Solution 3

Sec2.1 2.1.10 Suppose that T: $R_2 \rightarrow R_2$ is linear, T(1,0) = (1,4), and T(1,1) = (2,5). What is T(2,3)? Is T one-to-one? Ans.: (A) (2,3) = (-1)(1,0)+3(1,1)T(2,3) = (-1)T(1,0)+3T(1,1) = (-1)(1,4)+3(2,5) = (5,11)**(B)** \therefore The two vectors (1, 0) and (1, 1) are linearly independent. \Rightarrow For any $x \in \mathbb{R}_2$, x has the form x=a(1,0)+b(1,1). Suppose that T(x) = 0 \Rightarrow T(x)=aT(1,0)+bT(1,1)=0 $\Rightarrow a(1,4)+b(2,5)=0$ \Rightarrow (*a*+2*b*,4*a*+5*b*)=0 \Rightarrow (*a*,*b*)=(0,0) The only solution for T(x)=0 is x=(0,0). \Rightarrow N(T)={0} . T is one-to-one.

2.1.16

Let T: $P(R) \rightarrow P(R)$ be defined by T(f(x)) = f'(x). Recall that T is linear. Prove that T is onto, but not one-to-one.

Ans.:

: T(1) = T(2) = 0

- $\therefore N(T) \neq \{0\}$
- \Rightarrow T is not one-to-one.

For any element g(x) in P(R), we can find $f(x) = \int_{C} g(x) dx$ in P(R) which

satisfies T(f(x)) = f'(x) = g(x) $\therefore g(x)$ is in R(T). $\therefore P(R) \subseteq R(T)$ $\therefore R(T) \subseteq P(R)$ $\therefore P(R) = R(T)$ \Rightarrow T is onto. 2.1.21

Let V be the vector space of sequences described in Example 5 of Section 1.2. Define the functions T, U: $V \rightarrow V$ by

 $T(a_1, a_2,...) = (a_2, a_3...)$ and $U(a_1, a_2,...) = (0, a_1, a_2...)$.

T and U are called the left shift and right shift operators on V, respectively.

(a) Prove that T and U are linear.

(b) Prove that T is onto, but not one-to-one.

(c) Prove that U is one-to-one, but not onto.

Ans.:

(a)

Let $x = (x_1, x_2,...)$ and $y = (y_1, y_2,...)$ denote any two vectors in V and c denote a scalar.

(i)
$$T(cx + y) = T(cx_1 + y_1, cx_2 + y_2,...) = (cx_2 + y_2, cx_3 + y_3,...) = (cx_2, cx_3,...) + (y_2, y_3,...)$$

= $c(x_2, x_3,...) + (y_2, y_3,...) = cT(x_1, x_2,...) + T(y_1, y_2,...) = cT(x) + T(y)$

 \therefore T is linear.

(ii)Similarly,

$$U(cx + y) = U(cx_1 + y_1, cx_2 + y_2,...) = (0, cx_1 + y_1, cx_2 + y_2,...) = (0, cx_1, cx_2,...) + (0, y_1, y_2,...) = c(0, x_1, x_2,...) + (0, y_1, y_2,...) = cU(x_1, x_2,...) + U(y_1, y_2,...) = cU(x) + U(y)$$

 \therefore U is linear, too.

(b)

$$T(1, a_2, ...) = T(2, a_2, ...) = (a_2, a_3...)$$

 \therefore T is not one-to-one.

```
For any vector x = (x_1, x_2,...) in V, we can find y = (1, x_1, x_2,...) in V which
satisfies T(y) = x
\Rightarrow x \in R(T)
\therefore V \subseteq R(T)
\therefore R(T) \subseteq V
\Rightarrow R(T) = V
\Rightarrow T is onto.
(c) U(a_1, a_2,...) = (0, a_1, a_2...)
Clearly, if U(a_1, a_2,...) = (0, 0, 0...), then a_1 = a_2 = ... = 0
\therefore N(U) = \{0\}
\Rightarrow U is one-to-one.
\therefore U(a_1, a_2,...) = (0, a_1, a_2...)
\Rightarrow There are not solution for function U(a_1, a_2,...) = (2, a_1, a_2...).
\therefore U is not onto.
```

Assume the definition of *direct sum* given in the exercises of Section 1.3. Let V be a finite-dimensional vector space and T: $V \rightarrow V$ be linear.

(a) Suppose that V = R(T) + N(T). Prove that $V=R(T) \oplus N(T)$.

(b) Suppose that $R(T) \cap N(T) = \{0\}$. Prove that $V=R(T) \oplus N(T)$.

Be careful to say in each part where finite-dimensionality is used.

Ans.:

(a)

Let the dimension of V be *n*.

