Solution 7

Sec. 5.2

2.

For the matrix $A \in M_{nxn}(R)$, test A for diagonal and ability and if A is diagonalizable, find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ=D$

(d)
$$\begin{pmatrix} 7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3 \end{pmatrix}$$

Ans.:

(d)
$$(3 - \lambda)[(-5 - \lambda) + 32] = 0 \Rightarrow \lambda = 3,3,-1$$

$$(A-3I) = \begin{pmatrix} 4 & -4 & 0 \\ 8 & -8 & 0 \\ 6 & -6 & 0 \end{pmatrix} \Rightarrow \text{eigenvector} = (1,-1,0) \text{ and } (0,0,1)$$

$$(A+I) = \begin{pmatrix} 8 & -4 & 0 \\ 8 & -4 & 0 \\ 6 & -6 & 4 \end{pmatrix} \Rightarrow \text{eigenvector} = (1,2,0)$$

$$Q = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}$$

3.

(c) For the linear operators T on a vector space V, test T for diagonalizability and if T is a diagonalizable, find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

Ans.:

(c)
$$T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$
 $T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \Rightarrow [T]_{y} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

$$\det(\begin{bmatrix} \mathbf{T} \end{bmatrix}_{\gamma} - 1) = \begin{pmatrix} -\lambda & 1 & 0 \\ -1 & -\lambda & 0 \\ 0 & 0 & 2 - \lambda \end{pmatrix} = 0 \Rightarrow (\lambda - 2)(\lambda^2 - 1) = 0 \Rightarrow P269 \text{ condition 1 fails}$$

to hold \Rightarrow T is not a diagonalizable matrix.

Let T be an invertible linear operator on a finite-dimensional vector space V.

- (a) Recall that for any eigenvalue λ of T, λ^{-1} is an eigenvalue of T^{-1} . Prove that the eigenvalue of T corresponding to λ is the same as the eigenspace T^{-1} of corresponding to λ^{-1} .
- (b) Prove that if T is diagonalizable, then T⁻¹ is diagonalizable.

Ans.:

(a) For each eigenvector ν and correspond eigenvalue λ of linear operator T. By definition, we have $T(\nu) = \lambda \nu$.

Therefore,
$$v = T^{-1}(T(v)) = T^{-1}(\lambda v) \Rightarrow T^{-1}(v) = \frac{1}{\lambda}v$$

- $\therefore \nu$ is also the eigenvector and $\frac{1}{\lambda}$ si correspond eigenvalue of linear operator T^{-1}
- ... The eigenspace of T corresponding to λ is the same as the eigenspace of

$$T^{-1}$$
 correspond to $\frac{1}{\lambda}$.

Q.E.D.

- (b) Assume T is a linear operator on V, a finite-dimensional vector space of dimension *n*
- ∵T is diagonalizable.
- \therefore T has *n* independent eigenvectors.

By (a), any eigenvector of T is also the eigenvector of T^{-1} .

- \therefore T⁻¹ also has *n* independent eigenvectors.
- \therefore T⁻¹ is diagonalizable.

Q.E.D.

Sec. 5.4

2.

(e) For the linear operator T on the vector space V, determine whether the given subspace W is a T-invariant subspace of V.

$$V = M_{2x2}(R), T(A) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A & W = \{A \in V : A^t = A\}$$

Ans.:

$$T(A) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{pmatrix} \neq A^{t} \implies W \text{ is not T-invariant.}$$

6.

(c) For the linear operator T on the vector space V, find an ordered basis for the

T-cyclic subspace generated by the vector z.
$$V = M_{2x2}(R)$$
, $T(A) = A^t & Z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Ans.:

$$T(Z) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^t = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = Z \Rightarrow Basis is Z.$$

36.

Let T be a linear operator on a finite-dimensional vector space V. Prove that T is diagonalizable iff V is the direct sum of one-dimensional T-invariant subspaces.

Ans.:

 (\Rightarrow)

Let $\dim(V)=n$

If T is diagonalizable, there exists a basis $\beta = \{v_1, v_2, ..., v_n, \}$ consisting of eigenvectors of T. Let $W_i = span\{v_i\}$ for $1 \le i \le n$

 $\forall w \in W_i$, we can be represented as $w = av_i$ for some a,

 $T(w) = T(av_i) = aT(v_i) = a\lambda_i v_i \in W_i$, where λ_i is the eigenvalue corresponding to v_i .

