⎛
⎝ ∑

∼{x3}

fD(x3, x4)

⎞
⎠

×

⎛
⎝ ∑

∼{x3}

fE(x3, x5)

⎞
⎠

⎞
⎠ .

CC Lab., EE, NCHU

Factor Graphs 44

• Similarly, we find that

g3(x3) =

⎛
⎝ ∑

∼{x3}

fA(x1)fB(x2)fC(x1, x2, x3)

⎞
⎠

×

⎛
⎝ ∑

∼{x3}

fD(x3, x4)

⎞
⎠ ×

⎛
⎝ ∑

∼{x3}

fE(x3, x5)

⎞
⎠ .

• In computer science, arithmetic expressions like the right-hand

sides of g1(x1) and g3(x3) are often represented by ordered

rooted trees, here called expression trees.

• The operators shown in these figures are the function product

and the summary, having various local functions as their

arguments.

CC Lab., EE, NCHU

Factor Graphs 45

Figure 3: (a) A tree representation for g1(x1).

(b) The factor graph with x1 as root.

CC Lab., EE, NCHU

Factor Graphs 46

Figure 4: (a) A tree representation for g3(x3).

(b) The factor graph with x3 as root.

CC Lab., EE, NCHU

Factor Graphs 47

• When a factor graph is cycle-free, the factor graph not only

encodes in its structure the factorization of the global function,

but also provides an efficient way to compute the marginal

functions.

• To find gi(xi), we can arrange xi as the root of the expression

tree. Then every node v in the factor graph has a clearly defined

parent node, namely, the neighboring node through which the

unique path from v to xi must pass.

CC Lab., EE, NCHU

Factor Graphs 48

• In (a), replace each variable node in the factor graph with a

product operator.

• In (b), replace each factor node in the factor graph with a “form

product and multiply by f”operator, and between a factor node

f and its parent x, insert a
∑
∼{x}

summary operator.

CC Lab., EE, NCHU

Factor Graphs 49

Computing a single marginal function

• Every expression tree represents an algorithm for computing the

corresponding expression.

• To compute gi(xi), use a “bottom-up” procedure:

– To start at the leaves of the tree, with each operator vertex

combining its operands and passing on the result as an

operand for its parent.

CC Lab., EE, NCHU

Factor Graphs 50

• To best understand such algorithms, it helps to imagine that⎧⎨
⎩ processor ⇔ each vertex of the factor graph

channel ⇔ the factor-graph edge

• Messages sent along the edges (channels) between the nodes

(processor) are some appropriate description of some marginal

function.

CC Lab., EE, NCHU

Factor Graphs 51

• The computation starts from the leaves.

• Each leaf variable node sends an identity function message to its

parent

• Each leaf function node sends the description of f to its parent.

• After receiving the messages from all its children, the vertex then

computes them and sends the updated messages to its parent.

– For a variable node, it sends the product of all messages from

its children to its parent.

– For a function node with parent node x, it operates the

summary of x of the product of all messages form its children

and sends to its parent.

• The process terminates at node xi and gi(xi) is the product of all

messages from the children of x.

CC Lab., EE, NCHU

Factor Graphs 52

Computing all marginal functions

• Computation of gi(xi) for all i simultaneously can be efficiently

accomplished by essentially “overlaying” on a single factor graph

all possible instances of the single-i algorithm.

• At variable node xi, the product of all incoming messages is the

marginal function gi(xi), just as in the single-i algorithm.

• Since this algorithm operates by computing various sums and

products, we refer to it as the sum-product algorithm.

• The operations of sum and product in R(+, ·) need to satisfy the

distributive law

x · (y + z) = x · y + x · z

CC Lab., EE, NCHU

Factor Graphs 53

Sum product algorithm

CC Lab., EE, NCHU

Factor Graphs 54

The sum-product algorithm

• The sum-product algorithm operates according to the following

simple rule:

The sum-product update rule:

The message sent from a node v on an edge e is the product of

the local function at v (or the unit function if v is a variable

node) with all messages received at v on edges other than e,

summarized for the variable associated with e.

CC Lab., EE, NCHU

Factor Graphs 55

• Let⎧⎪⎪⎨
⎪⎪⎩

μx→f (x): The message sent from node x to node f .

μf→x(x): The message sent from node f to node x.

n(v): The set of neighbors of a given node v in a factor graph.

CC Lab., EE, NCHU

Factor Graphs 56

• The message computations performed by the sum-product

algorithm may be expressed as follows:

� variable to local function:

μx→f (x) =
∏

h∈n(x)\{f}

μh→x(x)

� local function to variable:

μf→x(x) =
∑
∼{x}

⎛
⎝f(X)

∏
y∈n(f)\{x}

μy→f (y)

⎞
⎠

where X = n(f) is the set of arguments of the function f .

CC Lab., EE, NCHU

Factor Graphs 57

Figure 6: message passing in an edge between f and x.

CC Lab., EE, NCHU

Factor Graphs 58

� A detailed Example:

Fig. 7 shows the flow of messages that would be generated by the

sum-product algorithm applied to the factor graph of Fig. 1.

Figure 7: sum-product algorithm for a cycle-free graph .

CC Lab., EE, NCHU

Factor Graphs 59

1.

μfA→x1
(x1) =

∑
∼{x1}

fA(x1) = fA(x1)

μfB→x2
(x2) =

∑
∼{x2}

fB(x2) = fB(x1)

μx4→fD
(x4) = 1

μx5→fE
(x5) = 1

CC Lab., EE, NCHU

Factor Graphs 60

2.

μx1→fC
(x1) = μfA→x1

(x1)

μx2→fC
(x2) = μfB→x2

(x2)

μfD→x3
(x3) =

∑
∼{x3}

μx4→fD
(x4)fD(x3, x4) =

∑
∼{x3}

fD(x3, x4)

μfE→x3
(x3) =

∑
∼{x3}

μx5→fE
(x5)fE(x3, x5) =

∑
∼{x3}

fE(x3, x5)

CC Lab., EE, NCHU

Factor Graphs 61

3.

μfC→x3
(x3) =

∑
∼{x3}

μx1→fC
(x1)μx2→fC

(x2)fC(x1, x2, x3)

μx3→fC
(x3) = μfD→x3

(x3)μfE→x3
(x3)

CC Lab., EE, NCHU

Factor Graphs 62

4.

μfC→x1
(x1) =

∑
∼{x1}

μx3→fC
(x3)μx2→fC

(x2)fC(x1, x2, x3)

μfC→x2
(x2) =

∑
∼{x2}

μx3→fC
(x3)μx1→fC

(x1)fC(x1, x2, x3)

μx3→fD
(x3) = μfC→x3

(x3)μfE→x3
(x3)

μx3→fE
(x3) = μfC→x3

(x3)μfD→x3
(x3)

CC Lab., EE, NCHU

Factor Graphs 63

5.

μx1→fA
(x1) = μfC→x1

(x1)

μx2→fB
(x2) = μfC→x2

(x2)

μfD→x4
(x4) =

∑
∼{x4}

μx3→fD
(x3)fD(x3, x4)

μfE→x5
(x5) =

∑
∼{x5}

μx3→fE
(x3)fE(x3, x5)

CC Lab., EE, NCHU

Factor Graphs 64

6. Termination:

g1(x1) = μfA→x1
(x1)μfC→x1

(x1)

g2(x2) = μfB→x2
(x2)μfC→x2

(x2)

g3(x3) = μfC→x3
(x3)μfD→x3

(x3)μfE→x3
(x3)

g4(x4) = μfD→x4
(x4)

g5(x5) = μfE→x5
(x5)

CC Lab., EE, NCHU

Factor Graphs 65

• Equivalently, since the message passed on any given edge is equal

to the product of all but one of these messages, we may compute

gi(xi) as the product of the two messages that were passed (in

opposite directions) over any single edge incident on xi.

• Thus, for example, we may compute g3(x3) in three other ways

as follows:

g3(x3) = μfC→x3
(x3)μx3→fC

(x3)

= μfD→x3
(x3)μx3→fD

(x3)

= μfE→x3
(x3)μx3→fE

(x3)

CC Lab., EE, NCHU

Factor Graphs 66

Code realization: behavior/probability modeling

CC Lab., EE, NCHU

Factor Graphs 67

Code realization and factor graphs

• We now apply the factor graph description to coding realization.

• Forney makes a clear distinction between the realization of a

code and the graphic model of the realization.

• In other words, a code can have many realizations and for each

realization, we can associated it with different graphic modeling.

• We will describe various ways in which factor graphs may be

used to model the code/systems.

• We will use ”the realization of a code” and ”the modeling of a

code” interchangeably.

CC Lab., EE, NCHU

Factor Graphs 68

• Given a code, we will talk about two realizations for codes and

one realization for decoding:

1. behavior modeling: check-based and trellis-based realization

2. probability modeling

• For each realization, we will only consider the factor graph

associated with it and leave the normal graph to the readers.

CC Lab., EE, NCHU

Factor Graphs 69

• If P is a predicate (Boolean proposition) involving some set of

variables, then [P] is the {0, 1}-valued function that indicates the

truth of P , i.e.

[P] =

⎧⎨
⎩ 1, if P is true

0, otherwise.

• For example, f(x, y, z) = [x + y + z = 0] is the function that

takes a value of 1 if (x, y, z) has even weight, and 0 otherwise.

CC Lab., EE, NCHU

Factor Graphs 70

• If we let ∧ denote the logical conjunction or “AND” operator,

then an important property of Iverson’s convention is that

[P = P1 ∧ P2 ∧ . . . ∧ Pn] = [P1] [P2] . . . [Pn] .

Thus, P is true iff Pi is true for all i; then the complicated global

indicator [P] can be factored into n simple indicators Pi product.

Hence we can represent P by a factor graph.

CC Lab., EE, NCHU

Factor Graphs 71

• In the “behavioral” modeling of codes/systems:

Use the characteristic (i.e., indicator) function for the given

code/behavior; then the factor graph for the characteristic

function is the graphic description for the code/beharior.

– Factorizations of this characteristic function can give

important structural information about the model.

CC Lab., EE, NCHU

Factor Graphs 72

• In probabilistic modeling of systems:

A factor graph can be used to represent the joint probability

mass function of the variables that comprise the system.

• Factorizations of this function can give important information

about statistical dependencies among these variables.

• For example, in channel coding, we model both the valid

behavior (i.e., the set of codewords) and the a posteriori joint

probability mass function over the variables that define the

codewords given the received output of a channel.

CC Lab., EE, NCHU

Factor Graphs 73

check-based modeling

• Let x1, x2 . . . , xn be a collection of variables with configuration

space S = A1 × A2 × . . . × An.

• Any element of S is called a configuration (word).

• By a code/behavior in S, we mean any subset B of S.

– The elements of B are called the valid configurations

(codewords).

– Since a system is specified via its behavior B, this approach is

known as behavioral modeling.

CC Lab., EE, NCHU

Factor Graphs 74

• Behavioral modeling is natural for codes.

– If the domain of each variable is some finite alphabet A, so

that the configuration space is the n-fold Cartesian product

S = An, then a behavior C ⊂ S is called a block code of

length n over A, and the valid configurations are called

codewords.

• The characteristic (or set membership indicator) function for a

behavior B is defined as

χB(x1, . . . , xn) := [(x1, . . . , xn) ∈ B]

Obviously, specifying χB is equivalent to specifying B.

CC Lab., EE, NCHU

Factor Graphs 75

�

�

�

�Example 2 (Tanner Graphs for Linear Codes)

The characteristic function for any linear code defined by an

r × n parity check matrix H can be represented by a factor graph

having n variable nodes and r factor nodes.

CC Lab., EE, NCHU

Factor Graphs 76

• Let C be the binary linear code with parity-check matrix

H =

⎡
⎢⎢⎣

1 1 0 0 1 0

0 1 1 0 0 1

1 0 1 1 0 0

⎤
⎥⎥⎦ .

• C is the set of all binary 6-tuples x � (x1, x2, . . . , x6) that satisfy

three simultaneous equations: C = {x : HxT = 0}.
• The factor graph of C has 6 symbol nodes and 3 check nodes.

CC Lab., EE, NCHU

Factor Graphs 77

– The indication function of C is

χC(x1, x2, . . . , x6) = [(x1, x2, . . . , x6) ∈ C]

= [x1 ⊕ x2 ⊕ x5 = 0] [x2 ⊕ x3 ⊕ x6 = 0]

· [x1 ⊕ x3 ⊕ x4 = 0]

– The factor graph (Tanner graph) for the code is:

CC Lab., EE, NCHU

Factor Graphs 78

– By this example, a Tanner graph for any [n, k] linear block

code may be obtained from a parity-check matrix H = [hij]

for the code.

– Such a parity-check matrix has n columns and at least n − k

rows.

– Variable (symbol) nodes correspond to the columns of H and

factor (check) nodes to the rows of H, with an edge

connecting factor node i to variable node j if and only if

hij �= 0.

� Of course, since there are, in general, many parity check

matrices that represent a given code, there are, in general,

many Tanner graph representations for the code.

CC Lab., EE, NCHU

Factor Graphs 79

trellis-based modeling

• Often, a description of a system is simplified by introducing

hidden (sometimes called auxiliary, latent, or state) variables.

Nonhidden variables are called visible.

• A particular behavior B with both auxiliary and visible variables

is said to represent a given (visible) behavior C if the projection

of the elements of B on the visible variables is equal to C.

• Any factor graph for B is then considered to be also a factor

graph for C.

CC Lab., EE, NCHU

Factor Graphs 80

• Such graphs were introduced by Wiberg et al. and may be called

Wiberg-type graphs.

� As in Wiberg, hidden variable nodes are in general indicated by a

double circle.

• An important class of models with hidden variables are the trellis

representations.

CC Lab., EE, NCHU

Factor Graphs 81

• A trellis for a block code C is an edge labelled directed graph

with one left root and one right goal vertices.

• Each sequence of edge labels encountered in any directed path

from the root vertex to the goal vertex is a codeword in C.

• The collection of all pathes forms the code.

• All paths from the root to any given vertex should have the same

fixed length d, called the depth of the given vertex.

• The root vertex has depth 0, and the goal vertex has depth n.

The set of depth d vertices can be viewed as the d-th state space.

CC Lab., EE, NCHU

Factor Graphs 82

• (a) A trellis and its (b) Wibger graph for a [6, 3, 4] code.

• In addition to the visible variable nodes x1, x2, . . . , x6, there are

also hidden (state) variable nodes s0, s1, . . . , s6.

• Each local check corresponds to one section of the trellis.

CC Lab., EE, NCHU

Factor Graphs 83

– In this example, the local behavior T2 corresponding to the

second trellis section from the left in Fig. 9 consists of the

following triples (s1, x2, s2):

T2 = {(0, 0, 00), (0, 1, 10), (1, 1, 01), (1, 0, 11)}

where the domains of the state variables s1 and s2 are taken

to be {0, 1} and {00, 01, 10, 11}, respectively, numbered from

bottom to top.

– Each element of the local behavior corresponds to one trellis

edge.

