Solution 1

Sec. 1.2 4. (a) $\begin{bmatrix} 2 & 5 & -3 \\ 1 & 0 & 7 \end{bmatrix} + \begin{bmatrix} 4 & -2 & 5 \\ -5 & 3 & 2 \end{bmatrix}$ (c) $4 \begin{bmatrix} 2 & 5 & -3 \\ 1 & 0 & 7 \end{bmatrix} =$ Ans.: (a) $\begin{bmatrix} 6 & 3 & 2 \\ -4 & 3 & 9 \end{bmatrix}$ (c) $\begin{bmatrix} 8 & 20 & -12 \\ 4 & 0 & 28 \end{bmatrix}$

12.

A real-valued function f defined on the real line is called an even function if f(-t) = f(t) for each real number t. Prove that the set of even functions defined on the real line with the operations of addition and scalar multiplication defined in Example 3 is a vector space.

Ans.:

Let V denote the set of even functions.

(1) Closure of vector addition: For all f(t), g(t) in V, define l(t) = f(t)+g(t): l(t) = f(t) + g(t) = f(-t) + g(-t) = l(-t) $l(t) \in \mathbf{V}$ (2) Closure of scalar multiplication: For each element a in F and all f(t) in V, $a(f(t)) = a(f(-t)) \in \mathbf{V}$ (3) For all f(t), g(t) in V, f(t)+g(t)=g(t)+f(t) (commutativity of addition) \Rightarrow (VS 1) holds. (4) For all f(t), g(t) and h(t) in V, (f(t)+g(t))+h(t) = f(t)+g(t)+h(t)=f(t)+(g(t)+h(t))(associativity of addition) \Rightarrow (VS 2) holds. (5) Define w(t) by w(t) = 0 for all t. $\therefore w(t) = w(-t) = 0$

 $\therefore w(t)$ is an even function. $\Rightarrow w(t) \in \mathbf{V}$ For all f(t) in V, f(t)+w(t) = f(t)+0=f(t). \Rightarrow (VS 3) holds. (6) Define g(t) by g(t) = -f(t) $\therefore g(t) = -f(t) = -f(-t) = g(-t)$ is an even function. $\therefore g(t) \in \mathbf{V}$ $\Rightarrow f(t)+g(t)=f(t)-f(t)=0$ \Rightarrow (VS 4) holds. (7)For any f(t) in V, $1 \cdot f(t) = f(t)$ \Rightarrow (VS 5) holds. (8) For each pair of elements a, b in F and any f(t) in V, (ab)f(t)=a(bf(t))=a(bf(t)) \Rightarrow (VS 6) holds. (9)For each element *a* in *F* and each pair of f(t), g(t) in V, a(f(t)+g(t)) = af(t)+ag(t) \Rightarrow (VS 7) holds. (10)For each pair of elements a, b in F and any f(t) in V, (a+b)f(t)=af(t)+bf(t) \Rightarrow (VS 8) holds. According to (1)~(10), the set of even functions is a vector space.

18.

Let V={ $(a_1, a_2): a_1, a_2 \in R$ }. For $(a_1, a_2), (b_1, b_2) \in V$ and $c \in R$, define $(a_1, a_2) + (b_1, b_2) = (a_1+2b_1, a_2+3b_2)$ and $c(a_1, a_2) = (ca_1, ca_2)$. Is V a vector space over R with these operations? Justify your answer. Ans.: $\therefore (a_1, a_2) + (b_1, b_2) = (a_1+2b_1, a_2+3b_2), (b_1, b_2) + (a_1, a_2) = (b_1+2a_1, b_2+3a_2)$ $\Rightarrow (a_1+2b_1, a_2+3b_2) \neq (b_1+2a_1, b_2+3a_2)$, (VS 1) fails to hold. \therefore V is not a vector space

Sec. 1.3 5.

Prove that A+A^t is symmetric for any square matrix A.

Ans.:

Let the entry of A that lies in row *i* and column *j* be a_{ij} . Then the entry of A^t that lies in row *i* and column *j* is a_{ji} .

- ⇒ The entry of matrix (A+ A^t) that lies in row *i* and column *j* is $a_{ij} + a_{ji}$. Similarly, $a_{ji} + a_{ij}$ lies in row *j* and column *i* of matrix (A+ A^t).
- $\therefore a_{ij} + a_{ji} = a_{ji} + a_{ij}$
- ... The entry of matrix $(A+A^t)$ that lies in row *i* and column *j* is equal to the entry of matrix $(A+A^t)$ that lies in row *j* and column *i*.

 \Rightarrow A+ A^t is symmetric.

10.

Prove that $W_1 = \{(a_1, a_2, ..., a_n) \in F^n : a_1 + a_2 + ... + a_n = 0\}$ is a subspace of F^n , but $W_2 = \{(a_1, a_2, ..., a_n) \in F^n : a_1 + a_2 + ... + a_n = 1\}$ is not. Ans.: (I) (i) For any two vector $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ in W_1 , $x_1 + x_2 + ... + x_n = 0$ $y_1 + y_2 + ... + y_n = 0$

$$y_1 + y_2 + \dots + y_n = 0$$

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

$$\Rightarrow (x_1 + y_1) + (x_2 + y_2) + \dots + (x_n + y_n)$$

$$= (x_1 + x_2 + \dots + x_n) + (y_1 + y_2 + \dots + y_n)$$

$$= 0$$

$$\therefore x + y \in \mathbf{W}_1$$

(ii) For any $c \in \mathbf{F}$

$$cx = c(x_1, x_2,..., x_n) = (cx_1, cx_2,..., cx_n)$$

$$\Rightarrow cx_1 + cx_2 + ... + cx_n = c(x_1 + x_2 + ... + x_n) = c \cdot 0 = 0$$

$$\therefore cx \in W_1$$

(iii) For zero vector $z = (0, 0, ..., 0) \in F^n$

$$\therefore 0 + 0 + ... + 0 = 0$$

$$\therefore z \in W_1$$

Base on (i), (ii) and (iii), W_1 is a subspace of F^n .