 $\therefore W_i$ is a 1-dimensional T-invariant subspace of V.

$$\forall w = \sum_{i=1}^{n} a_i v_i \in V$$
, let $w_i = a_i v_i \in W_i$

Then
$$w = w_1 + w_2 + ... + w_n \in W_1 + W_2 + ... + W_n$$

$$\therefore V \subseteq W_1 + W_2 + ... + W_n$$

$$\forall w = w_1 + w_2 + ... + w_n \in W_1 + W_2 + ... + W$$
 where $w_i \in W$

Representing $w_i = b_i v_i$ for $1 \le i \le n$,

We have
$$w = \sum_{i=1}^{n} b_i v_i \in V$$

$$\therefore W_1 + W_2 + ... + W_n \subseteq V$$

Let
$$w \in W_j \cap \sum_{i \neq j} W_i$$

$$w \in W_i \implies w = a_i v_i$$

$$w \in \sum_{i \neq j} V_i \Longrightarrow w = \sum_{i \neq j} a_i v_i$$

$$a_j v_j = \sum_{i \neq j} a_i v_i \Longrightarrow \sum_{i \neq j} a_i v_i + (-a_j) v_j = 0$$

But $\{v_1, v_2, ..., v_n\}$ are independent.

$$\therefore a_1 = a_2 = \dots = a_n = 0$$

$$\therefore w = 0$$

$$\therefore W_j \cap \sum_{i \neq j} W_i = \{0\}$$

 $\therefore V = W_1 \oplus W_2 \oplus ... \oplus W_n$, W_i is the direct sum of 1-dimensional T-invariant subspaces.

 (\Leftarrow)

 $V = W_1 \oplus W_2 \oplus ... \oplus W_n$, 1-dimensional T-invariant subspace for $1 \le i \le n$.

Choose a nonzero vector $v_i \in W_i$ as the basis of W_i

$$\forall w_i \in W \& w_i \neq 0 \text{ let } w_i = a_i v_i, a_i \neq 0$$

 $T(w_i) \in W_i$ (: W_i is T-invariant)

We can let $T(w_i) = bv_i$

$$\therefore T(w_i) = bv_i = (\frac{b}{a})av_i = \lambda_i w_i, \text{ where } \lambda_i = \frac{b}{a}$$

 \therefore w_i is an eigenvector of T.

Let
$$\sum_{i=1}^{n} a_i w_i = 0$$

$$-a_j w_j = \sum_{\substack{i=1\\i\neq j}}^n a_i w_i$$

But
$$-a_j w_j \in W_j$$

$$\sum_{i\neq j} a_i w_i \in \sum_{i\neq j} W_i \& W_j \cap \sum_{i\neq j} W_i = \{0\}$$

$$\therefore -a_j w_j = \sum_{\substack{i=1\\i\neq j}}^n a_i w_i = 0$$

$$\therefore a_1 = a_2 = \dots = a_n = 0$$

 $\therefore \{w_1, w_2, ..., w_n\}$ is independent and dim(V)=n.

$$\Rightarrow \beta = \{w_1, w_2, ..., w_n\}$$
 can be a basis of V.

 $\therefore \beta$ is a basis of V consisting of eigenvectors.

... T is diagonalizable.

Sec. 6.1

6.1.5.

In C², show that $\langle x, y \rangle = xAy^*$ is an inner-product, where $A = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}$ compute $\langle x, y \rangle = xAy^*$

y > for x = (1-i, 2+3i) & y = (2+i, 3-2i)

Ans.:

(a)
$$\langle x, y \rangle = (1 - i, 2 + 3i) \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix} \begin{pmatrix} 2 - i \\ 3 + 2i \end{pmatrix} = 6 + 21i$$

(b)

(i)
$$\langle x+z, y \rangle = (x+z)Ay^* = xAy^* + zAy^* = \langle z, y \rangle + \langle z, y \rangle$$