– The corresponding factor node in the Wiberg-type graph is

the indicator function f(s1, x2, s2) = [(s1, x2, s2) ∈ T2].

CC Lab., EE, NCHU

Factor Graphs 84

• (a) A trellis and its (b) Wibger graph for a [7, 4, 3] code.

CC Lab., EE, NCHU

Factor Graphs 85

• A trellis divides naturally into n sections, where the ith trellis

section Ti is the subgraph of the trellis induced by the vertices at

depth i − 1 and depth i.

• The set of edge labels in Ti may be viewed as the domain of a

(visible) variable xi.

• In effect, each trellis section Ti defines a “local behavior” that

constrains the possible combinations of si−1, xi, and si.

CC Lab., EE, NCHU

Factor Graphs 86

• It is important to note that a factor graph corresponding to a

trellis is cycle-free.

• Since every code has a trellis representation, it follows that every

code can be represented by a cycle-free factor graph.

� Unfortunately, it often turns out that the state-space sizes (the

sizes of domains of the state variables) can easily become too

large to be practical.

For example, trellis representations of the overall turbo codes

have enormous state spaces. But the trellis of the two component

codes in turbo codes is relatively small.

CC Lab., EE, NCHU

Factor Graphs 87

Other behavior modeling

• Trellises are basically conventional state-space system models,

and the generic factor graph shown below can represent any

state-space model of a time-invariant or time-varying system.

�
�

�
	Here, we allow a trellis edge to have both an input label and an output label.

CC Lab., EE, NCHU

Factor Graphs 88

�

�

�

�Example 4 (State-Space Models)

• The classical linear time-invariant state-space model is given by

the equations

x(j + 1) = Ax(j) + Bu(j)

y(j) = Cx(j) + Du(j)

where j ∈ Z is the discrete time index

• u(j) = (u1(j), . . . , uk(j)) are the time–j input variables,

y(j) = (y1(j), . . . , yn(j)) are the time–j output variables, and

x(j) = (x1(j), . . . , xm(j)) are the time–j state variables.

• A, B, C, D are m × m, m × k, n × m, and n × k, matrices

respectively.

CC Lab., EE, NCHU

Factor Graphs 89

• The time-j check function

f (x(j), u(j), y(j), x(j + 1)) : Fm × F k × Fn × Fm → {0, 1}

is

f (x(j), u(j), y(j), x(j + 1)) = [x(j + 1) = Ax(j) + Bu(j)]

· [y(j) = Cx(j) + Du(j)] .

CC Lab., EE, NCHU

Factor Graphs 90

Summary of behavioral realization

• The behavioral/code realization of a code is characterized by

three sets of elements:

1. A symbol configuration space

A =
∏

k∈IA

Ak,

2. A state configuration space

S =
∏

j∈IS

Sj ,

3. some local constraints

{Ci : i ∈ IC},
where IA, IS , and IC are discrete index sets.

CC Lab., EE, NCHU

Factor Graphs 91

• A check-based realization of a code C ⊂ A is defined by some

local constraints (behaviors). Each local behavior Ci involves a

subset of some symbol variables, indexed by IA(i) ⊂ IA:

Ci ⊂ Ti =
∏

k∈IA(i)

Ak

• The code C ⊂ A is the set of all valid symbol configuration

satisfying all local constraints:

C = {a ∈ A|aIA(i) ∈ Ci,∀i ∈ IC},

where a|IA(i) = {ak|k ∈ IA(i)} ∈ Ti is the projection of a onto Ti.

• The factor graph associated this realization is also called a

Tanner graph.

CC Lab., EE, NCHU

Factor Graphs 92

• A trellis-based realization of a code C ⊂ A is defined by some

local constraints (behaviors). Each local behavior Ci involves a

subset of some symbol variables, indexed by IA(i) ⊂ IA and some

state variables, indexed by IS(i) ⊂ IS :

Ci ⊂ Wi =
∏

k∈IA(i)

Ak ×
∏

j∈IS(i)

Sj

• The full behavior B ⊂ A × S is the set of all valid symbol/state

configuration satisfying all local constraints:

B = {(a, s) ∈ A × S|(a|IA(i), s|IS(i)) ∈ Ci,∀i ∈ IC},

where (a|IA(i), s|IS(i)) = {{ak, k ∈ IA(i)}, {sj , j ∈ IS(i)}} ∈ Wi is

the projection of a onto Wi.

CC Lab., EE, NCHU

Factor Graphs 93

• The code C is then the projection of B onto the symbol

configuration space, i.e., C = B|A.

• The factor graph associated this realization is also called a Wiber

graph.

CC Lab., EE, NCHU

Factor Graphs 94

• In coding, there are three possible behavior/code realizations

1. code modeling by a parity check matrix (with cycles)

2. code modeling by conventional trellis (cycle-free)

3. code modeling by tailbiting trellis (with one cycle)

CC Lab., EE, NCHU

Factor Graphs 95

Code modeling by a parity check matrix (with many cycles)

IA = [1, n] and IC = [1, r]

Ci = [ni, ni − 1, 2] single parity check code, where ni = |IA(i)|.

CC Lab., EE, NCHU

Factor Graphs 96

Code modeling by conventional trellis (cycle-free)

IA = [0, n − 1] = Zn, IS = [0, n], and IC = [0, n − 1] = Zn

Ci is the i-th trellis section specifies the valid local configuration:

(si, ai, si+1) ∈ Si × Ai × Si+1

CC Lab., EE, NCHU

Factor Graphs 97

Code modeling by tailbiting trellis (with one cycle)

IA = Zn, IS = Zn, and IC = Zn

Same i-th trellis section as conventional trellis except the n − 1-th

(sn−1, an−1, s0) ∈ Sn−1 × An−1 × S0

CC Lab., EE, NCHU

Factor Graphs 98

Probability Modeling for codes

• In decoding of DMC with input x ∈ X and output y ∈ Y , we are

given the prior probability p(x), usually uniform distributed, and

the conditional probability p(y|x).

• In BSC, X = Y = Fn
2 and

p(y|x) = pd(x,y)(1 − p)n−d(x,y)

=
n∏

i=1

pd(xi,yi)(1 − p)1−d(xi,yi)

• In AWGN, X = Fn
2 and Y = Rn and

p(y|x) =

n∏
i=1

1√
πN0

e−
(yi−xi)

2

N0

CC Lab., EE, NCHU

Factor Graphs 99

• We can find the posterior probability p(x|y) = p(x)p(y|x).

• Then we may do the MAP decoding for minimizing block or bit

error probability:

max
x∈C

p(x|y) = max
x∈C

p(x)p(y|x)

p(xi|y) =
∑

∼{xi}

p(x|y)

CC Lab., EE, NCHU

Factor Graphs 100

• Since conditional and unconditional independence of random

variables is expressed in terms of a factorization of their joint

probability mass or density function, factor graphs for

probability distributions arise in many situations.

CC Lab., EE, NCHU

Factor Graphs 101

�

�

�

�Example 5 (APP Distributions)

Consider the standard coding model in which a codeword

x = (x1, . . . , xn) is selected from a code C of length n and

transmitted over a memoryless channel with corresponding

output sequence y = (y1, . . . , yn).

• For each fixed observation y, the joint a posteriori probability

(APP) distribution for the components of x (i.e., p(x|y)) is

proportional to the function g(x) = f(y|x)p(x), where p(x) is the

a priori distribution of x and f(y|x) is the conditional pdf for y

when x is transmitted.

CC Lab., EE, NCHU

Factor Graphs 102

• Assuming that the a priori distribution for the transmitted

vectors is uniform over codewords, we have

p(x) = χC(x)/|C|,

where χC(x) is the characteristic function for C and |C| is the

number of codewords in C.

If the channel is memoryless, then f(y|x) factors as

f(y1, . . . , yn|x1, . . . , xn) =

n∏
i=1

f(yi|xi).

CC Lab., EE, NCHU

Factor Graphs 103

– Under these assumptions, we have

g(x1, . . . , xn) =
1

|C|χC(x1, . . . , xn)

n∏
i=1

f(yi|xi).

Now the characteristic function χC itself may factor into a

product of local characteristic functions.

– Given a factor graph F for χC(x), we obtain a factor graph

for (a scaled version of) the APP distribution over simply by

augmenting F with factor nodes corresponding to the

different f(yi|xi) factors.

– The ith such factor has only one argument, namely xi, since

yi is regarded as a parameter. Thus, the corresponding factor

nodes appear as pendant vertices (“dongles”) in the factor

graph.

CC Lab., EE, NCHU

Factor Graphs 104

• Consider a C[6, 3, 3] binary linear code with p(x|y)

g(x1, . . . , x6) = [x1 ⊕ x2 ⊕ x5 = 0] · [x2 ⊕ x3 ⊕ x6 = 0]

·[x1 ⊕ x3 ⊕ x4 = 0] ·

6∏
i=1

f(yi|xi)

whose factor graph is shown in Fig. 11.

• With this factor graph, we can run the iterative sum product

decoding.

CC Lab., EE, NCHU

Factor Graphs 105

Other probability modeling

�

�

�

�Example 6 (Markov Chains, Hidden Markov Models)

In general, let f(x1, . . . , xn) denote the joint probability mass

function of a collection of random variables. By the chain rule of

conditional probability, we may always express this function as

f(x1, . . . , xn) =

n∏
i=1

f(xi|x1, . . . , xi−1).

– For example, if n = 4, then

f(x1, . . . , x4) = f(x1)f(x2|x1)f(x3|x1x2)f(x4|x1, x2, x3)

which has the factor graph representation shown in Fig. 12(b).

CC Lab., EE, NCHU

Factor Graphs 106

– In general, since all variables appear as arguments of

f(xn|x1, . . . , xn−1), the factor graph of Fig. 12(b) has no

advantage over the trivial factor graph shown in Fig. 12(a).

– Suppose that random variables X1, X2, . . ., Xn (in that

order) form a Markov chain. We then obtain the nontrivial

factorization

f(x1, . . . , xn) =

n∏
i=1

f(xi|xi−1)

whose factor graph is shown in Fig. 12(c) for n = 4.

CC Lab., EE, NCHU

Factor Graphs 107

– Continuing this Markov chain example, if we cannot observe

each Xi directly, but instead can observe only Yi, the output

of a memoryless channel with Xi as input, then we obtain a

so-called “hidden Markov model.”

– The joint probability mass or density function for these

random variables then factors as

f(x1, . . . , xn, y1, . . . , yn) =

n∏
i=1

f(xi|xi−1)f(yi|xi)

whose factor graph is shown in Fig. 12(d) for n = 4.

CC Lab., EE, NCHU

Factor Graphs 108

Figure 12: Factor graphs for probability distributions. (a) The

trivial factor graph. (b) The chain-rule factorization.

(c) A Markov chain. (d) A hidden Markov model.

CC Lab., EE, NCHU

Factor Graphs 109

Trellis decoding for trellis-based realization

CC Lab., EE, NCHU

Factor Graphs 110

Trellis processing

• An important family of cycle free factor graphs for a code is the

one with the chain graphs that represent trellises or Markov

models for it.

• Apply the sum-product algorithm to the trellises; it is obvious

that a variety of well-known algorithms:

1. the forward/backward algorithm (BCJR, MAP, APP)

2. the Viterbi algorithm, SOVA

may be viewed as special cases of the sum-product algorithm.

CC Lab., EE, NCHU

Factor Graphs 111

The forward/backward algorithm

• We start with the forward/backward algorithm, sometimes

referred to in coding theory as the BCJR, APP, or MAP

algorithm.

• The factor graph of Fig. 13 models the most general situation,

which involves a combination of behavioral and probabilistic

modeling.

• We have vectors u = (u1, u2, . . . , uk), x = (x1, x2, . . . , xn), and

s = (s0, . . . , sn) that represent, respectively, input variables,

output variables, and state variables in a Markov model, where

each variable is assumed to take on values in a finite domain.

CC Lab., EE, NCHU

Factor Graphs 112

Figure 13: The factor graph in which the forward/backward

algorithm operates: the si are state variables, the ui are

input variables, the xi are output variables, and each yi

is the output of a memoryless channel with input xi.

CC Lab., EE, NCHU

Factor Graphs 113

• This model is a “hidden” Markov model in which we cannot

observe the output symbols directly.

• The a posteriori joint probability mass function for u, s, and x

given the observation y is proportional to

gy(u, s, x) :=

n∏
i=1

Ti(si−1, xi, ui, si)

n∏
i=1

f(yi|xi)

where y is again regarded as a parameter of g. The factor graph

of Fig. 13 represents this factorization of g.

CC Lab., EE, NCHU

Factor Graphs 114

• Given y, we would like to find the APPs p(ui|y) for each i.

These marginal probabilities are proportional to the following

marginal functions associated with g:

p(ui|y) ∝
∑

∼{ui}

gy(u, s, x).

Since the factor graph of Fig. 13 is cycle-free, these marginal

functions may be computed by applying the sum-product

algorithm to the factor graph of Fig. 13.

CC Lab., EE, NCHU

Factor Graphs 115

Initialization

• This is a cycle-free factor graph for the code and the sum

product algorithm starts at the leaf variable nodes, i.e.,

s0, sn, and ui, 1 ≤ i ≤ k,

and the leaf functional nodes, i.e.,

f(yi|xi), 1 ≤ i ≤ n.

• Trivial messages are sent by the input variable nodes and the

endmost state variable nodes, i.e.,

μui→Ti
(ui = 0) = μui→Ti

(ui = 1) = 1, 1 ≤ i ≤ k,

μs0→T1
(s0 = 0) = μsn→Tn

(sn = 0) = 1,

μs0→T1
(s0 �= 0) = μsn→Tn

(sn �= 0) = 1

CC Lab., EE, NCHU

Factor Graphs 116

• Each pendant factor node, f(yi|xi), 1 ≤ i ≤ n, sends a message

(f(yi|xi = 0), f(yi|xi = 1)) to the corresponding output variable

node.

• Since the output variable nodes, xi, have degree two, no

computation is performed; instead, incoming messages received

on one edge are simply transferred to the other edge and sent to

the corresponding trellis check node Ti.

CC Lab., EE, NCHU

Factor Graphs 117

• In the literature on the forward/backward algorithm:

– The message μxi→Ti
(xi) is denoted as γ(xi)

– The message μsi→Ti+1
(si) is denoted as α(si)

– The message μsi→Ti
(si) is denoted as β(si).

– The message μTi→ui
(ui) is denoted as δ(ui).

CC Lab., EE, NCHU

Factor Graphs 118

• The operation of the sum-product algorithm creates two natural

recursions:

one to compute α(si) as a function of α(si−1) and γ(xi) and the

other to compute β(si−1) as a function of β(si) and γ(xi).

• These two recursions are called the forward and backward

recursions, respectively, according to the direction of message

flow in the trellis.

�

�

The forward and backward recursions do not interact,

so they could be computed in parallel.

CC Lab., EE, NCHU

Factor Graphs 119

• Fig. 14 gives a detailed view of the message flow for a single

trellis section. The local function in this figure represents the

trellis check Ti(si−1, ui, xi, si).

