Solution 4

Sec2.3

2.3.2(a)

Let

$$A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & -3 \\ 4 & 1 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 & 4 \\ -1 & -2 & 0 \end{pmatrix}, \text{ and } D = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}$$

Compute A(2B+3C), (AB)D, and A(BD).

Ans:

$$2B+3C = \begin{pmatrix} 2 & 0 & -6 \\ 8 & 2 & 4 \end{pmatrix} + \begin{pmatrix} 3 & 3 & 12 \\ -3 & -6 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 3 & 6 \\ 5 & -4 & 4 \end{pmatrix}$$
$$A(2B+3C) = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 5 & 3 & 6 \\ 5 & -4 & 4 \end{pmatrix} = \begin{pmatrix} 20 & -9 & 18 \\ 5 & 10 & 8 \end{pmatrix}$$
$$AB = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -3 \\ 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 13 & 3 & 3 \\ -2 & -1 & -8 \end{pmatrix}$$

$$(AB)D = \begin{pmatrix} 13 & 3 & 3 \\ -2 & -1 & -8 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 29 \\ -26 \end{pmatrix}$$

$$BD = \begin{pmatrix} 1 & 0 & -3 \\ 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} -7 \\ 12 \end{pmatrix}$$

$$A(BD) = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} -7 \\ 12 \end{pmatrix} = \begin{pmatrix} 29 \\ -26 \end{pmatrix}$$

2.3.13

Let A and B be nxn matrices. Recall that the trace of A is defined

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}$$

Prove that tr(AB)=tr(BA) and $tr(A)=tr(A^t)$.

Ans.:.

(i)

$$(AB)_{ii} = \sum_{k=1}^{n} A_{ik} B_{ki}$$

$$(BA)_{ii} = \sum_{k=1}^{n} B_{ik} A_{ki}$$

$$tr(AB) = \sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik} B_{ki}$$

tr(BA)=

$$\sum_{i=1}^{n} \sum_{k=1}^{n} B_{ik} A_{ki} = \sum_{i=1}^{n} \sum_{k=1}^{n} A_{ki} B_{ik} = \sum_{k=1}^{n} \sum_{i=1}^{n} A_{ik} B_{ki} = \sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik} B_{ki}$$

= tr(AB)

(ii)

$$(A^t)_{ii} = A_{ii}$$

$$\therefore \operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii} = \operatorname{tr}(A^{t})$$

Sec2.4

2.4.2

For each of the following linear transformations T, determine whether T is invertible and justify your answer.

(c) T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$
 defined by $T(a_1, a_2, a_3) = (3a_1 - 2a_3, a_2, 3a_1 + 4a_2)$.

Ans

According to the definition of T,

$$\Rightarrow T: \begin{pmatrix} 3 & 0 & -2 \\ 0 & 1 & 0 \\ 3 & 4 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 3a_1 - 2a_3 \\ a_2 \\ 3a_1 + 4a_2 \end{pmatrix}$$

We can find a transformation T^{-1} from $R^3 \rightarrow R^3$ which satisfies

$$T^{-1}(3a_1-2a_3, a_2, 3a_1+4a_2) = (a_1, a_2, a_3) \begin{pmatrix} 0 & -\frac{4}{3} & \frac{1}{3} \\ 0 & 1 & 0 \\ -\frac{1}{2} & -2 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 3a_1 - 2a_3 \\ a_2 \\ 3a_1 + 4a_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix})$$

∴T is invertible.

2.4.4

Let *A* and *B* be $n \times n$ invertible matrices. Prove that *AB* is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

$$\therefore (AB)(B^{-1}A^{-1}) = A(B(B^{-1}A^{-1}) = A((BB^{-1})A^{-1}) = A(IA^{-1}) = AA^{-1} = I$$

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}(AB)) = B^{-1}(A^{-1}A)B = B^{-1}B = I$$

 $\therefore AB$ is invertible and $(AB)^{-1}=B^{-1}A^{-1}$.

Let

$$V = \begin{cases} a & a+b \\ 0 & c \end{cases} : a,b,c \in F$$

Construct an isomorphism from V to F³.

Ans.:

We can find $\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ is a basis for V then

$$\begin{pmatrix} a & a+b \\ 0 & c \end{pmatrix} = a \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

We define that T is a linear transformation from V to F^3 (T: $V \rightarrow F^3$), where

$$T\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = (1,0,0), \quad T\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = (0,1,0), \quad T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = (0,0,1)$$

$$\therefore T\left(\begin{pmatrix} a & a+b \\ 0 & c \end{pmatrix}\right) = (a,b,c)$$

- \Rightarrow T is invertible.
- \Rightarrow T is an isomorphism from V to F^3 .

2.4.17

Let V and W be finite-dimensional vector spaces and T: $V \rightarrow W$ be an isomorphism.

Let V_0 be a subspace of V.

- (a) Prove that $T(V_0)$ is a subspace of W.
- (b) Prove that $\dim(V_0) = \dim(T(V_0))$.

Ans.:

- (a) we define that 0_v is the zero vector in the vector space V.
 - (i) $: V_0$ is a subspace of V.

$$\therefore 0_{v} \in V_{0}$$

∵T is linear.

$$\therefore T(0_{v}) = 0_{w} \Longrightarrow 0_{w} \in T(V_{0})$$

(ii) Let any two vectors x_1 , x_2 in V_0 and $T(x_1)=y_1$, $T(x_2)=y_2 \in T(V_0)$.

Then let $a \in F$

 \therefore V₀ is a vector space.

$$\therefore ax_1 + x_2 \in V_0$$

$$\Rightarrow T(ax_1 + x_2) \in T(V_0)$$

$$\Rightarrow T(ax_1) + T(x_2) \in T(V_0)$$

$$\Rightarrow aT(x_1) + T(x_2) \in T(V_0)$$

$$\Rightarrow ay_1 + y_2 \in T(V_0)$$

According to (i) and (ii), $T(V_0)$ is a subspace of W.

(b) Let $\beta_0 = \{x_1, x_2, ..., x_m\}$ is a basis of V_0 and dim $(V_0) = m$.

We define
$$\gamma_0 = \{T(x_1), T(x_2), ..., T(x_m)\}$$
.

- ∵T is isomorphism
- ∴T is linear and one-to-one.

Suppose that $\gamma_0 = \{T(x_1), T(x_2), ..., T(x_m)\}$ is linearly dependent, then $a_1T(x_1) + a_2T(x_2) + ... + a_mT(x_m) = 0$ has non-trivial solution.

∵T is linear.

 $\therefore a_1x_1 + a_2x_2 + ... + a_mx_m = 0$ has non-trivial solution, too.

 $\Rightarrow \beta_0 = \{x_1, x_2, ..., x_m\}$ is linearly dependent. \Rightarrow conflicting

 $\therefore \gamma_0 = \{T(x_1), T(x_2), ..., T(x_m)\}$ is linearly independent.

According to Theorem 2.2, $T(V_0)=\text{span}(\gamma_0)$.

 $\therefore \gamma_0$ is linearly independent and the number of the vectors in γ_0 is m.

 \therefore dim(T(V₀))=m.

 $\dim(V_0)=\dim(T(V_0))=m$.

Q.E.D.