Suppose that $v = \{v_1, v_2, ..., v_m\}$ is a basis for N(T), according to Corollary of

Theorem1.11 in Sec. 1.6, by extending v, we have $\alpha = \{v_1, v_2, ..., v_m, v_{m+1}, ..., v_n\}$ which is a basis for V.

For any vector u in R(T),

$$u = \sum_{i=1}^{n} a_i T(v_i) = \sum_{i=1}^{m} a_i T(v_i) + \sum_{i=m+1}^{n} a_i T(v_i) = \sum_{i=m+1}^{n} a_i T(v_i)$$

$$\Rightarrow \{T(v_{m+1}),...,T(v_n)\} \text{ generates } R(T)$$
Let $\beta = \{v_1, v_2,..., v_m, T(v_{m+1}),...,T(v_n)\}$
 $\therefore V = R(T) + N(T)$
 \therefore For any vector $w = w_1 + w_2 \in V$ where $w_1 \in R(T)$ and $w_2 \in N(T)$

$$\Rightarrow w = \sum_{i=1}^{m} a_i v_i + \sum_{i=m+1}^{n} a_i T(v_i)$$
 $\therefore \beta = \{v_1, v_2,..., v_m, T(v_{m+1}),..., T(v_n)\}$ generates V
Because the numbers of vectors in β is n =dim(V).
According to Corollary 2 of Theorem 1.10, $\beta = \{v_1, v_2,..., v_m, T(v_{m+1}),..., T(v_n)\}$ is also a basis for V.
Let x be a vector in $R(T) \cap N(T)$.
 $\therefore x \in N(T) \therefore x = a_{n+1}T(v_{m+1}) + a_{m+2}T(v_{m+2}) + ... + a_nT(v_n)$
 $\Rightarrow a_1v_1 + a_2v_2 + ... + a_mv_m = a_{m+1}T(v_{m+1}) + a_{m+2}T(v_{m+2}) - ... - a_nT(v_n) = 0$
 $\therefore \beta = \{v_1, v_2,..., v_m, T(v_{m+1}),..., T(v_n)\}$ is linearly independent.
 \therefore The only solution is $a_1 = a_2 = ... = a_m = a_{m+1} = a_{m+2} = ... = a_n = 0 \Rightarrow x=0$
 $\Rightarrow R(T) \cap N(T) = \{0\}$
According to V = R(T)+N(T) and R(T) \cap N(T) = \{0\}, we have $V = R(T) \oplus N(T)$
(b)
dim(R(T)+N(T))=dim(R(T))+dim(N(T))-dim(R(T) \cap N(T))
Suppose that $R(T) \cap N(T)=\{0\}$, then dim($R(T) \cap N(T)$) is a subspace of V.

 \therefore R(T)+N(T)=V According to R(T)+N(T)=V and $R(T) \cap N(T)=\{0\}$, we have $V=R(T) \oplus N(T)$.

Sec2.2

2.2.2

Let β and γ be the standard ordered bases for \mathbb{R}^n and \mathbb{R}^m , respectively. For each linear transformation T: $\mathbb{R}^n \to \mathbb{R}^m$, compute $[T]^{\gamma}_{\beta}$.

(b) T: $\mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2, a_3) = (2a_1 + 3a_2 - a_3, a_1 + a_3)$.

Ans.:
(b)
$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 2 & 3 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$

2.2.4 Define

$$T: M_{2x2}(R) \rightarrow P_2(R)$$
 by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b) + (2d)x + bx^2$.

Let

$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \right\} \text{ and } \gamma = \{1, x, x^2\}.$$

Compute $[T]^{\gamma}_{\beta}$.

Ans.:
$$T\begin{pmatrix} 1 & 0 \\ -1 + 0 \end{pmatrix}$$

$$T\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 1 + 0x + 0x^{2}, \quad T\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 1 + 0x + 1x^{2},$$
$$T\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = 0 + 0x + 0x^{2}, \quad T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0 + 2x + 0x^{2}$$
$$\therefore [T]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2.2.8

Let V be an *n*-dimensional vector space with an ordered basis β . Define T: $V \rightarrow F^n$ by $T(x) = [x]_{\beta}$. Prove that T is linear.

Ans.:

Let $\beta = \{x_1, x_2, ..., x_n\}$. For any $y = a_1x_1 + a_2x_2 + ... + a_nx_n$ and $z = b_1z_1 + b_2z_2 + ... + b_nz_n$ in V, we have

$$\mathbf{T}(y) = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, \quad \mathbf{T}(z) = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Let $c \in F$

$$\Rightarrow T(cy+z) = T((ca_1+b_1)x_1+\ldots+(ca_n+b_n)x_n) = \begin{pmatrix} ca_1+b_1\\ \vdots\\ ca_n+b_n \end{pmatrix}$$

$$= c \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = c \mathbf{T}(y) + T(z)$$

 \therefore T is linear.