CC Lab., EE, NCHU

Factor Graphs 120

The Forward/Backward Recursions

α(si) =
∑
∼{si}

Ti(si−1, ui, xi, si)α(si−1)γ(xi)

β(si−1) =
∑

∼{si−1}

Ti(si−1, ui, xi, si)β(si)γ(xi)

CC Lab., EE, NCHU

Factor Graphs 121

Termination

The algorithm terminates with the computation of the δ(ui).

δ(ui) =
∑

∼{ui}

Ti(si−1, ui, xi, si)α(si−1)β(si)γ(xi).

CC Lab., EE, NCHU

Factor Graphs 122

• These sums can be viewed as being defined over valid trellis

edges e = (si−1, ui, xi, si) such that Ti(e) = 1.

• For each edge e, we let α(e) = α(si−1), β(e) = β(si), and

γ(e) = γ(xi).

• Denoting by Ei(s) the set of edges incident on a state s in the ith

trellis section, the α and β update equations may be rewritten as

α(si) =
∑

e∈Ei(si)

α(e)γ(e)

β(si−1) =
∑

e∈Ei(si−1)

β(e)γ(e)

The basic operations in the forward and backward recursions are

therefore “sum of products.”

CC Lab., EE, NCHU

Factor Graphs 123

CC Lab., EE, NCHU

Factor Graphs 124

The min-sum and max-product semirings

• The codomain R of the global function g represented by a factor

graph may in general be any semiring with two operations “+”

and “·” that satisfy the distributive law

(∀ x, y, z ∈ R) x · (y + z) = (x · y) + (x · z)

• For nonnegative real-valued quantities x, y, and z, “·” distributes

over “max”

x(max(y, z)) = max(xy, xz).

CC Lab., EE, NCHU

Factor Graphs 125

• With maximization as a summary operator, the maximum value

of a nonnegative real-valued function g(x1, . . . , xn) is viewed as

the “complete summary” of g; i.e.

max g(x1, . . . , xn) = max
x1

(max
x2

(. . . (max
xn

g(x1, . . . , xn))))

=
∑
∼{}

g(x1, . . . , xn)

CC Lab., EE, NCHU

Factor Graphs 126

• MAP decoding for minimizing the codeword error probability

max
x∈C

p(x|y) = max
x∈C

p(x)p(y|x)

.

• MAP decoding is equivalent to ML decoding if p(x) = 1
M .

� For the MAP or ML decoding problem, we are interested in

finding a valid configuration x that achieves this maximum.

• The sum product decoding becomes max. product decoding.

CC Lab., EE, NCHU

Factor Graphs 127

• In practice, MLSD is most often carried out in the negative

log-likelihood domain.

• Here, the “product” operation becomes a “sum” and the “max”

operation becomes a “min” operation, so that we deal with the

“min-sum” semiring.

� For real-valued quantities x, y, z, “+” distributes over “min”

x + min(y, z) = min(x + y, x + z).

CC Lab., EE, NCHU

Factor Graphs 128

• Applying the min-sum algorithm in this context yields the same

message flow as in the forward/backward algorithm.

• As in the forward/backward algorithm, we may write an update

equation for the various messages.

� For example, the basic update equation corresponding to α(si) =∑
e∈Ei(si)

α(e)γ(e) is

α(si) = min
e∈Ei(si)

(α(e) + γ(e))

so that the basic operation is a “minimum of sums” instead of a

“sum of products.”

• A similar recursion may be used in the backward direction, and

from the results of the two recursions the most likely sequence

may be determined. The result is a “bidirectional” Viterbi

algorithm.

CC Lab., EE, NCHU

Factor Graphs 129

Iterative decoding for LDPC, turbo, and RA codes

CC Lab., EE, NCHU

Factor Graphs 130

• We now apply the sum product algorithm to the factor graphs

with cycles

• We will discuss three Iterative decoding for:

1. Turbo codes

2. LDPC codes

3. RA codes

CC Lab., EE, NCHU

Factor Graphs 131

Iterative decoding of turbo code

• A “turbo code” (“parallel concatenated convolutional code”) has

the encoder structure shown in Figure 15(a).

Figure 15: Turbo code. (a) Encoder block diagram.

�

�

A block u of data to be transmitted enters a systematic encoder which produces

u, and two parity-check sequences p and q at its output.

CC Lab., EE, NCHU

Factor Graphs 132

• The first parity-check sequence p is generated via a standard

recursive convolutional encoder; viewed together,u and p would

form the output of a standard rate 1
2 convolutional code.

• The second parity-check sequence q is generated by applying a

permutation π to the input stream, and applying the permuted

stream to a second convolutional encoder.

CC Lab., EE, NCHU

Factor Graphs 133

• A factor graph representation for a (very) short turbo code is

shown in Fig. 15(b).

• Included in the figure are the state variables for the two

constituent encoders, as well as a terminating trellis section in

which no data is absorbed, but outputs are generated.

CC Lab., EE, NCHU

Factor Graphs 134

• Iterative decoding of turbo codes is usually accomplished via a

message-passing schedule that involves a forward/backward

computation over the portion of the graph representing one

constituent code, followed by propagation of messages between

encoders (resulting in the so-called extrinsic information in the

turbo-coding literature).

• This is then followed by another forward/backward computation

over the other constituent code, and propagation of messages

back to the first encoder.

CC Lab., EE, NCHU

Factor Graphs 135

LDPC codes

• LDPC codes were introduced by Gallager in the early 1960s.

• LDPC codes are defined in terms of a regular bipartite graph.

• In a (j, k) LDPC code, left nodes, representing codeword

symbols, all have degree j, while right nodes, representing checks,

all have degree k.

CC Lab., EE, NCHU

Factor Graphs 136

• For example, Fig. 16 illustrates the factor graph for a short (2, 4)

LDPC code.

Figure 16: A factor graph for a LDPC code.

CC Lab., EE, NCHU

Factor Graphs 137

RA codes

• RA codes are a special, low-complexity class of turbo codes

introduced by Divsalar, McEliece, and others, who initially

devised these codes because their ensemble weight distributions

are relatively easy to derive.

• An encoder for an RA code operates on k input bits u1, . . . , uk,

repeating each bit Q times, and permuting the result to arrive at

a sequence z1, . . . , zkQ.

• An output sequence x1, . . . , xkQ is formed via an accumulator

that satisfies x1 = z1 and xi = xi−1 + zi for i > 1.

CC Lab., EE, NCHU

Factor Graphs 138

Figure 17: Two Equivalent factor graphs for an RA code.

CC Lab., EE, NCHU

Factor Graphs 139

Iterative decoding for LDPC and RA codes

• We treat here only the important case where all variables are

binary (Bernoulli) and all functions except single-variable

functions are parity checks.

• The probability mass function for a binary random variable may

be represented by the vector (p0, p1), where p0 + p1 = 1.

• According to the generic updating rules, when messages (p0, p1)

and (q0, q1) arrive at a variable node of degree three, the

resulting (normalized) output message should be

VAR(p0, p1, q0, q1) =

(
p0q0

p0q0 + p1q1
,

p1q1

p0q0 + p1q1

)
.

CC Lab., EE, NCHU

Factor Graphs 140

• Similarly, at a check node representing the function

f (x, y, z) = [x ⊕ y ⊕ z = 0]

(where “⊕” represents modulo-2 addition), we have

CHK (p0, P1, q0, q1) = (p0q0 + p1q1, p0q1 + p1q0) .

• Since p0 + p1, binary probability mass functions can be

parametrized by a single value.

CC Lab., EE, NCHU

Factor Graphs 141

• Depending on the parametrization, various probability gate

implementations arise. We give four different parametrizations,

and derive the VAR and CHK functions for each.

1. Likelihood ratio (LR)

2. Log-likelihood ratio (LLR)

3. Likelihood difference (LD)

4. Signed log-likelihood difference (SLLD)

CC Lab., EE, NCHU

Factor Graphs 142

� Likelihood ratio (LR) �

Definition: λ(p0, p1) = p0/p1.

VAR (λ1, λ2) = λ1λ2

CHK (λ1, λ2) = 1+λ1λ2

λ1+λ2

� Log-likelihood ratio (LLR) �

Definition: Λ(p0, p1) = ln(p0/p1).

VAR (Λ1, Λ2) = Λ1 + Λ2

CHK (Λ1, Λ2) = ln (cosh ((Λ1 + Λ2) /2))

− ln (cosh ((Λ1 − Λ2) /2))

= 2 tanh−1 (tanh (Λ1/2) tanh (Λ2/2)) .

CC Lab., EE, NCHU

Factor Graphs 143

� Likelihood difference (LD) �

Definition: δ(p0, p1) = p0 − p1.

VAR (δ1, δ2) = δ1+δ2

1+δ1δ2

CHK (δ1, δ2) = δ1δ2.

� Signed log-likelihood difference (SLLD) �

Definition: Δ(p0, p1) = sqn(p1 − p0) ln |p1 − p0|.

VAR (Δ1, Δ2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s ln
(

cosh((|Δ1|+|Δ2|)/2)
cosh((|Δ1|−|Δ2|)/2)

)
,

if sgn(Δ1) = sgn(Δ2) = s.

s · sgn(|Δ1| − |Δ2|) ln
(

sinh((|Δ1|+|Δ2|)/2)
sinh((|Δ1|−|Δ2|)/2)

)
,

if sgn(Δ1) = −sgn(Δ2) = −s.

CHK (Δ1, Δ2) = sgn(Δ1)sgn(Δ2)(|Δ1| + |Δ2|).

CC Lab., EE, NCHU

Factor Graphs 144

• In the LLR domain, we observe that for x � 1

ln (cosh(x)) ≈ |x| − ln(2).

Thus, an approximation to the CHK function is

CHK(Λ1, Λ2) ≈ |(Λ1 + Λ2)/2| − |(Λ1 − Λ2)/2|
= sgn(Λ1)sgn(Λ2) min(|Λ1|, |Λ2|)

which turns out to be precisely the min-sum update rule.

• By applying the equivalence between factor graphs illustrated in

Figure 18, it is easy to extend these formulas to cases where

variable nodes or check nodes have degree larger than three.

CC Lab., EE, NCHU

Factor Graphs 145

• In particular, we may extend the VAR and CHK functions to more

than two arguments via the relations

VAR(x1, x2, . . . , xn) = VAR(x1, VAR(x2, . . . , xn))

CHK(x1, x2, . . . , xn) = CHK(x1, CHK(x2, . . . , xn))

Of course, there are other alternatives, corresponding to the

various binary trees with n leaf vertices.

• For example, when n = 4 we may compute VAR(x1, x2, x3, x4) as

VAR(x1, x2, x3, x4) = VAR(VAR(x1, x2), VAR(x3, x4))

which would have better time complexity in a parallel

implementation than a computation based on above equations.

CC Lab., EE, NCHU

Factor Graphs 146

Figure 18: Transforming variable and check nodes of high

degree to multiple nodes of degree three.

CC Lab., EE, NCHU

Factor Graphs 147

Iterative probability propagation

• Let us now study the more complex factor graph of the [8, 4]

extended Hamming code. This code has the systematic

parity-check matrix

H[8,4] =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0

1 0 1 1 0 0 1 0

0 1 1 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

The code has 4 information bits, which we associate with

variable nodes U1, . . . , U4; it also has 4 parity bits, which are

associated with the variable nodes X5, . . . , X8.

CC Lab., EE, NCHU

Factor Graphs 148

• There are also 8 observed output symbols, nodes Y1, . . . , Y8,

which are the noisy received variables U1, . . . , X8.

• The function nodes V1, . . . , V4 are the four parity-check equations

described by above matrix, given as boolean truth functions.

• The function nodes V1, . . . , V4 are the four parity-check

equations, given as boolean truth functions.

For example,

V1 : U1 ⊕ U2 ⊕ U3 ⊕ X5 = 0

V2 : U1 ⊕ U2 ⊕ U4 ⊕ X6 = 0

V3 : U1 ⊕ U3 ⊕ U4 ⊕ X7 = 0

V4 : U2 ⊕ U3 ⊕ U4 ⊕ X8 = 0

• The complete factor graph of the parity-check matrix

representation of this code is shown in Figure 7(a).

CC Lab., EE, NCHU

Factor Graphs 149

Figure 7(a): [8,4] Hamming code factor graph representation.

CC Lab., EE, NCHU

Factor Graphs 150

– This network has loops (e.g., U1 − V1 − U2 − V2 − U1) and

thus the sum-product algorithm has no well-defined

forward-backward schedule, but many possible schedules of

passing messages between the nodes.

– A sensible message passing schedule will involve all nodes

which are not observation nodes in a single sweep, called an

iteration.

– Such iterations can then be repeated until a desired result is

achieved. The messages are passed exactly according to the

rules of the sum-product algorithm.

CC Lab., EE, NCHU

Turbo Codes

Coding and Communication Laboratory

Dept. of Electrical Engineering,
National Chung Hsing University

Turbo codes 1

• Chapter 10: Turbo Codes

1. Introduction

2. Turbo code encoder

3. Iterative decoding of turbo codes

CC Lab., EE, NCHU

Turbo codes 2

Reference

1. Lin, Error Control Coding

• chapter 16

CC Lab., EE, NCHU

Turbo codes 3

Introduction

CC Lab., EE, NCHU

Turbo codes 4

What are turbo codes?

• Turbo codes, which a class of error correcting codes is, are

introduced by Berrou and Glavieux in ICC93.

• Turbo codes can come closer to approaching Shannon’s limit

than any other class of error correcting codes.

• Turbo codes achieve their remarkable performance with relatively

low complexity encoding and decoding algorithms.

CC Lab., EE, NCHU

Turbo codes 5

• A firm understanding of convolutional codes is an important

prerequisite to the understanding of turbo codes.

• Tow fundamental ideas of Turbo code:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Encoder: It produce a codeword with randomlike

properties.

Decoder: It make use of soft-output values and

iterative decoding.

CC Lab., EE, NCHU

Turbo codes 6

Power efficiency of existing standards

CC Lab., EE, NCHU

Turbo codes 7

Turbo code encoder

CC Lab., EE, NCHU

Turbo codes 8

Turbo code encoder

• The fundamental turbo code encoder:

Two identical recursive systematic convolutional (RSC) codes

with parallel concatenation.

• An RSC encodera is termed a component encoder.

• The two component encoders are separated by an interleaver.

Figure A: Fundamental Turbo Code Encoder (r = 1
3)

aIn general, an RSC encoder is typically r = 1
2
.

CC Lab., EE, NCHU

Turbo codes 9

• To achieve performance close to the Shannon limit, the

information block length (interleaver size) is chosen to be very

large, usually at least several thousand bits.

• RSC codes, generated by systematic feedback encoders, give

much better performance than nonrecursive systematic

convolutional codes, that is, feedforward encoders.

• Because only the ordering of the bits changed by the interleaver,

the sequence that enters the second RSC encoder has the same

weight as the sequence x that enters the first encoder.

