Solution 2

Sec. 1.5

1.5.5. Show that the set $\{1, x, x^2, \dots, x^n\}$ is linearly independent.

Ans.:

For {1, x, x^2 ,..., x^n }, the only solution of $a_1x + a_2x^2 + ... + a_nx^n = 0$ is $a_1 = a_2 = ... = a_n = 0$ \Rightarrow {1, x, x^2 ,..., x^n } is linearly independent

1.5.9. Let u and v be distinct vector in a vector space V. Show that $\{u, v\}$ is linearly dependent if and only if u or v is a multiple of the other.

Ans.:

 (\Rightarrow)

Suppose $\{u, v\}$ is linearly dependent, then $a \cdot u + b \cdot v = 0$, where $a \neq 0$ or $b \neq 0$ $\Rightarrow a \cdot u = -b \cdot v$

 \Rightarrow If $a \neq 0$, then $u = (-b/a) \cdot v$. Otherwise, $b \neq 0$, then $v = (-a/b) \cdot u$

 \Rightarrow *u* or *v* is a multiple of the other

$$(\Leftarrow)$$

Suppose *u* or *v* is a multiple of the other, then $u = c \cdot v$ or $v = d \cdot u$

 $\Rightarrow u - c \cdot v = 0$ or $d \cdot u - v = 0$

For $a \cdot u + b \cdot v = 0$, we can find at least one nontrivial solution (a,b) = (1,-c) or (d,-1)

 \Rightarrow {*u*, *v*} is linearly dependent

Q.E.D.

Sec. 1.6

1.6.2. Determine which of the following sets are bases for \mathbb{R}^3 .

(c) $\{(1, 2, -1), (1, 0, 2), (2, 1, 1)\}$

Ans.:

: The only solution of a(1, 2, -1)+b(1, 0, 2)+c(2, 1, 1)=0 is $\{a, b, c\}=\{0, 0, 0\}$

 \therefore {(1, 2, -1), (1, 0, 2), (2, 1, 1)} is linearly independent

: $\dim(\mathbb{R}^3) = 3 =$ the number of vectors in the set {(1, 2, -1), (1, 0, 2), (2, 1, 1)}

According to Corollary 2 of Theorem 1.10, $\{(1, 2, -1), (1, 0, 2), (2, 1, 1)\}$ is a basis of \mathbb{R}^{3} .

1.6.3. Determine which of the following sets are bases for $P_2(R)$.

(c) $\{1-2x-2x^2, -2+3x-x^2, 1-x+6x^2\}$

Ans.:

: The only solution of $a(1-2x-2x^2)+b(-2+3x-x^2)+c(1-x+6x^2)=0$ is a=b=c=0

 $\therefore \{1-2x-2x^2, -2+3x-x^2, 1-x+6x^2\} \text{ is linearly independent.}$ $\therefore \dim(P_2(R)) = 3 = \text{the number of vectors in the set } \{1-2x-2x^2, -2+3x-x^2, 1-x+6x^2\}$ According to Corollary 2 of Theorem 1.10, $\{1-2x-2x^2, -2+3x-x^2, 1-x+6x^2\}$ is basis for $P_2(R)$.

1.6.12. Let u, v, and w be distinct vectors of a vector space V. Show that if {u, v, w} is a basis for V, then {u+v+w, v+w, w} is also a basis for V.Ans.:

If $\{u, v, w\}$ is a basis for V, then the only solution for au+bv+cw=0 is a=b=c=0Now, we want to find the solution of $a_1(u+v+w)+b_1(v+w)+c_1w = 0$ $\Rightarrow a_1u+a_1v+a_1w+b_1v+b_1w+c_1w = 0$ the only one solution is $a_1=a_1+b_1=a_1+b_1+c_1=0$ $\Rightarrow a_1=b_1=c_1=0$ \therefore the only one solution of $a_1(u+v+w)+b_1(v+w)+c_1w = 0$ is $a_1=b_1=c_1=0$ $\Rightarrow \{u+v+w, v+w, w\}$ is linearly independent $\therefore \dim(P_2(R)) = 3 =$ the number of vectors in the set $\{u+v+w, v+w, w\}$ is also a basis for V. *O.E.D.*

1.6.14. Find bases for the following subspaces of F^5 :

 $W_1 = \{(a_1, a_2, a_3, a_4, a_5) \in F^5: a_1 - a_3 - a_4 = 0\}$

and

$$W_2 = \{(a_1, a_2, a_3, a_4, a_5) \in F^5: a_2 = a_3 = a_4 \text{ and } a_1 + a_5 = 0\}$$

What are the dimensions of W_1 and W_2 ?