(II)

(i) For any two vector $x=(x_1, x_2, ..., x_n)$ and $y=(y_1, y_2, ..., y_n)$ in W₂, then $x_1 + x_2 + ... + x_n = 1$ $y_1 + y_2 + ... + y_n = 1$ $x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ $\Rightarrow (x_1 + y_1) + (x_2 + y_2) + + (x_n + y_n)$

$$= (x_1 + x_2 + ... + x_n) + (y_1 + y_2 + ... + y_n)$$

= 1+1= 2 \neq 1
\therefore ... x+y \neq W_2

(ii) For any $c \in F$ is a constant

 $cx = c(x_1, x_2,..., x_n) = (cx_1, cx_2,..., cx_n)$ $\Rightarrow cx_1 + cx_2 + ... + cx_n = c(x_1 + x_2 + ... + x_n) = c \cdot 1 = c$ $cx \notin W_2$ (iii) For zero vector $z = (0, 0, ..., 0) \in F^n$ $\therefore 0 + 0 + ... + 0 = 0 \neq 1$

$$\therefore z \notin W_1$$

According to ether (i) or (ii) or (iii), W_2 is not a subspace of F^n .

19.

Let W_1 and W_2 be subspaces of a vector space V. Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Ans.:

(\Leftarrow) Suppose $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$, then $W_1 \cup W_2 = W_2$ or W_1 ,

 $:: W_2$ and W_1 are subspace of V.

 $: W_1 \cup W_2$ is a subspace of V.

 (\Rightarrow) Assume $W_1 \cup W_2$ is a subspace of V:

Suppose that neither $W_1 \subseteq W_2$ nor $W_2 \subseteq W_1$ is true.

We can find two vector x and y which satisfy $x \in W_1$, $x \notin W_2$ and $y \in W_2$, $y \notin W_1$ ($x \neq y \neq 0$).

 $\therefore x \in W_1 \text{ and } y \in W_2$

 $\therefore x \text{ and } y \in \mathbf{W}_1 \cup \mathbf{W}_2$

 $:: W_1 \cup W_2$ is a subspace of V

 $\therefore x + y \in \mathbf{W}_1 \cup \mathbf{W}_2$

$$\Rightarrow x+y \in W_1 \text{ or } W_2$$

a)

Suppose $x+y \in W_1$: $\therefore x \in W_1$ $\therefore -x \in W_1$ $\Rightarrow (x+y)+(-x) \in W_1 \Rightarrow y \in W_1 \Rightarrow \text{ conflicting}$ b) Suppose $x+y \in W_2$ $\therefore y \in W_1$ $\therefore -y \in W_2$ $\Rightarrow (x+y)+(-y) \in W_2 \Rightarrow x \in W_2 \Rightarrow \text{conflicting}$ $\Rightarrow \text{The assumption of "neither } W_1 \subseteq W_2 \text{ nor } W_2 \subseteq W_1 \text{ is true " fails.}$ $\therefore W_1 \subseteq W_2 \text{ or } W_2 \subseteq W_1.$

Base on (i) and (ii), $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \supseteq W_1$. *Q.E.D.*

Sec. 1.4

In each part, determine whether the given vector is in the span of *S*. (b) (-1, 2, 1), $S = \{(1,0,2), (-1,1,1)\}$

(g)
$$\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$$
, $S = \left\{ \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right\}$

Ans.:

(b) (-1, 2, 1) isn't in the span of S because there are't any solution for

$$a(1,0,2)+b(-1,1,1)=(-1, 2, 1)$$
(g) $\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$ is in the span of S because $\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} = 3 \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} + 4 \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} - 2 \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

13.

Show that if S_1 and S_2 are subsets of a vector space V such that $S_1 \subseteq S_2$ then span $(S_1) \subseteq$ span (S_2) . In particular, if $S_1 \subseteq S_2$ and span $(S_1) = V$, deduce that span $(S_2) = V$. Ans.:

(A)

Suppose that $S_1 = \{x_1, x_2, ..., x_m\}$ is a subset of a vector space V \Rightarrow Span(S₁) and Span(S₂) are subspace of V For all $x \in$ Span (S₁), $x = a_1x_1 + a_2x_2 + ... + a_mx_m$ $\therefore S_1 \subseteq S_2$ $\therefore \{x_1, x_2, ..., x_m\} \in$ Span(S₂) $\Rightarrow x = a_1x_1 + a_2x_2 + ... + a_mx_m \in S_2$ \Rightarrow Span(S₁) \subseteq Span(S₂) (B) According to (A), if $S_1 \subseteq S_2$ then Span(S₁) \subseteq Span(S₂). \therefore Span(S₁) =V \Rightarrow V \subseteq Span(S₂) According to Theorem 1.5, if S_2 is a subset of the vector space V then Span(S₂) \subseteq V \therefore Span(S₂) =V