CC Lab., EE, NCHU

Turbo codes 10

Turbo codes suffer from two disadvantages:

1. A large decoding delay, owing to the large block lengths and

many iterations of decoding required for near–capacity

performance.

2. It significantly weakened performance at BERs below 10−5

owing to the fact that the codes have a relatively poor

minimum distance, which manifests itself at very low BERs.

CC Lab., EE, NCHU

Turbo codes 11

Figure A-1: Performance comparison of convolutional codes

and turbo codes.

CC Lab., EE, NCHU

Turbo codes 12

Recursive systematic convolutional (RSC)

encoder

• The RSC encoder:

The conventional convolutional encoder by feeding back one of

its encoded outputs to its input.

• Example. Consider the conventional convolutional encoder in

which

Generator sequence g1 = [111] , g2 = [101]

Compact form G = [g1, g2]

CC Lab., EE, NCHU

Turbo codes 13

Figure B: Conventional convolutional encoder with r = 1
2

and K = 3

CC Lab., EE, NCHU

Turbo codes 14

– The RSC encoder of the conventional convolutional encoder:

G = [1, g2/g1]

where the first output is fed back to the input.

– In the above representation:

1 the systematic output

g2 the feed forward output

g1 the feedback to the input of the RSC encoder

– Figure C shows the resulting RSC encoder.

CC Lab., EE, NCHU

Turbo codes 15

Figure C: The RSC encoder obtained from figure B with

r = 1
2 and K = 3.

CC Lab., EE, NCHU

Turbo codes 16

Trellis termination

• For the conventional encoder, the trellis is terminated by

inserting m = K − 1 additional zero bits after the input sequence.

These additional bits drive the conventional convolutional

encoder to the all-zero state (Trellis termination). However, this

strategy is not possible for the RSC encoder due to the feedback.

• Convolutional encoder are time-invariant, and it is this property

that accounts for the relatively large numbers of low-weight

codewords in terminated convolutional codes.

• Figure D shows a simple strategy that has been developed in a

which overcomes this problem.

aDivsalar, D. and Pollara, F., “Turbo Codes for Deep-Space Communications, ”

JPL TDA Progress Report 42-120, Feb. 15, 1995.

CC Lab., EE, NCHU

Turbo codes 17

�

�

�

�
For encoding the input sequence, the switch is turned on

to position A and for terminating the trellis, the switch is

turned on to position B.

Figure D: Trellis termination strategy for RSC encoder

CC Lab., EE, NCHU

Turbo codes 18

Recursive and nonrecursive

convolutional encoders

• Example. Figure E shows a simple nonrecursive convolution

encoder with generator sequence g1 = [11] and g2 = [10].

Figure E: Nonrecursive r = 1
2

and K = 2 convolutional encoder

with input and output sequences.

CC Lab., EE, NCHU

Turbo codes 19

• Example. Figure F shows the equivalent recursive convolutional

encoder of Figure E with G =
[
1, g2

g1

]
.

Figure F: Recursive r = 1
2 and K = 2 convolutional encoder of

Figure E with input and output sequences.

CC Lab., EE, NCHU

Turbo codes 20

• Compare Figure E with Figure F:

The nonrecursive encoder output codeword with weight of 3

The recursive encoder output codeword with weight of 5

• State diagram:

Figure G-1: State diagram of the nonrecursive encoder in

Figure E.

CC Lab., EE, NCHU

Turbo codes 21

Figure G-2: State diagram of the recursive encoder in Figure F.

• A recursive convolutional encoder tends to produce codewords

with increased weight relative to a nonrecursive encoder. This

results in fewer codewords with lower weights and this leads to

better error performance.

• For turbo codes, the main purpose of implementing RSC

encoders as component encoders is to utilize the recursive nature

of the encoders and not the fact that the encoders are systematic.

CC Lab., EE, NCHU

Turbo codes 22

• Clearly, the state diagrams of the encoders are very similar.

• The transfer function of Figure G-1 and Figure G-2 :

T (D) =
D3

1 − D
Where N and J are neglected.

CC Lab., EE, NCHU

Turbo codes 23

– The two codes have the same minimum free distance and can

be described by the same trellis structure.

– These two codes have different bit error rates. This is due to

the fact that BER depends on the input–output

correspondence of the encoders.b

– It has been shown that the BER for a recursive convolutional

code is lower than that of the corresponding nonrecursive

convolutional code at low signal-to-noise ratios Eb/N0.
c

b

Benedetto, S., and Montorsi, G., “Unveiling Turbo Codes: Some Results on

Parallel Concatenated Coding Schemes,” IEEE Transactions on Information

Theory, Vol. 42, No. 2, pp. 409-428, March 1996.

c

Berrou, C., and Glavieux, A., “Near Optimum Error Correcting Coding and

Decoding: Turbo-Codes,” IEEE Transactions on Communications, Vol. 44,

No. 10, pp. 1261-1271, Oct. 10, 1996.

CC Lab., EE, NCHU

Turbo codes 24

Concatenation of codes

• A concatenated code is composed of two separate codes that

combined to form a large code.

• There are two types of concatenation:

– Serial concatenation

– Parallel concatenation

CC Lab., EE, NCHU

Turbo codes 25

• The total code rate for serial concatenation is

rtot =
k1k2

n1n2

which is equal to the product of the two code rates.

Figure H: Serial concatenated code

CC Lab., EE, NCHU

Turbo codes 26

• The total code rate for parallel concatenation is:

rtot =
k

n1 + n2

Figure I: Parallel concatenated code.

CC Lab., EE, NCHU

Turbo codes 27

• For serial and parallel concatenation schemes:

An interleaver is often between the encoders to improve burst

error correction capacity or to increase the randomness of the

code.

• Turbo codes use the parallel concatenated encoding scheme.

However, the turbo code decoder is based on the serial

concatenated decoding scheme.

• The serial concatenated decoders are used because they perform

better than the parallel concatenated decoding scheme due to the

fact that the serial concatenation scheme has the ability to share

information between the concatenated decoders whereas the

decoders for the parallel concatenation scheme are primarily

decoding independently.

CC Lab., EE, NCHU

Turbo codes 28

Interleaver design

• The interleaver is used to provide randomness to the input

sequences.

• Also, it is used to increase the weights of the codewords as shown

in Figure J.

Figure J: The interleaver increases the code weight for RSC

Encoder 2 as compared to RSC Encoder 1.

CC Lab., EE, NCHU

Turbo codes 29

• Form Figure K, the input sequence xi produces output sequences

c1i and c2i respectively. The input sequence x1 and x2 are

different permuted sequences of x0.

Figure K: An illustrative example of an interleaver’s capability.

CC Lab., EE, NCHU

Turbo codes 30

Table: Input an Output Sequences for Encoder in Figure K.

Input Output Output Codeword

Sequence xi Sequence c1i Sequence c2i Weight i

i = 0 1100 1100 1000 3

i = 1 1010 1010 1100 4

i = 2 1001 1001 1110 5

• The interlever affect the performance of turbo codes because it

directly affects the distance properties of the code.

CC Lab., EE, NCHU

Turbo codes 31

Block interleaver

• The block interleaver is the most commonly used interleaver in

communication system.

• It writes in column wise from top to bottom and left to right and

reads out row wise from left to right and top to bottom.

Figure L: Block interleaver.

CC Lab., EE, NCHU

Turbo codes 32

Random (Pseudo-Random) interleaver

• The random interleaver uses a fixed random permutation and

maps the input sequence according to the permutation order.

• The length of the input sequence is assumed to be L.

• The best interleaver reorder the bits in a pseudo-random manner.

Conventional block (row-column) interleavers do not perform

well in turbo codes, except at relatively short block lengths.

CC Lab., EE, NCHU

Turbo codes 33

Figure M: A random (pseudo-random) interleaver with L = 8.

CC Lab., EE, NCHU

Turbo codes 34

Circular-Shifting interleaver

• The permutation p of the circular-shifting interleaver is defined

by

p(i) = (ai + s) mod L

satisfying a < L, a is relatively prime to L, and s < L where i is

the index, a is the step size, and s is the offset.

CC Lab., EE, NCHU

Turbo codes 35

Figure N: A circular-shifting interleaver with L = 8, a = 3, s = 0.

CC Lab., EE, NCHU

Turbo codes 36

Iterative decoding of turbo codes

CC Lab., EE, NCHU

Turbo codes 37

The notation of turbo code enocder

• The information sequence (including termination bits) is

considered to a block of length K = K∗ + v and is represented by

the vector u = (u0, u1, . . . , uK−1).

CC Lab., EE, NCHU

Turbo codes 38

• Because encoding is systematic the information sequence u is the

first transmitted sequence; that is

u = v(0) = (v
(0)
0 , v

(0)
1 , . . . , v

(0)
K−1).

• The first encoder generates the parity sequence

v(1) = (v
(1)
0 , v

(1)
1 , . . . , v

(1)
K−1).

• The parity sequence by the second encoder a is represented as

v(2) = (v
(2)
0 , v

(2)
1 , . . . , v

(2)
K−1).

• The final transmitted sequence (codeword) is given by the vector

v = (v
(0)
0 v

(1)
0 v

(2)
0 , v

(0)
1 v

(1)
1 v

(2)
1 , . . . , v

(0)
K−1v

(1)
K−1v

(2)
K−1)

aThe second encoder may or may not be transmitted

CC Lab., EE, NCHU

Turbo codes 39

The basic structure

of an iterative turbo decoder

• The basic structure of an iterative turbo decoder is shown in

Figure O. (We assume here a rate R = 1/3 parallel concatenated

code without puncturing.)

Figure O: Basic structure of an iterative turbo decoder.

CC Lab., EE, NCHU

Turbo codes 40

• At each time unit l, three output values are received from the

channel, one for the information bit ul = v
(0)
l , denoted by r

(0)
l ,

and two for the parity bits v
(1)
l and v

(2)
l , denote by r

(1)
l and r

(2)
l ,

and the 3K-dimensional received vector is denoted by

r = (r
(0)
0 r

(1)
0 r

(2)
0 , r

(0)
1 r

(1)
1 r

(2)
1 , . . . , r

(0)
K−1r

(1)
K−1r

(2)
K−1)

• Let each transmitted bit represented using the mapping

0 → −1 and 1 → +1.

CC Lab., EE, NCHU

Turbo codes 41

• For an AWGN channel with unquantized (soft) outputs, we

define the log-likelihood ratio (L-value) L(v
(0)
l |r(0)

l) = L(ul|r(0)
l)

(before decoding) of a transmitted information bit ul given the

received value r
(0)
l as

L(ul|r(0)
l) = ln

P (ul=+1|r
(0)
l)

P (ul=−1|r
(0)
l)

= ln
P (r

(0)
l |ul=+1)P (ul=+1)

P (r
(0)
l |ul=−1)P (ul=−1)

= ln
P (r

(0)
l |ul=+1)

P (r
(0)
l |ul=−1)

+ ln P (ul=+1)
P (ul=−1)

= ln e
−(Es/N0)(r

(0)
l

−1)2

e
−(Es/N0)(r

(0)
l

+1)2
+ ln P (ul=+1)

P (ul=−1)

where Es/N0 is the channel SNR, and ul and r
(0)
l have both been

normalized by a factor of
√

Es.

CC Lab., EE, NCHU

Turbo codes 42

• This equation simplifies to

L(ul|r(0)
l) = −Es

N0

{
(r

(0)
l − 1)2 − (r

(0)
l + 1)2

}
+ ln P (ul=+1)

P (ul=−1)

= Es

N0
r
(0)
l + ln P (ul=+1)

P (ul=−1)

= Lcr
(0)
l + La(ul),

where Lc = 4(Es/N0) is the channel reliability factor, and La(ul)

is the a priori L-value of the bit ul.

• In the case of a transmitted parity bit v
(j)
l , given the received

value r
(j)
l , j = 1, 2, the L-value (before decoding) is given by

L(v
(j)
l |r(j)

l) = Lcr
(j)
l + La(v

(j)
l) = Lcr

(j)
l , j = 1, 2,

CC Lab., EE, NCHU

Turbo codes 43

• In a linear block code with equally likely information bits, the

parity bits are also equally likely to be +1 or −1, and thus the a

priori L–values of the parity bits are 0; that is,

La(v
(j)
l = ln

P (v
(j)
l)

P (v
(j)
l = −1)

= 0, j = 1, 2.

CC Lab., EE, NCHU

Turbo codes 44

• The received soft channel L-valued Lcr
(0)
l for ul and Lcr

(1)
l for

v
(1)
l enter decoder 1, and the (properly interleaved) received soft

channel L–valued Lcr
(2)
l for v

(2)
l enter decoder 2.

The output of decoder 1 contains two terms:

1. L(1)(ul) = ln [P (ul = +1/r1,La)/P (ul = −1|r1,La)], the a pos-

teriori L-value (after decoding) of each information bit pro-

duced by decoder 1 given the (partial) received vector r1
Δ
=[

r
(0)
0 r

(1)
0 , r

(0)
1 r

(1)
1 , . . . , r

(0)
K−1r

(1)
K−1

]
and the a priori input vector

L
(1)
a

Δ
=

[
L

(1)
a (u0), L

(1)
a (u1), . . . , L

(1)
a (uK−1)

]
for decoder 1, and

2. L
(1)
e (ul) = L(1)(ul) −

[
Lcr

(0)
l + L

(2)
e (ul)

]
, the extrinsic a poste-

riori L-value (after decoding) associated with each information

bit produced by decoder 1, which, after interleaving, is passed

to the input of decoder 2 as the a priori value L
(2)
a (ul).

CC Lab., EE, NCHU

Turbo codes 45

• Subtracting the term in brackets, namely, Lcr
(0)
l + L

(2)
e (ul),

removes the effect of the current information bit ul from L(1)(ul),

leaving only the effect of the parity constraint, thus providing an

independent estimate of the information bit ul to decoder 2 in

addition to the received soft channel L-values at time l.

Similarly, the output of decoder 2 contains two terms:

1. L(2)(ul) = ln
[
P (ul = +1|r2,L

(2)
a)/P (ul = −1|r2,L

(2)
a)

]
, where

r2 is the (partial) received vector and L
(2)
a the a priori input

vector for decoder 2, and

2. L
(2)
e (ul) = L(2)(ul) −

[
Lcr

(0)
l + L

(1)
e

]
, and the extrinsic a pos-

teriori L–values L
(2)
e (ul) produced by decoder 2, after deinter-

leaving, are passed back to the input of decoder 1 as the a priori

values L
(1)
a (ul).

CC Lab., EE, NCHU

Turbo codes 46

Iterative decoding using the log-MAP algorithm

• Example. Consider the parallel concatenated convolutional code

(PCCC) formed by using the 2–state (2, 1, 1) systematic recursive

convolutional code (SRCC) with generator matrix

G(D) = [1
1

1 + D
]

as the constituent code. A block diagram of the encoder is shown

in Figure P(a).

– Also consider an input sequence of length K = 4, including

one termination bit, along with a 2 × 2 block (row–column)

interleaver, resulting in a (12, 3) PCCC with overall rate

R = 1/4.