Ans.:

(A)

For any $v \in W_1$, $v = (a_1, a_2, a_3, a_4, a_5) = (a_1, a_2, a_3, a_1 - a_3, a_5)$ $= a_1(1,0,0,0,0) + a_2(0,1,0,0,0) + a_3(0,0,1,0,0) + (a_1 - a_3)(0,0,0,1,0) + a_5(0,0,0,0,1)$ $= a_1(1,0,0,1,0) + a_2(0,1,0,0,0) + a_3(0,0,1,-1,0) + a_5(0,0,0,0,1)$ $\therefore \{(1,0,0,1,0), (0,1,0,0,0), (0,0,1,-1,0), (0,0,0,0,1)\}$ is linearly independent. \therefore The basis set for W₁ is $\{(1,0,0,1,0), (0,1,0,0,0), (0,0,1,-1,0), (0,0,0,0,1)\}$, $\dim(W_1)=4$

(B)

For any $v \in W_2$, $v = (a_1, a_2, a_3, a_4, a_5) = (a_1, a_2, a_2, a_2, -a_1)$ = $a_1(1,0,0,0,0) + a_2(0,1,0,0,0) + a_2(0,0,1,0,0) + a_2(0,0,0,1,0) - a_1(0,0,0,0,1)$ = $a_1(1,0,0,0,-1) + a_2(0,1,1,1,0)$ $\therefore \{(1,0,0,0,-1), (0,1,1,1,0)\}$ is linearly independent. ... The basis set for W_2 is {(1,0,0,0,-1), (0,1,1,1,0)}, dim(W_2)=2

1.6.31. Let W_1 and W_2 be subspaces of a vector space V having dimensions *m* and *n*, respectively, where $m \ge n$.

(a) Prove that $\dim(W_1 \cap W_2) \le n$.

(b) Prove that dim $(W_1 + W_2) \leq m + n$.

Ans.:

(a)

According to Theorem 1.11: $\therefore W_1 \cap W_2$ is a subspace of W_1 and W_2 , $\therefore \dim(W_1 \cap W_2) \le \dim(W_2) = n$ *Q.E.D*

(b)

 $\therefore \dim(W_{1}) = m, \dim(W_{2}) = n,$ Suppose the basis for W_{1} is $\{x_{1}, x_{2}, ..., x_{m}\}$ and the basis for W_{2} is $\{y_{1}, y_{2}, ..., y_{n}\}$ (i) For any p in $W_{1} + W_{2}$, $p = p_{1} + p_{2}$, where $p_{1} \in W_{1}$ and $p_{2} \in W_{2}$, then $p = (a_{1}x_{1} + a_{2}x_{2} + ... + a_{m}x_{m}) + (b_{1}y_{1} + b_{2}y_{2} + ... + b_{n}y_{n})$ $= (a_{1}x_{1} + a_{2}x_{2} + ... + a_{m}x_{m} + b_{1}y_{1} + b_{2}y_{2} + ... + b_{n}y_{n})$ $\therefore p \in \text{Span}(\{x_{1}, x_{2}, ..., x_{m}, y_{1}, y_{2}, ..., y_{n}\})$ (ii) For any $q \in \text{Span}(\{x_{1}, x_{2}, ..., x_{m}, y_{1}, y_{2}, ..., y_{n}\})$, then $q = a_{1}x_{1} + a_{2}x_{2} + ... + a_{m}x_{m} + b_{1}y_{1} + b_{2}y_{2} + ... + b_{n}y_{n}$ $= (a_{1}x_{1} + a_{2}x_{2} + ... + a_{m}x_{m} + b_{1}y_{1} + b_{2}y_{2} + ... + b_{n}y_{n}$ $= (a_{1}x_{1} + a_{2}x_{2} + ... + a_{m}x_{m}) + (b_{1}y_{1} + b_{2}y_{2} + ... + b_{n}y_{n})$ $= q_{1} + q_{2} \in W_{1} + W_{2}$ where $q_{1} \in W_{1}$ and $q_{2} \in W_{2}$ $\text{Span}(\{x_{1}, x_{2}, ..., x_{m}, y_{1}, y_{2}, ..., y_{n}\}) \subseteq W_{1} + W_{2}$ Base on (i) and (ii), $W_{1} + W_{2} = \text{Span}(\{x_{1}, x_{2}, ..., x_{m}, y_{1}, y_{2}, ..., y_{n}\})$

 $\Rightarrow \dim(\mathbf{W}_1 + \mathbf{W}_2) = \dim(\operatorname{Span}(\{x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n\})) \le m + n$

Q.E.D.