(ii)
$$\langle cx, y \rangle = (cx)Ay^* = c(xAy^*) = c\langle x, y \rangle$$

(iii) Let
$$x = [x_1, x_2], y = [y_1, y_2]$$

$$\overline{\langle x, y \rangle} = [x_1, x_2] \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix} \begin{bmatrix} \overline{y_1} \\ \overline{y_2} \end{bmatrix} = [\overline{x_1}, \overline{x_2}] \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = (\overline{x_1}y_1 + 2\overline{x_2}y_2) + i(\overline{x_2}y_1 - \overline{x_1}y_2)$$

$$\langle y, x \rangle = [y_1, y_2] \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix} \left[\frac{\overline{x_1}}{x_2} \right] = (\overline{x_1}y_1 + 2\overline{x_2}y_2) + i(\overline{x_2}y_1 - \overline{x_1}y_2)$$

$$\langle y, x \rangle = [y_1, y_2] \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix} \left[\frac{\overline{x_1}}{x_2} \right] = (\overline{x_1}y_1 + 2\overline{x_2}y_2) + i(\overline{x_2}y_1 - \overline{x_1}y_2)$$

$$\therefore \overline{\langle x, y \rangle} = \langle y, x \rangle$$

(iv)
$$\langle x, x \rangle = [x_1, x_2] \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix} \left[\frac{\overline{x_1}}{x_2} \right] = (\overline{x_1} x_1 + 2 \overline{x_2} x_2) + i(\overline{x_2} x_1 - \overline{x_1} x_2)$$

$$|x_{1-}x_{2}i|^{2} = x_{1}\overline{x_{1}} - \overline{x_{1}}x_{2}i + \overline{x_{2}}x_{2} + x_{1}\overline{x_{2}}i \ge 0$$
 and $\overline{x_{2}}x_{2} \ge 0$

$$\therefore \langle x, x \rangle \ge 0$$

Q.E.D.

6.1.10.

Let V be an inner product space & suppose that x & y are orthogonal vectors in V.

Prove that $||x + y||^2 = ||x||^2 + ||y||^2$. Deduce the Pythagonean theorem in \mathbb{R}^2 .

Ans.:

 \therefore x and y are orthogonal vector in V.

$$\therefore \langle x, y \rangle = \langle y, x \rangle = 0$$

$$||x+y||^2 = \langle x+y, x+y \rangle = \langle x, x+y \rangle + \langle y, x+y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= \langle x, x \rangle + \langle y, y \rangle = ||x||^2 + ||y||^2$$

Let x and y are vectors in \mathbb{R}^2 . $\therefore x$ and y are orthogonal.

$$||x + y||^2 = ||x||^2 + ||y||^2$$

$$\therefore c^2 = a^2 + b^2$$

6.1.16.

- (a) Show that the vector space H with $\langle \cdot, \cdot \rangle$ defined on page 32 is an inner product space.
- (b) Let V=c([0,1]) & define $\langle f, g \rangle = \int_0^{1/2} f(t)g(t)dt$. Is this an inner product on V? Ans.:
- (a) \therefore H is a complex function between $[0, 2\pi]$.

The inner product define as

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} dt$$

(i)
$$\langle f_1 + f_2, g \rangle = \langle f_1, g \rangle + \langle f_2, g \rangle$$

(ii)
$$\langle cf, g \rangle = c \langle f, g \rangle$$

(iii)
$$\overline{\langle f,g\rangle} = \frac{1}{2\pi} \int_0^{2\pi} \overline{f(t)\overline{g(t)}} dt = \frac{1}{2\pi} \int_0^{2\pi} \overline{f(t)}g(t) dt = \frac{1}{2\pi} \int_0^{2\pi} f(t)\overline{g(t)} dt = \langle g,f\rangle$$

(iv)
$$\langle f, f \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{f(t)} dt = \frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt \ge 0$$

∴H is a inner product space.

(b)

(i) By definition, $\langle x, y \rangle$ is inner product, then $\langle x, x \rangle > 0$ if $x \neq 0$.(6.1)

(ii) for
$$\langle f, g \rangle = \int_0^{\frac{1}{2}} f(t)g(t)dt$$

If
$$f(t) = \begin{cases} 0 & t \le 0.5 \\ 1 & t > 0.5 \end{cases}$$
, then

$$\langle f, f \rangle = \int_{0}^{0.5} f(t)f(t) = 0, f(t) \neq 0$$

 $\therefore \langle f, g \rangle = \int_0^{\frac{1}{2}} f(t)g(t)dt$ is not inner product.