CC Lab., EE, NCHU

Turbo codes 47

Figure P: (a) A 2-state turbo encoder and (b) the decoding

trellis for (2, 1, 1) constituent code with K = 4.

CC Lab., EE, NCHU

Turbo codes 48

– The length K = 4 decoding trellis for the component code is

show in Figure P(b), where the branches are labeled using the

mapping 0 → −1 and 1 → +1.

– The input block is given by the vector u = [u0, u1, u2, u3], the

interleaved input block is u′ = [[u′
0, u

′
1, u

′
2, u

′
3] = [u0, u1, u2, u3],

the parity vector for the first component code is given by

p(1) =
[
p
(1)
0 , p

(1)
1 , p

(1)
2 , p

(1)
3

]
, and the parity vector for the

second component code is p(2) =
[
p
(2)
0 , p

(2)
1 , p

(2)
2 , p

(2)
3

]
.

– We can represent the 12 transmitted bits in a rectangular

array, as shown in Figure R(a), where the input vector u

determines the parity vector p(1) in the first two rows, and

the interleaved input vector u′ determines the parity vector

p(2) in the first two columns.

CC Lab., EE, NCHU

Turbo codes 49

Figure R: Iterative decoding example for a (12,3) PCCC.

CC Lab., EE, NCHU

Turbo codes 50

– For purposes of illustration, we assume the particular bit

values shown in Figure R(b).

– We also assume a channel SNR of Es/N0 = 1/4 (−6.02dB), so

that the received channel L-values corresponding to the

received vector

r =
[
r
(0)
0 r

(1)
0 r

(2)
0 , r

(0)
1 r

(1)
1 r

(2)
1 , r

(0)
2 r

(1)
2 r

(2)
2 , r

(0)
3 r

(1)
3 r

(2)
3

]

are given by

Lcr
(j)
l = 4(

Es

N0
)r

(j)
l = r

(j)
l , l = 0, 1, 2, 3, j = 0, 1, 2.

Again for purposes of illustration, a set of particular received

channel L-values is given in Figure R(c).

CC Lab., EE, NCHU

Turbo codes 51

– In the first iteration of decoder 1 (row decoding), the

log–MAP algorithm is applied to the trellis of the 2-state

(2, 1, 1) code shown in Figure P(b) to compute the a

posteriori L-values L(1)(ul) for each of the four input bits and

the corresponding extrinsic a posteriori L-values L
(1)
e (ul) to

pass to decoder 2 (the column decoder).

– Similarly, in the first iteration of decoder 2, the log-MAP

algorithm uses the extrinsic posteriori L-values L
(1)
e (ul)

received from decoder 1 as the a priori L-values, L
(2)
a (ul) to

compute the a posteriori L-values L(2)(ul) for each of the four

input bits and the corresponding extrinsic a posteriori

L-values L
(2)
e (ul) to pass back to decoder 1.

Further decoding proceeds iteratively in this fashion.

CC Lab., EE, NCHU

Turbo codes 52

• To simplify notation, we denote the transmitted vector as

v = (v0,v1,v2,v3), where vl = (ul, pl), l = 0, 1, 2, 3, ul is an

input bit, and pl is a parity bit.

• Similarly, the received vector is denoted as r = (r0, r1, r2, r3),

where rl = (rul
, rpl

), l = 0, 1, 2, 3, rul
is the received symbol

corresponding to the transmitted input bit ul, and rpl
is the

received symbol corresponding to the transmitted parity bit pl.

CC Lab., EE, NCHU

Turbo codes 53

• An input bit a posteriori L-value is given by

L(ul) = ln P (ul=+1|)r
P (ul=−1|)r

= ln

∑
(s′,s)∈

∑+
l

p(s′,s,r)∑
(s′,s)∈

∑−
l

p(s′,s,r)

where

– s′ represents a state at time l (denote by s′ ∈ σl).

– s represents a state at time l + 1 (denoted by s ∈ σl+1).

– The sums are over all state pairs (s′, s) for which ul = +1 or

−1, respectively.

CC Lab., EE, NCHU

Turbo codes 54

• We can write the joint probabilities p(s′, s, r) as

p(s′, s, r) = eα∗
l (s′)+γ∗

l (s′,s)+β∗
l+1(s),

where α∗
l (s

′), γ∗
l (s′, s), and β∗

l+1(s) are the familiar log-domain

α′s, γ′s and β′s of the MAP algorithm.

• For a continuous-output AWGN channel with an SNR of Es/N0,

we can write the MAP decoding equations as�

�

�

	

Branch metric: r∗l (s′, s) = ulLa(ul)
2

+ Lc
2

rl · vl, l = 0, 1, 2, 3,

Forward metric: α∗

l+1(s) =
∗

max
s′∈αl

[
γ∗

l (s′, s) + α∗

l (s
′)

]
, l = 0, 1, 2, 3,

Backward metric: β∗

l (s′) =
∗

max
s∈σl+1

[
γ∗

l (s′, s) + β∗

l+1(s)
]

where the
∗

max function is defined in
∗

max(x, y) ≡ ln(ex + ey) =

max(x, y) + ln(1 + e−|x+y|) and the initial conditions are

α∗
0(S0) = β∗

4(S0) = 0, and α∗
0(S1) = β∗

4(S1) = −∞.

CC Lab., EE, NCHU

Turbo codes 55

• Further simplifying the branch metric, we obtain

r∗
l
(s′, s) =

ulLa(ul)
2

+ Lc
2

(ulrul + plrpl)

= ul
2

[La(ul) + Lcrul] + pl
2

Lcrpl , l = 0, 1, 2, 3.

• We can express the a posteriori L-value of u0 as

L(u0) = ln p(s′ = S0, s = S1, r) − ln p(s′ = S0, s = S0, r)

=
[
α∗

0(S0) + γ∗

0 (s′ = S0, s = S1) + β∗

1 (S1)
]
−[

α∗

0(S0) + γ∗

0 (s′ = S0, s = S0) + β∗

1 (S1)
]

=
{
+ 1

2
[La(u0) + Lcru0] + 1

2
Lcrp0 + β∗

1 (S1)
}
−{

−
1
2

[La(u0) + Lcru0] + 1
2
Lcrp0 + β∗

1 (S0)
}

=
{
+ 1

2
[La(u0) + Lcru0]

}
−

{
−

1
2

[La(u0) + Lcru0]
}

+{
+ 1

2
Lcrp0 + β∗

1 (S1) + 1
2
Lcrp0 − β∗

1 (S0)
}

= Lcru0 + La(u0) + Le(u0),

where Le(u0) ≡ Lcrp0 + β∗

1 (S1) − β∗

1 (S0) represents the extrinsic a

posterior (output) L-value of u0.

CC Lab., EE, NCHU

Turbo codes 56

The final form of above equation illustrate clearly the three

components of the a posteriori L-value of u0 computed at the

output of a log-MAP decoder:

• Lcru0: the received channel L-value corresponding to bit u0,

which was part of the decoder input.

• La(u0): the a priori L-value of u0, which was also part of the

decoder input. Expect for the first iteration of decoder 1, this

term equals the extrinsic a posteriori L-value of u0 received

from the output of the other decoder.

• Le(u0): the extrinsic part of the a posteriori L-value of u0,

which dose not depend on Lcru0 or La(u0). This term is then

sent to the other decoder as its a priori input.

CC Lab., EE, NCHU

Turbo codes 57

• We now proceed in a similar manner to compute the a posteriori

L-value of bit u1.

• We see from Figure P(b) that in this case there are two terms in

each of the sums in L(ul) = ln

∑
(s′,s)∈

∑+
l

p(s′,s,r)∑
(s′,s)∈

∑−
l

p(s′,s,r) , because at this

time there are two +1 and two −1 transitions in the trellis

diagram.

CC Lab., EE, NCHU

Turbo codes 58

L(u1) = ln
[
p(s′ = S0, s = S1, r) + p(s′ = S1, s = S0, r)

]
−

ln
[
p(s′ = S0, s = S0, r) + p(s′ = S1, s = S1, r)

]
=

∗
max

{[
α

∗
1(S0) + γ

∗
1 (s

′
= S0, s = S1) + β

∗
2 (S1)

]
,[

α∗
1(S1) + γ∗

1 (s′ = S1, s = S0) + β∗
2 (S0)

]}
−

∗
max

{[
α

∗
1(S0) + γ

∗
1 (s

′
= S0, s = S0) + β

∗
2 (S0)

]
,[

α∗
1(S1) + γ∗

1 (s′ = S1, s = S1) + β∗
2 (S1)

]}
=

∗
max

{(
+

1

2
[La(u1) + Lcru1] +

1

2
Lcrp1 + α

∗
1(S0) + β

∗
2 (S1)

)
,

(
+ 1

2 [La(u1) + Lcru1] −
1
2 Lcrp1 + α∗

1(S1) + β∗
2 (S0)

)}
−

∗
max

{(
+

1

2
[La(u1) + Lcru1] +

1

2
Lcrp1 + α

∗
1(S0) + β

∗
2 (S0)

)
,

(
+ 1

2 [La(u1) + Lcru1] −
1
2 Lcrp1 + α∗

1(S1) + β∗
2 (S1)

)}
=

{
+ 1

2 [La(u1) + Lcru1]
}
−

{
− 1

2 [La(u1) + Lcru1]
}

+
∗

max

{[
+

1

2
Lcrp1 + α

∗
1(S0) + β

∗
2 (S1)

]
,

[
−

1

2
Lcrp1 + α

∗
1(S1) + β

∗
2 (S0)

]}

−
∗

max

{[
+

1

2
Lcrp1 + α

∗
1(S0) + β

∗
2 (S0)

]
,

[
−

1

2
Lcrp1 + α

∗
1(S1) + β

∗
2 (S1)

]}

= Lcru1 + La(u1) + Le(u1)

∗
max(w + x, w + y) ≡ w +

∗
max(x, y)

CC Lab., EE, NCHU

Turbo codes 59

• Continuing, we can use the same procedure to compute the a
posteriori L-values of bits u2 and u3 as

L(u2) = Lcru2 + La(u2) + Le(u2),

where

⇒

⎧⎪⎪⎨
⎪⎪⎩

Le(u2) =
∗

max

{[
+

1

2
Lcrp2 + α

∗
2(S0) + β

∗
3 (S1)

]
,

[
−

1

2
Lcrp2 + α

∗
2(S1) + β

∗
3 (S0)

]}

−
∗

max

{[
+

1

2
Lcrp2 + α

∗
2(S0) + β

∗
3 (S0)

]
,

[
−

1

2
Lcrp2 + α

∗
2(S1) + β

∗
3 (S1)

]}

and
L(u3) = Lcru3 + La(u3) + Le(u3),

where

L(u3) =
[
− 1

2 Lcrp3 + α∗
3(S1) + β∗

4 (S0)
]
−

[
− 1

2 Lcrp3 + α∗
3(S0) + β∗

4 (S0)
]

= α∗
3(S1) − α∗

3(S0)

CC Lab., EE, NCHU

Turbo codes 60

• We now need expressions for the terms α∗
1(S0), α

∗
1(S1), α

∗
2(S0),

α∗
2(S1), α

∗
3(S0), α

∗
3(S1), β

∗
1(S0), β

∗
1(S1), β

∗
2(S0), β

∗
2(S1), β

∗
3(S0),

and β∗
3(S1) that are used to calculate the extrinsic a posteriori

L-values Le(ul), l = 0, 1, 2, 3.

α∗
1(S0) = 1

2 (Lu0 + Lp0)

α∗
1(S1) = − 1

2 (Lu0 + Lp0)

α∗
2(S0) =

∗
max

{[
−

1

2
(Lu1 + Lp1) + α

∗
1(S0)

]
,

[
+

1

2
(Lu1 − Lp1) + α

∗
1(S1)

]}

α∗
2(S1) =

∗
max

{[
+

1

2
(Lu1 + Lp1) + α

∗
1(S0)

]
,

[
−

1

2
(Lu1 − Lp1) + α

∗
1(S1)

]}

α∗
3(S0) =

∗
max

{[
−

1

2
(Lu2 + Lp2) + α

∗
2(S0)

]
,

[
+

1

2
(Lu2 − Lp2) + α

∗
2(S1)

]}

α∗
3(S1) =

∗
max

{[
+

1

2
(Lu2 + Lp2) + α

∗
2(S0)

]
,

[
−

1

2
(Lu2 − Lp2) + α

∗
2(S1)

]}

CC Lab., EE, NCHU

Turbo codes 61

β∗
3 (S0) = − 1

2 (Lu3 + Lp3)

β∗
1 (S1) = + 1

2 (Lu3 − Lp3)

β∗
2 (S0) =

∗
max

{[
−

1

2
(Lu2 + Lp2) + β

∗
3 (S0)

]
,

[
+

1

2
(Lu2 − Lp2) + β

∗
3 (S1)

]}

β∗
2 (S1) =

∗
max

{[
+

1

2
(Lu2 + Lp2) + β

∗
3 (S0)

]
,

[
−

1

2
(Lu2 − Lp2) + β

∗
3 (S1)

]}

β∗
1 (S0) =

∗
max

{[
−

1

2
(Lu1 + Lp1) + β

∗
2 (S0)

]
,

[
+

1

2
(Lu1 − Lp1) + β

∗
2 (S1)

]}

β∗
1 (S1) =

∗
max

{[
+

1

2
(Lu1 + Lp1) + β

∗
2 (S0)

]
,

[
−

1

2
(Lu1 − Lp1) + β

∗
2 (S1)

]}

• We note here that the a priori L-value of a parity bit La(pl) = 0

for all l, since for a linear code with equally likely.

CC Lab., EE, NCHU

Turbo codes 62

• We can write the extrinsic a posteriori L-values in terms of Lu2
and Lp2 as

Le(u0) = Lp0 + β∗
1 (S1) − β∗

1 (S0),

Le(u1) =
∗

max

{[
+

1

2
Lp1 + α

∗
1(S0) + β

∗
2 (S1)

]
,

[
−

1

2
Lp1 + α

∗
1(S1) + β

∗
2 (S0)

]}
−

∗
max

{[
−

1

2
Lp1 + α

∗
1(S0) + β

∗
2 (S0)

]
,

[
+

1

2
Lp1 + α

∗
1(S1) + β

∗
2 (S1)

]}

Le(u2) =
∗

max

{[
+

1

2
Lp2 + α

∗
2(S0) + β

∗
3 (S1)

]
,

[
−

1

2
Lp2 + α

∗
2(S1) + β

∗
3 (S0)

]}
−

∗
max

{[
−

1

2
Lp2 + α

∗
2(S0) + β

∗
3 (S0)

]
,

[
+

1

2
Lp2 + α

∗
2(S1) + β

∗
3 (S1)

]}

and
Le(u3) = α

∗
3(S1) − α

∗
3(S0).

• The extrinsic L-value of bit ul does not depend directly on either

the received or a priori L-values of ul.

CC Lab., EE, NCHU

Turbo codes 63

Iterative decoding using the max-log-MAP

algorithm

• Example. When the approximation
∗

max(x, y) ≈ max(x, y) is

applied to the forward and backward recursions, we obtain for

the first iteration of decoder 1

α∗
2(S0) ≈ max{−0.70, 1.20} = 1.20

α∗
2(S1) ≈ max{−0.20,−0.30} = −0.20

α∗
3(S0) ≈ max

{[
−

1

2
(−1.8 + 1.1) + 1.20

]
,

[
+

1

2
(−1.8 − 1.1) − 0.20

]}

= max {1.55,−1.65} = 1.55

α∗
3(S1) ≈ max

{[
+

1

2
(−1.8 + 1.1) + 1.20

]
,

[
−

1

2
(−1.8 − 1.1) − 0.20

]}

= max {0.85, 1.25} = 1.25

CC Lab., EE, NCHU

Turbo codes 64

β∗
2 (S0) ≈ max{0.35, 1.25} = 1.25

β∗
2 (S1) ≈ max{−1.45,−3.05} = −3.05

β∗
1 (S0) ≈ max

{[
−

1

2
(1.0 − 0.5) + 1.25

]
,

[
+

1

2
(1.0 − 0.5) + 3.05

]}

= max {1.00, 3.30} = 3.30

β∗
1 (S1) ≈ max

{[
+

1

2
(1.0 + 0.5) + 1.25

]
,

[
−

1

2
(1.0 + 0.5) + 3.05

]}

= max {2.00, 2.30} = 2.30

L(1)
e (u0) ≈ 0.1 + 2.30 − 3.30 = −0.90

L(1)
e (u0) ≈ max {[−0.25 − 0.45 + 3.05] , [0.25, +0.45 + 1.25]}

−max {[0.25 − 0.45 + 1.25] , [−0.25 + 0.45 + 3.05]}

= max{2.35, 1.95} − max{1.05, 3.25} = 2.35 − 3.25 = −0.90,

and, using similar calculations, we have

L(1)
e (u2) ≈ +1.4 and L(1)

e (u3) ≈ −0.3

.

CC Lab., EE, NCHU

Turbo codes 65

– Using these approximate extrinsic a posteriori L-values as a

posteriori L-value as a priori L-values for decoder 2, and

recalling that the roles of u1 and u2 are reversed for decoder

2, we obtain

α∗
1(S0) = − 1

2 (0.8 − 0.9 − 1.2) = 0.65

α∗
1(S1) = + 1

2 (0.8 − 0.9 − 1.2) = −0.65

α∗
2(S0) ≈ max

{[
− 1

2 (−1.8 + 1.4 + 1.2) + 0.65
]

,
[
+ 1

2 (−1.8 + 1.4 − 1.2) − 0.65
]}

= max{0.25,−1.45} = 0.25

α∗
2(S1) ≈ max

{[
+ 1

2 (−1.8 + 1.4 + 1.2) + 0.65
]

,
[
− 1

2 (−1.8 + 1.4 − 1.2) − 0.65
]}

= max{1.05, 0.15} = 1.05

α∗
3(S0) ≈ max

{[
− 1

2 (1.0 − 0.9 + 0.2) + 0.25
]

,
[
+ 1

2 (1.0 − 0.9 − 0.2) + 1.05
]}

= max{0.10, 1.00} = 1.00

α∗
3(S1) ≈ max

{[
+ 1

2 (1.0 − 0.9 + 0.2) + 0.25
]

,
[
− 1

2 (1.0 − 0.9 − 0.2) + 1.05
]}

= max{0.40, 1.10} = 1.10

CC Lab., EE, NCHU

Turbo codes 66

β∗
3 (S0) = − 1

2 (1.6 − 0.3 − 1.1) = −0.10

β∗
3 (S1) = + 1

2 (1.6 − 0.3 + 1.1) = 1.20

β∗
2 (S0) ≈ max

{[
− 1

2 (1.0 − 0.9 + 0.2) − 0.10
]

,
[
+ 1

2 (1.0 − 0.9 + 0.2) + 1.20
]}

= max{−0.25, 1.35} = 1.35

β∗
2 (S1) ≈ max

{[
+ 1

2 (1.0 − 0.9 − 0.2) − 0.10
]

,
[
− 1

2 (1.0 − 0.9 − 0.2) + 1.20
]}

= max{−0.15, 1.25} = 1.25

β∗
1 (S0) ≈ max

{[
− 1

2 (−1.8 + 1.4 + 1.2) + 1.35
]

,
[
+ 1

2 (−1.8 + 1.4 + 1.2) + 1.25
]}

= max{0.95, 1.65} = 1.65

β∗
1 (S1) ≈ max

{[
+ 1

2 (−1.8 + 1.4 − 1.2) + 1.35
]

,
[
− 1

2 (−1.8 + 1.4 − 1.2) + 1.25
]}

= max{0.55, 2.05} = 2.05

L(2)
e (u0) ≈ −1.2 + 2.05 − 1.65 = −0.80

L(2)
e (u2) ≈ max {[0.6 + 0.65 + 1.25] , [−0.6 − 0.65 + 1.35]}

−max {[−0.6 + 0.65 + 1.35] , [0.6 − 0.65 + 1.25]}

= max {2.5, 0.1} − max {1.4, 1.2} = 2.5 − 1.4 = 1.10

and, using similar calculations, we have

L(2)
e (u1) ≈ −0.8 and L(2)

e (u3) ≈ +0.1.

CC Lab., EE, NCHU

Turbo codes 67

– We calculate the approximate a posteriori L-value of

information bit u0 after the first complete iteration of

decoding as

L(2)(u0) = Lcru0
+ L(2)

a (u0) + Le(u0) ≈ 0.8− 0.9− 0.8 = −0.9,

and we similar obtain the remaining approximate a posteriori

L-values as L(2)(u2) ≈ +0.7, L(2)(u1) ≈ −0.7, and

L(2)(u3) ≈ +1.4.

CC Lab., EE, NCHU

Turbo codes 68

Fundamental principle of turbo decoding

• We now summarize our discussion of iterative decoding using the

log-MAP and Max-log-MAP algorithm:

– The extrinsic a posteriori L-values are no longer strictly

independent of the other terms after the first iteration of

decoding, which causes the performance improvement from

successive iterations to diminish over time.

– The concept of iterative decoding is similar to negative

feedback in control theory, in the sense that the extrinsic

information from the output that is fed back to the input has

the effect of amplifying the SNR at the input, leading to a

stable system output.

CC Lab., EE, NCHU

Turbo codes 69

– Decoding speed can be improved by a factor of 2 by allowing

the two decoders to work in parallel. In this case, the a priori

L-values for the first iteration of decoder 2 will be the same as

for decoder 1 (normally equal to 0), and the extrinsic a

posteriori L-values will then be exchanged at the same time

prior to each succeeding iteration.

– After a sufficient number of iterations, the final decoding

decision can be taken from the a posteriori L-values of either

decoder, or form the average of these values, without

noticeably affect performance.

CC Lab., EE, NCHU

Turbo codes 70

– As noted earlier, the L-values of the parity bits remain

constant throughout decoding. In serially concatenated

iterative decoding systems, however, parity bits from the

outer decoder enter the inner decoder, and thus the L-values

of these parity bits must be updated during the iterations.

– The forgoing approach to iterative decoding is ineffective for

nonsystematic constituent codes, since channel L-values for

the information bits are not available as inputs to decoder 2;

however, the iterative decoder of Figure O can be modified to

decode PCCCs with nonsystematic component codes.

CC Lab., EE, NCHU

Turbo codes 71

– As noted previously, better performance is normally achieved

with pseudorandom interleavers, particularly for large block

lengths, and the iterative decoding procedure remains the

same.

– It is possible, however, particularly on very noisy channels, for

the decoder to converge to the correct decision and then

diverge again, or even to “oscillate” between correct and

incorrect decision.

CC Lab., EE, NCHU

Turbo codes 72

– Iterations can be stopped after some fixed number, typically

in the range 10 − 20 for most turbo codes, or stopping rules

based on reliability statistics can be used to halt decoding.

– The Max-log-MAP algorithm is simpler to implement than

the log-MAP algorithm; however, it typically suffers a

performance degradation of about 0.5 dB.

– It can be shown that MAX-log-MAP algorithm is equivalent

to the SOVA algorithm.

CC Lab., EE, NCHU

Turbo codes 73

The stopping rules for iterative decoding

1. One method is based on the cross-entropy (CE) of the APP

distributions at the outputs of the two decoders.

- The cross-entropy D(P ||Q) of two joint probability

distributions P (u) and Q(u), assume statistical independence

of the bits in the vector u = [u0, u1, . . . , uK−1], is defined as

D(P ||Q) = Ep

{
log

P (u)

Q(u)

}
=

K−1∑
l=0

Ep

{
log

P (ul)

Q(ul)

}
.

where Ep {·} denote expectation with respect to the

probability distribution P (ul).

CC Lab., EE, NCHU

Turbo codes 74

- D(P ||Q) is a measure of the closeness of two distributions, and

D(P ||Q) = 0 iff P (ul) = Q(ul), ul = ±1, l = 0, 1, . . . , K−1.

- The CE stopping rule is based on the different between the a

posteriori L-values after successive iterations at the outputs of

the two decoders. For example, let

L
(1)
(i) (ul) = Lcrul

+ L
(1)
a(i)(ul) + L

(1)
e(i)(ul)

represent the a posteriori L-value at the output decoder 1

after iteration i, and let

L
(2)
(i) (ul) = Lcrul

+ L
(2)
a(i)(ul) + L

(2)
e(i)(ul)

represent the a posteriori L-value at the output decoder 2

after iteration i.

CC Lab., EE, NCHU

Turbo codes 75

- Now, using the facts that L
(1)
a(i)(ul) = L

(2)
e(i−1)(ul) and

L
(2)
a(i)(ul) = L

(1)
e(i)(ul), and letting Q(ul) and P (ul) represent

the a posteriori probability distributions at the outputs of

decoders 1 and 2, respectively, we can write

L
(Q)
(i) (ul) = Lcrul

+ L
(P)
e(i−1)(ul) + L

(Q)
e(i)(ul)

and

L
(P)
(i) (ul) = Lcrul

+ L
(Q)
e(i)(ul) + L

(P)
e(i)(ul).

- We can write the difference in the two soft outputs as

L
(P)
(i) (ul) − L

(Q)
(i) (ul) = L

(P)
e(i)(ul) − L

(P)
e(i−1)(ul)

Δ
= ΔL

(P)
e(i)(ul);

that is, ΔL
(P)
e(i)(ul) represents the difference in the extrinsic a

posteriori L-values of decoder 2 in two successive iterations.

CC Lab., EE, NCHU

Turbo codes 76

- We now compute the CE of the a posteriori probability
distributions P (ul) and Q(ul) as follows:

Ep

{
log

P (ul)

Q(ul)

}
= P (ul = +1) log

P (ul = +1)

Q(ul = +1)

+P (ul = −1) log
P (ul = −1)

Q(ul = −1)

=
e
L

(P)
(i)

(ul)

1 + e
L

(P)
(i)

(ul)
log

e
L

(P)
(i)

(ul)

1 + e
L

(P)
(i)

(ul)
·

1 + e
L

(Q)
(i)

(ul)

e
L

(Q)
(i)

(ul)
+

e
−L

(P)
(i)

(ul)

1 + e
−L

(P)
(i)

(ul)
log

e
−L

(P)
(i)

(ul)

1 + e
−L

(P)
(i)

(ul)
·

1 + e
−L

(Q)
(i)

(ul)

e
−L

(Q)
(i)

(ul)
,

where we have used expressions for the a posteriori

distributions P (ul = ±1) and Q(ul = ±1) analogous to those

given in P (ul = ±1) = e±La(ul)

{1+e±La(ul)}
.

CC Lab., EE, NCHU

Turbo codes 77

- The above equation can simplify as

Ep

{
log P (ul)

Q(ul)

}
= − �L

(P)

e(i)
(ul)

1+e
L

(P)
(i)

(ul)
+ log 1+e

−L
(Q)
(i)

(ul)

1+e
−L

(P)
(i)

(ul)
.

- The hard decisions after iteration i, û
(i)
l , satisfy

u
(i)
l = sgn

[
L

(P)
(i) (ul)

]
= sgn

[
L

(Q)
(i) (ul)

]
.

CC Lab., EE, NCHU

Turbo codes 78

- Using above equation and noting that

|L(P)
(i) (ul)| = sgn

[
L

(P)
(i) (ul)

]
L

(P)
(i) (ul) = û

(i)
l L

(P)
(i) (ul)

and

|L(Q)
(i) (ul)| = sgn

[
L

(Q)
(i) (ul)

]
L

(Q)
(i) (ul) = û

(i)
l L

(Q)
(i) (ul),

we can show that

Ep

{
log P (ul)

Q(ul)

}
= − �L

(P)

e(i)
(ul)

1+e
L

(P)
(i)

(ul)
+ log 1+e

−L
(Q)
(i)

(ul)

1+e
−L

(P)
(i)

(ul)
simplifies

further to Ep

{
log P (ul)

Q(ul)

}
≈ −û

(i)
l �L

(P)

e(i)
(ul)

1+e
|L

(P)
(i)

(ul)|
+ log 1+e

−|L
(Q)
(i)

(ul)|

1+e
−|L

(P)
(i)

(ul)|
.

CC Lab., EE, NCHU

Turbo codes 79

- We now use the facts that once decoding has converged, the

magnitudes of the a posteriori L-values are large; that is,∣∣∣L(P)
(i) (ul)

∣∣∣ � 0 and

∣∣∣L(Q)
(i) (ul)

∣∣∣ � 0,

and that when x is large, e−x is small, and

1 + e−x ≈ 1 and log(1 + e−x) ≈ e−x

- Applying these approximations to Ep

{
log P (ul)

Q(ul)

}
, we can

show that

Ep

{
log

P (ul)

Q(ul)

}
≈ e

−
∣∣∣L(Q)

(i)
(ul)

∣∣∣ (
1 − e

−û
(i)
l ΔL

(P)

e(i)
(ul)

·(1 + û
(i)
l ΔL

(P)
e(i)(ul))

)

CC Lab., EE, NCHU

Turbo codes 80

- Noting that the magnitude of ΔL
(P)
e(i)(ul) will be smaller than

1 when decoding converges, we can approximate the term

e
−û

(i)
l ΔL

(P)

e(i)
(ul) using the first two terms of its series expansion

as follows:

e
−û

(i)
l ΔL

(P)

e(i)
(ul) ≈ 1 − û

(i)
l ΔL

(P)
e(i)(ul),

which leads to the simplified expression

Ep

{
log P (ul)

Q(ul)

}
≈ e

−

∣∣∣L(Q)
(i)

(ul)
∣∣∣ [(

1 − û
(i)
l ΔL

(P)

e(i)(ul)
) (

1 + û
(i)
l ΔL

(P)

e(i)(ul)
)]

= e
−

∣∣∣L(Q)
(i)

(ul)
∣∣∣ [

û
(i)
l ΔL

(P)

e(i)(ul)
]2

=

∣∣∣ΔL
(P)
e(i)

(ul)
∣∣∣2

e

∣∣∣∣L(Q)
(i)

(ul)

∣∣∣∣

CC Lab., EE, NCHU

Turbo codes 81

– We can write the CE of the probability distributions P (u)

and Q(u) at iteration i as

D(i)(P ||Q)
Δ
= Ep

{
log P (u)

Q(u)

}

≈ ∑K−1
l=0

∣∣∣ΔL
(P)

e(i)
(ul)

∣∣∣2

e
|L(Q)

(i)
(ul)| ,

where we note that the statistical independence assumption

does not hold exactly as the iterations proceed.

– We next define

T (i)
Δ
=

∣∣∣ΔL
(P)
e(i)(ul)

∣∣∣2

e

∣∣∣L(Q)

(i)
(ul)

∣∣∣
as the approximate value of the CE at iteration i. T (i) can be

computed after each iteration.

CC Lab., EE, NCHU

Turbo codes 82

– Experience with computer simulations has shown that once

convergence is achieved, T (i) drops by a factor of 10−2 to

10−4 compared with its initial value, and thus it is reasonable

to use

T (i) < 10−3T (1)

as a stopping rule for iterative decoding.

CC Lab., EE, NCHU

Turbo codes 83

2. Another approach to stopping the iterations in turbo decoding is

to concatenate a high-rate outer cyclic code with an inner turbo

code.

Figure : A concatenation of an outer cyclic code with

an inner turbo code.

CC Lab., EE, NCHU

Turbo codes 84

– After each iteration, the hard-decision output of the turbo

decoder is used to check the syndrome of the cyclic code.

– If no errors are detected, decoding is assumed correct and the

iterations are stopped.

– It is important to choose an outer code with a low undetected

error probability, so that iterative decoding is not stopped

prematurely.

– For this reason it is usually advisable not to check the

syndrome of the outer code during the first few iterations,

when the probability of undetected error may be larger than

the probability that the turbo decoder is error free.

CC Lab., EE, NCHU

Turbo codes 85

– This method of stopping the iterations is particularly effective

for large block lengths, since in this case the rate of the outer

code can be made very high, thus resulting in a negligible

overall rate loss.

– For large block lengths, the foregoing idea can be extended to

include outer codes, such as BCH codes, that can correct a

small number of errors and still maintain a low undetected

error probability.

– In this case, the iterations are stopped once the number of

hard-decision errors at the output of the turbo decoder is

within the error-correcting capability of the outer code.

CC Lab., EE, NCHU

Turbo codes 86

– This method also provides a low word-error probability for

the complete system; that is, the probability that the entire

information block contains one or more decoding errors can

be made very small.

CC Lab., EE, NCHU

LDPC Codes

Communication and Coding Laboratory

Dept. of Electrical Engineering,
National Chung Hsing University

LDPC Codes 1

Reference

1. (*)

•
2. •
3. •

CC Lab, EE, NCHU

LDPC Codes 2

4. •
5. •
6. •
7. •
8. •

CC Lab, EE, NCHU

LDPC Codes 3

• Chapter 11: LDPC Codes

1. Introduction

2. A geometric construction of LDPC code

3. EG-LDPC code

4. PG-LDPC code

5. Random LDPC code

6. Decoding of LDPC code

CC Lab, EE, NCHU

LDPC Codes 4

Introduction

CC Lab, EE, NCHU

LDPC Codes 5

An LDPC code is defined as the null space of a parity-check matrix
H that has the following structural properties:

1. Each row consists of ρ 1’s.

2. Each column consists of γ 1’s.

3. The number of 1’s in common between ant two columns, denoted
by λ, is no greater than 1; that is λ = 0 or 1.

4. Both ρ and γ are small compared with length of the code and the
number of rowsin H [1,2].

CC Lab, EE, NCHU

LDPC Codes 6

• Properties (1) and (2) say that the parity check matrix H has
constant row and column weights ρ and γ . Property (3) implies
that no two rows of H have more than one 1 in common

• We define the density r of the parity-check matrix H as the ratio
of the total number of 1’s in H to the total number of entries in
H. Then, we readily see that

r = ρ/n = γ/J

where J is number of rows in H.

• The LDPC code given by the definition is called a
(γ, ρ) − regular LDPC code, If all the columns or all the rows of
the parity check matrix H do not have the same weight, an
LDPC code is then said to be irregular.

CC Lab, EE, NCHU

LDPC Codes 7

Ex: Consider the matrix H given below. Each column and each row
of this matrix consist of four 1’s, respectively. It can be checked
easily that no two columns (or two rows) have more than one 1 ion
common. The density of this matrix 1s 0.267. Therefore, it’s is a
low-density matrix. The null space of this matrix given a (15,7)
LDPC code with a minimum distance of 5. It will be shown in a later
section that this code is cyclic and is a BCH code.

CC Lab, EE, NCHU

LDPC Codes 8

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1 1 0 1 0 0 0 1

1 0 0 0 0 0 0 0 1 1 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 1 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 1 0 1 0

0 0 0 1 0 0 0 0 0 0 0 1 1 0 1

1 0 0 0 1 0 0 0 0 0 0 0 1 1 0

0 1 0 0 0 1 0 0 0 0 0 0 0 1 1

1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 1 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 1 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0 1 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CC Lab, EE, NCHU

LDPC Codes 9

Let k be a positive integer greater than 1. For a given choice of ρ and
γ, Gallager gave the following construction of a class of linear codes
specified by their parity-check matrices. Form a kγ × kρ matrix H
that consists of γ k × kρ sub matrices, H1 H2 . . . Hγ . Each rows of
submatrix has ρ 1’s and each column of a submatrix contains a single
1. Therefore, each submatrix has a total of kρ 1’s. For 1 ≤ i ≤ k, the
ith row of H1 contains all its ρ 1,s in colimns (i − 1)ρ + 1toiρ. The
other submatrices are merely columnpermutations H1. Then,

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

H1

H2

...

Hγ

⎤
⎥⎥⎥⎥⎥⎥⎦

CC Lab, EE, NCHU

LDPC Codes 10

From the construction of H, it is clear that:

1. No two rows in a submatrix of H have any 1-component in
common.

2. No two columns in a submatrix of H have more than one 1 in
common.

Because the total number of ones in H is kργ and the total number
of entries in H is k2ργ, the density of H is 1/k. If k is chosen much
greater than 1, H has a very small density and is a sparse matrix.

CC Lab, EE, NCHU

LDPC Codes 11

Consider an LDPC code C of length n specified by a J × n

parity-check matrix H. Let h1,h2,. . .,hJ denote the rows of H where:

hj = (hj,0, hj,1, . . . , hj,n−1)

for 1 ≤ j ≤ J . v = (v0, v1, . . . , vn−1) is a codeword in C. Then, the
inner product:

sj = v · h =
n−1∑
l=0

vlhj,l = 0

give a parity-check sum. There are a total of J such parity-check
sums specified by the J rows of H.

CC Lab, EE, NCHU

LDPC Codes 12

A code bit vl is said to be checked by the sum v · hj if hj,l = 1. For
0 ≤ l ≤ n, let Al = {h(l)

1 , h
(l)
2 , . . . , h

(l)
γ } denote the set of rows in H

that check on the code bit vl. For 1 ≤ j ≤ γ, let

h(l)
j = (h(l)

j,0, h
(l)
j,1, . . . , h

(l)
j,n−1)

Then, h
(l)
1,l = h

(l)
2,l = · · · = h

(l)
γ,l = 1

CC Lab, EE, NCHU

LDPC Codes 13

Any error patten with �γ/2� or fewer errors can be corrected.
Consequently, the minimum distance dmin of the code is at least
γ + 1; that is dmin ≥ γ + 1 If γ is too small, the one-step
majority-logic decoding of an LDPC code will give very poor error
performance.

CC Lab, EE, NCHU

LDPC Codes 14

A geometric construction of LDPC code

CC Lab, EE, NCHU

LDPC Codes 15

Let Q be a finite geometry with n points and J lines has following
properties:

1. Every limes consist of ρ points.

2. Every points lies on γ lines.

3. Two points are connected by one and only one line.

4. Two lines are either disjoint or they intersect one and only one
point.

CC Lab, EE, NCHU

LDPC Codes 16

We denote the points and lines in Q with {p1,p2, · · · ,pn} and
{L1, L2, · · · , LJ}, respectively Let

v = (v1, v2, · · · , vn)

be an n-tuple over GF (2) whose components correspond to the n

points of geometry Q, where the ith component vi corresponds to the
ith point pi of Q. Let L be a line in Q, we define a vector based on
the points on L as follow:

vL = (v1, v2, · · · , vn)

where:

vi =

⎧⎨
⎩

1 if pi is a point on L

0 otherwise

CC Lab, EE, NCHU

LDPC Codes 17

We form a J × n matrix H(1)
Q whose rows are the incidence vectors of

the J lines of the finite geometry Q and whose columns correspond
to the n points of Q.
H(1)

Q has four properties :

1. Each row consists of ρ 1’s.

2. Each column has γ 1’s.

3. No two rows have more than one 1 in common.

4. No two column have more than one 1 in common

The null space of H(1)
Q gives an LDPC code of length n. This code is

called the type − I geometry − Q LDPC code, denoted by C
(1)
Q ,

which has a minimum distance of at least γ + 1.

CC Lab, EE, NCHU

LDPC Codes 18

• The n × J matrix: H(2)
Q is transpose of H(1)

Q , denote:

H(2)
Q = [H(1)

Q]T

• The properties and rank of H(1)
Q and H(2)

Q are the same.

• The null space of H(2)
Q gives an LDPC code of length J with a

minimum distance of at least ρ + 1. This LDPC code is called
the type − II geometry − Q LDPC code.

CC Lab, EE, NCHU

LDPC Codes 19

Four classes of finite-geometry LDPC codes can be constructed

1. Type-I Eucliden geometry (EG)-LDPC codes.

2. Type-II EG-LDPC codes.

3. Type-I projective geometry (PG)-LDPC codes.

4. Type-II PG-LDPC codes.

CC Lab, EE, NCHU

LDPC Codes 20

EG-LDPC code

CC Lab, EE, NCHU

LDPC Codes 21

• A type-I EG-LDPC code based on EG(m, 2s), we form the
parity-checked matrix H(1)

EG, whose rows are the incidence vectors
of all the lines in EG(m, 2s) and whose columns correspond to all
the points in EG(m, 2s). therefore, H(1)

EG consist of

J =
2(m−1)s(2ms − 1)

2s − 1

consists rows and n = 2ms columns.

• Because each line in EG(m, 2s) consists of 2s points, each row of
H(1)

EG has weigh ρ = 2s. Since each poi9nt in EG(m, 2s) is
interested by (2ms − 1)/(2s − 1) lines, each column of H(1)

EG has
weight γ = (2ms − 1)/(2s − 1). The density γ of H(1)

EG

γ =
ρ

n
=

2s

2ms
= 2−(m−1)s

CC Lab, EE, NCHU

LDPC Codes 22

• For m ≥ 2 and s ≥ 2, r ≤ 1/4 and H(1)
EG is a low-density

parity-check matrix. The null space of H(1)
EG hence give an LDPC

code of length n = 2ms, which is called an m-dimensional type-I
(0,s)th order EG-LDPC code denoted by C

(1)
EG(m, 0, s) The

minimum distance of this code is lower bounded as follows:

dmin ≥ γ + 1 =
2ms − 1
2s − 1

+ 1

• To construct an m-dimensional type-II EG-LDPC code, we take
the transpose of H(1)

EG, which gives the parity-checked matrix

H(2)
EG = [H(1)

EG]T

Matrix H(2)
EG consist of J = 2ms rows and

n = 2(m−1)s(2ms − 1)/(2s − 1) columns.

CC Lab, EE, NCHU

LDPC Codes 23

• Let α be a primitive element of GF (2ms), Then
α0 = 1, α, alpha2, . . . , α2ms−2 are all the 2ms − 1 nonorigin points
of EG(m, 2s). Let

v = (v0, v1, . . . , v2ms−2)

be a (2ms − 1)-tuple over GF (2) whose components correspond
to the 2ms − 1 nonorigin points of EG(m, 2s), where vi

corresponds to the point αj with 0 ≤ i < 2ms − 1

• Let L be a line in EG(m, 2s), that does not pass through the
origin, Based on L, we form (2ms − 1)-tuple over GF(2) as follow:

VL = (v0, v2, . . . , v2ms−2)

whose ith component

CC Lab, EE, NCHU

LDPC Codes 24

vi =

⎧⎨
⎩

1 if αi is a point on L

0 otherwise

The vector vL is the incidence vector on the line L.

J0 =
(2(m−1)s − 1)(2ms − 1)

2s − 1

lines in EG(m, 2s that do not pass through the origin.

CC Lab, EE, NCHU

LDPC Codes 25

Let H(1)
EG,c be a matrix whose rows are incidence vectors of all the J0

lines in EG(m, 2s) and whose columns correspond to the n = 2ms − 1
nonorigin points of EG(m, 2s). The matrix has following properties:

1. Each rows has weight ρ = 2s.

2. Each columns has weight γ = (2ms − 1)/(2s − 1) − 1.

3. No two columns have more than one 1’s in common; that is
λ = 0 or 1

4. No two rows have more than one 1 in common.

The density of H
(1)
EG is

r =
2s

2ms − 1
Again, for m ≥ 2 and s ≥ 2, r is relatively small compared with 1.
Therefore, H(1)

EG,c is a low-density matrix.

CC Lab, EE, NCHU

LDPC Codes 26

Let α be a primitive element of GF (2ms). Let h be a nonnegative
integer less than 2ms − 1. For a nonnegative integer l, let h(l) be the
remainder resulting from dividing 2lh by 2ms − 1. Then, g

(1)
EG,c(X)

has αh as a root if and only if

0 < max
0≤l<s

W2s(h(l)) ≤ (m − 1)(2s − 1)

where W2s(h(l)) is the 2s-weight of h(l).

Let h0 be the smallest integer that does not satisfy the condition. It
can be shown that

h0 = (2s − 1) + (2s − 1)2s + · · · + (2s − 1)2(m−3)s + 2(m−2)s + 2(m−1)s

= 2(m−1)s + 2(m−2)s+1 − 1

Therefore, g(1)
EG,c(X) has following sequence of consecutive powers of

CC Lab, EE, NCHU

LDPC Codes 27

α:
α, α2, . . . , αh0−1

as roots. It follows from the BCH bound that the dmin of the
m-dimensional type-I cyclic (0, s)th-order EG-LDPC code
C

(1)
EG(m, 0, s)is lower bound as follows

d
(1)
EG,c ≥ 2(m−1)s + 2(m−2)s+1 − 1

CC Lab, EE, NCHU

LDPC Codes 28

A special subclass of type-I cyclic EG-LDPC code is the class of
two-dimensional type-I cyclic (0, s)th-order EG-LDPC codes.
C

(1)
EG,C(2, 0, s) has the following parameters:

Length n = 22s − 1

Number of parity bits n − k = 3s − 1

Dimension k = 22s − 3s

Minimum distance dmin = 2s + 1

Density r = 2s

22s−1

CC Lab, EE, NCHU

LDPC Codes 29

Two-dimensional type-I cyclic (0,s)th-order EG-LDPC codes

s n k dmin ρ γ r

2 15 7 5 4 4 0.267

3 63 37 9 8 8 0.127

4 255 175 17 16 16 0.0627

5 1023 781 33 32 32 0.0313

6 4095 3367 65 64 64 0.01563

7 16383 14197 129 128 128 0.007813

CC Lab, EE, NCHU

LDPC Codes 30

The companion code of the m-dimensional type-I (0,s)th-order
EG-LDPC code C

(1)
EG,C is the null space of the parity-check matrix

H(2)
EG,qc = [H(1)

EG,c]
T

This LDPC code has length

n = J0 =
(2(m−1)s − 1)(2ms − 1)

2s − 1

and a minimum distance dmin of at least 2s + 1. It is not cyclic but
can be put in quasicyclic form. We call this code an m-dimensional
type-II quasi-cyclic (0,s)th-order EG-LDPC code, denoted by
C

(2)
EG,qc(m, 0, s).

CC Lab, EE, NCHU

LDPC Codes 31

• To put C
(2)
EG,qc(m, 0, s) artition the J 0 incidence vectors of the

lines in EG(m,2s) not pass through origin into K=2(m−1)s−1
2s−1

cyclic classes.

• Each of these K cyclic classes contains 2ms-1 incidence vectors,
which are obtained by cyclically shifting any incidence vectors in
the class 2ms-1 times

• The (2ms-1)×K matrix H0 whose K columns are the K
representative incidence vectors of K cyclic class .The
H(2)

EG,qc=[H0,H1.....H2ms−2], Hi is the a (2ms-1)×K matrix
whose columns are the ith downward cyclic shift of the column of
H0.

• The null space of H(2)
EG,qc gives the type-II EG-LDPC code

C(2)
EG,qc(m,0,s) in quasi-cyclic form.

CC Lab, EE, NCHU

LDPC Codes 32

PG-LDPC code

CC Lab, EE, NCHU

LDPC Codes 33

Let α be a primitive element of GF (2(m+1)s), which is considered as
an extension field of GF (2s). Let

n =
2(m+1)s − 1

2s − 1

Then, the n elements,

(α0)(α1)(α2), . . . , (αn−1)

form an m-dimensional projective geometry over GF (2s), PG(m, 2s).
The element (α0)(α1)(α2), . . . , (αn−1) are the point of PG(m, 2s). A
line in PG(m, 2s) consists of 2s + 1 points. There are

J =
(1 + 2s + . . . + 2ms)(1 + 2s + . . . + 2(m−1)s)

1 + 2s

lines in PG(m, 2s).

CC Lab, EE, NCHU

LDPC Codes 34

• Every point (αi) in PG(m, 2s) is intersected by

γ =
2ms − 1
2s − 1

lines. Two lines in PG(m, 2s) are either disjoint or intersect at
one and only one point.

• We form a matrix H(1)
PG whose rows are the incidence vectors of

lines in PG(m, 2s) and whose columns correspond to the points
of PG(m, 2s). Then, H(1)

PG has

J =
(2(m−1)s + · · · + 2s + 1)(2ms + · · · + 2s + 1)

2s + 1

and n = 2(m+1)s − 1/2s − 1

CC Lab, EE, NCHU

LDPC Codes 35

The matrix H(1)
PG has the following properties:

1. Each rows has weight ρ = 2s + 1.

2. Each columns has weight γ = 2ms−1
2s−1 .

3. No two columns have more than one 1 in common.

4. No two rows have more than one 1 in common. The density of
H(1)

PG is

r =
ρ

n
=

(2s − 1)(2s + 1)
2(m+1)s − 1

CC Lab, EE, NCHU

LDPC Codes 36

The code C(1)
PG(m,0,s) is the null space of H(1)

PG has dmin≥γ+1 and it
is called m-dimensional type-I (0,s)th order PG-LDPC code.

Specified generator polynomial

Let h be a nonegative integer less than 2(m+1)s-1, and
2lh=q(2(m+1)s-1)+h(l),
αh as roots if and only if 0<max W2s(h(l))�j (2s-1).
Let ξ=α2s−1.The order of ξ is then n=2(m+1)s−1

2s−1 .

g(1)
PG(X) has the following consecutive powers of ξ: ξ,ξ2.....ξ

2ms−1
2s−1

CC Lab, EE, NCHU

LDPC Codes 37

Special subclass is 2-dimensional type-I cyclic (0,s)th-order
PG-LDPC code,whose null space is C(1)

PG(2,0,s) of length n=22s-1
C(1)

PG(2,0,s) has parameter:

Length n = 22s + 2s+1

Number of parity bits n − k = 3s + 1

Dimension k = 22s + 2s − 3s

Minimum distance d = 2s + 2

Density r = 2s+1
22s+2s+1

CC Lab, EE, NCHU

LDPC Codes 38

Two-dimensional type-I PG-LDPC codes

s n k dmin ρ γ r

2 21 11 6 5 5 0.2381

3 73 45 10 9 9 0.1233

4 273 191 18 17 17 0.0623

5 1057 813 34 33 33 0.0312

6 4161 3431 66 65 65 0.0156

7 16513 14326 130 129 129 0.0078

CC Lab, EE, NCHU

LDPC Codes 39

The type-II PG-LDPC code matrix:

H(2)
PG = [H(1)

EG]T

H(2)
PG has J = 2(m+1)s−1

2s−1 rows and

n =
(2(m−1)s + · · · + 2s + 1)(2ms + · · · + 2s + 1)

2s + 1

The row and column weights of H(2)
PG are ρ = 2ms−1

2s−1 and γ = 2s + 1,

respectively. Therefore, C
(2)
PG(m, 0, s) has length n and minimum

distance
dmin ≥ 2s + 2

CC Lab, EE, NCHU

LDPC Codes 40

Random LDPC code

CC Lab, EE, NCHU

LDPC Codes 41

To construct a parity check matrix, to choose an appropriate column
weight γ and a appropriate number J rows, J must be close to equal
n − k. If the rows of H weight is ρ, the number of 1 is

γ × n = ρ × (n − k)

If n is divisible by (n − k),

ρ =
γn

n − k

this case can be constructed as a regular LDPC code.
If n is not divisible by (n − k),

γ × n = ρ(n − k) + b

b is constant.

CC Lab, EE, NCHU

LDPC Codes 42

γ × n = ρ(n − k − b) + b(ρ + 1)

Suggest the parity check matrix has two row weights, top b rows
weight=ρ+1, bottom (n − k − b) rows weight=ρ.

CC Lab, EE, NCHU

LDPC Codes 43

A n− k tuple column hi has weight γ,and add to partial of the parity
check matrix:

Hi−1 = {h1,hi, . . . ,hi−1}
There are 3 steps:

1. Chosen hi at random from the remaining binary (n − k)-tuples
that are not being used in Hi−1 and that were not reject earlier

2. Check whether hi has more than one 1-component with any
column, if it is not go to 3, reject hi, go back 1 step.

3. Add hi to Hi−1 form a temporary partial parity check matrix, If
all the top b rows weight ≤ ρ + 1 and bottom (n − k − b) rows
weight ≤ ρ,then permanently add hi to Hi−1 to form Hi and go
to step 1 continue construction process, else reject hi and choose
a new column.

CC Lab, EE, NCHU

LDPC Codes 44

Decoding of LDPC code

CC Lab, EE, NCHU

LDPC Codes 45

An LDPC code can be decoded in various ways namely:

• Bit-flipping decoding algorithm

• The sum-product algorithm

CC Lab, EE, NCHU

LDPC Codes 46

• A codeword v = (v0, v1, · · · , vn−1) is mapped into a bipolar
sequence x = (x0, x1, · · · , xn−1) before its transmission, where
xl = (2vl − 1) = +1 for vl = 1, and xl = −1 for vl = 0 with
0 ≤ l ≤ n − 1

• Let y = (y0, y1, · · · , yn−1) be the soft-decision received sequence
at the output of the receiver matched filter. For 0 ≤ l ≤ n − 1,
yl = ±1 + nl, where nl is a Gaussian random variable with zero
mean and variance N0/2.

• z = (z0, z1, · · · , zn−1) be the binary hard-decision sequence
obtained from textbfy as follow:

zl =

⎧⎨
⎩

1 for yl > 0

0 for yl ≤ 0

CC Lab, EE, NCHU

LDPC Codes 47

Let H be the parity-check matrix of and LDPC code C with j rows
and n column. Let h1,h2, · · · ,hJ , denote the rows of H,where

hj = (hj,0, hj,1, · · · , hj,n−1)

for 1 ≤ j ≤ J Then,

s = (s1, s2, · · · , sJ) = z · HT

gives the syndrome of the received sequence Z, where the jth
syndrome component sj is given by the checke-sum

sj = z.hj =
n−1∑
l=0

zlhj,l

The received vector z is a codeword if and only if s=0. If s �= 0,
error in z are detected

CC Lab, EE, NCHU

LDPC Codes 48

A non zero syndrome component sj indicates a parityfailure. The
number of parity failure is equal to the number of nonzero syndrome
components in s Let

e = (e0, e1, · · · , en−1)

= (v0, v1, · · · , vn−1) + (z0, z1, · · · , zn−1)

Then, e is the error pattern in z. This error pattern e and the
syndrome s satisfy the condition

s = (s1, s2, · · · , sJ) = e · HT

where

sj = e · hj =
n−1∑
l=0

elhj,l

CC Lab, EE, NCHU

LDPC Codes 49

Bit-flipping decoding algorithm

• Bit-flipping decoding was devised by Gallager in 1960.

• A very simple BF decoding algorithm is given here:

1. Compute the parity-check sum. If all parity-check sums are
zero, stop the decoding.

2. Find the number of failed parity-check equations for each bit,
denoted by fi, i = 0, 1, . . . , n − 1.

3. Identify the set S of bits for which fi is the largest

4. Flip the bits in the set S

5. Repeat step 1 to 4 until all parity-check sum are zero, or a
preset maximum number of iterations is reached

CC Lab, EE, NCHU

LDPC Codes 50

• If preset maximum number of iterations is reached and not all
parity-check sum are zero, we may simply declare a decoding
failure or decode the unmodified received sequence z with MLG
decoding to obtain a decoded sequence, which may not be a
codeword in C

• The parameter δ called threshold, is a design parameter that
should be chosen to optimize the error performance while
minimizing the number of computations of parity-check sums.

• The value of δ depend on the code parameters ρ, γ, dmin and
SNR

• If decoding fails for a given value of δ,then the value of δ should
be reduced to allow further decoding iterations.

CC Lab, EE, NCHU

LDPC Codes 51

The sum-product algorithm

• The sum-product algorithm decoding is a soft decision base on
log-likelihood ratio,i t can improve the reliability measure.

We consider an LDPC code C of length n specified by a parity-check
matrix H with J rows, h1,h2, · · · ,hJ , where

hj = (hj,0, hj,1 · · · , hj,n−1)

For 1 ≤ j ≤ J , we define the following index set for hj

B(hj) = {l : hj,l = 1, 0 ≤ l < n}

which is called the sopport of hj

CC Lab, EE, NCHU

LDPC Codes 52

The implementation of the sum-product algorithm bases on the
computation of the marginal a posteriori probabilities

P (vl|y)

for 0 ≤ l < n, where y is the soft-decision received sequence.Then,
the LLR for each code bit is given by

L(vl) = log
p(vl = 1|y)
p(vl = 0|y)

Let p0
l = P (vl = 0) and p1

l = P (vl = 1) be the prior probabilities of
vl = 0 and vl = 1.

CC Lab, EE, NCHU

LDPC Codes 53

For 0 ≤ l < n, 1 ≤ j ≤ n, and each hj ∈ Al, let q
x,(i)
j,l be the

conditional probability that the transmitted code bit vl has value x,
given the check-sums computed based on the check vectors in Al/hj

at the ith decoding iteration.
For 0 ≤ l < n, 1 ≤ j ≤ n, and hj ∈ Al, let σ

x,(i)
j,l be the conditional

probability that the check-sum sj is satisfied (i.e., sj = 0),given
vl = x (0 or 1) and the other code bits in B(hj) have a separable
distribution {qvt,(i)

j,t : t ∈ B(hj) \ l} ; that is:

σ
x,(i)
j,l =

∑
{vt:t∈B(hj)\l}

P (sj = 0|vl = x, {vt : t ∈ B(hj)\l})·
∏

t∈B(hj)\l

q
vt,(i)
j,t

CC Lab, EE, NCHU

LDPC Codes 54

To computed values of σ
x,(i)
j,l , and then used to update the value

q
x,(i+1)
j,l as follows:

q
x,(i+1)
j,l = α

(i+1)
j,l ·xl

∏
ht∈Al\hj

σ
x,(i)
t,l

where αi+1
j,l is chosen such that

q
0,(i+1)
j,l + q

1,(i+1)
j,l = 1

At the ith step, the pseudo-prior probabilities are given by

P i(vl = x|y) = α
(i)
l px

l

∏
hj∈Al

σ
x,(i−1)
j,l

where αi
l is chosen such that P (i)(vl = 0|y) + P (i)(vl = 1|y) = 1

CC Lab, EE, NCHU

LDPC Codes 55

Base on these probabilities, we can form the following vector as the
decoded candidate:

z(i) = (z(i)
0 , z

(i)
1 , · · · , z

(i)
n−1)

with

z
(i)
l =

⎧⎨
⎩

1 for P (i)(vl = 1|y) > 0.5

0 otherwise

Then, compute z(i) · HT . If z(i) · HT = 0, stop the decoding iteration
process, and output z(i) as the decoded codeword.

CC Lab, EE, NCHU

LDPC Codes 56

The sum-product algorithm decoding in terms of probability consist
of the following steps :
Initialization: Set i = 0 and maximum number of iterations to Imax.
For every pair (j, l) such that hj,l = 1 with 1 ≤ j ≤ J and 0 ≤ l ≤ n,
set q

0,(0)
j,l = p0

l and q
1,(0)
j,l = p1

l .

1. For 0 ≤ l ≤ n, 1 ≤ j ≤ J , and each hj ∈ Al, compute the
probabilities of σ

0,(i)
j,l and σ

1,(i)
j,l . Go to step 2

2. For 0 ≤ l ≤ n, 1 ≤ j ≤ J , and each hj ∈ Al, compute the values
of q

0,(i+1)
j,l and q

1,(i+1)
j,l and the values of P (i+1)(vl = 0|y) and

P (i+1)(vl = 1|y). Form z(i+1) and test Z(i+1) · HT . If
Z(i+1) · HT = 0 or the maximum iteration number Imax is
reached, go to step 3. Otherwise, set i

.= i + 1 and go to step 1.

3. Output z(i+1) as the decoded codeword and stop the decoding
process

CC Lab, EE, NCHU

