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Shell Mapping



There is a modest but not insignificant gain in forming signal 
constellations in high-dimensional spaces to minimize average signal 
power, quite independent of coding gain.

This so-called shaping gain can never be greater than a factor of       
(1.53dB); however, it is not difficult to achieve shaping gain on the order 

6
eπ

( ); , p g g
of 1dB.



Consider a constellation whose maximum value of amplitude is A. 

Let M denote the constellation size. At time k and time k+1, two 

signal points kx  and 1kx +  are ak 1k+

chosen from this constellation 

respectively Let ka and ka

( ),A Aδ− ( ),A A

( )A A δ

A
1ka +

respectively. Let ka and 1ka +

represent the amplitude of kx  and 

ti l Th 2M

( ),A A δ−

1kx + respectively. There are 2M

possibilities in choosing kx  and 1kx + , 
( ),A δ δ′ ′′+

A a0
including 

( ) ( ) ( ) ( )1, , , , , , ,k ka a A A A A A Aδ δ+ = − − Letc. However, 

A ka0

( )1,k ka A a A+= =  needs signal power 2 2A , while 

( )1,k ka A aδ δ+′ ′′= + = may need less signal energy 2( 2 )A< if an ( )1,k k+ y g gy( )

expanded constellation is used. 



That means, to form the set S of two signal points                    with minimum 
h ld h h C i{ }2 2( ) |S C

1( , )k kx x +

average power, one should choose                                                , where C is 
a constant decided according to the size of S.

{ }2 2
1 1( , ) |k k k kS x x a a C+ += + ≤

The optimum shape in theory is a sphere in a high number of dimensions, but 
spherical constellations are difficult to implement and yield excessive 
constellation which can lead to greater susceptibility to nonlinearconstellation, which can lead to greater susceptibility to nonlinear 
impairments.



For example,  
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After consideration of several shaping methods, a technique called shell 
mapping was eventually included in V.34. Shell mapping is an algorithmic 
method of achieving near spherical constellation shaping in a high numbermethod of achieving near-spherical constellation shaping in a high number 
of dimensions with bounded QAM constellation expansion.

V.34 specifies shell mapping in 16 dimensions with QAM constellation 
expansion limited to about 25 percent, which yields a shaping gain of about 
0 8dB It also includes a shaping option with essentially no constellation0.8dB. It also includes a shaping option with essentially no constellation, 
which still achieves a shaping gain of about 0.2dB.



A E lAn Example

Assume that it is desired to transmit binary data using a 64-
dimensional shaped uncoded constellation at the rate of 8 bits/2D. The 
constituent 2D constellation must consist of at least 256 points.

In this example we assume that a shaping CER (constellationIn this example, we assume that a shaping CER (constellation 
expansion ratio) of 1.5(corresponding to a 384-point 2D constellation) is 
acceptable. The 2D circular constellation A0 is partitioned into 12 
regions R1,R2,…R12,each containing 32 points. 

The region R1 consists of the 32 lowest energy(smallest squared 
distance from the origin) points in A0 R2 consists of the 32 next higherdistance from the origin) points in A0, R2 consists of the 32 next higher 
energy points in A0, and so on. 

All 32 points in any given region Ri,  are used 12 {1, 2, ,12}i J∈ ≡ K

with the same probability. 



We assign the same cost to all points in the same region Every region RiWe assign the same cost to all points in the same region. Every region Ri,           
is assigned a cost          . The justification for this cost          assignment is that 
for a large number of points in each region, the average cost of the region is 
approximately proportional to the region number

12i J∈ il i=

approximately proportional to the region number.
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Shell Mapper in V.34

input : K data bits (S0,S1,…,SK-1)input : K data bits (S0,S1,…,SK 1)

output : the index of 8 2D signals(m0,m1,…,m7)

m1 is an integer satisfying 0    0 ~ 7im M i≤ < ∀ =

The 2D signal regions are M. Each region has its own 
cost m which is roughly in proportion to the signal {0,1,2,..., 1}M∈ −
power.

Let represent the number of distinct i-vectors (m0,…,mi-1) such ( )ig p 1i−

that their total cost  is equal to p,       =2,4 and 8. 
( )ig p 1

0

i

l
l

m
=
∑ i∀



2 ( ) = 1 ,  0 2( 1)g p M p M p M− − + ≤ ≤ −
  

g2(p)

         = 0                      , otherwise

∵ if  p=0 : (0,0) → 2 (0) 1g =  
M

      p=1 : (0,1),(1,0) → 2 (1) 2g =  1

p   M 

      p ( 1)M≤ −  : (0,p),(1,p-1),…,(p,0) → g2(p) = p+1 

M-1 2(M-1)0 p

      p ( 1)M> −  : (p-(M-1),M-1),…,(M-1,p-(M-1)) →g2(p) = 2M-p-1 

M     M 

    p=2M-3 : (M-2,M-1),(M-1,M-2) → g2(2M-3) = 2 

    p=2M-2 : (M-1,M-1) → g2(2M-2) = 1 

( ) (0) ( ) (1) ( 1) ( ) (0) 0 4( 1)Mg4(p) =g2(0) g2(p)+ g2(1) g2(p-1)+... g2(p) g2(0), 0 4( 1)p M≤ ≤ −

= 0           , otherwise 



g8(p) =g4(0) g4(p)+ g4(1) g4(p-1)+…g4(p) g4(0), 0 8( 1)p M≤ ≤ −  

  = 0         , otherwise 

Z (p) = g (0)+ g (1)+ + g (p 1) 0 8( 1)p M≤ ≤Z8(p) = g8(0)+ g8(1)+…+ g8(p-1) ,0 8( 1)p M≤ ≤ −

The rule of priority 

(m0,m1,…,m7) has priority over 0 1 7( , ,..., )m m m′ ′ ′  if  

7 7

′∑ ∑a. 
0 0

i i
i i
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= =

′<∑ ∑
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f. and so on. 



Algorithm: determine 8 integers A,B,C,D,E,F,G,H as follows:

1. R0=S0+2*S1+22*S2+…+2K-1*SK-1: the R0-th element

2 Find the largest integer A for which Z8(A) R≤2. Find the largest integer A for which Z8(A) 
→ total cost 

0R≤

0

A
n

i
i

m
=

=∑

3. Determine the largest integer B such that R1         , where 
R1 =R0 - Z8(A) if B=0

0≥

=R0- Z8(A)- if B>0
3

B-1

4 4
0

( ) (A )
p

g p g p
=

−∑

→ the left half of cost              B
0

i
i

m
=

=∑



4. Determine the integers: 

R2=R1 modulo g4(B), where 2 40 R  (B)-1g≤ ≤  2 4

R3=(R1-R2)/ g4(B) 

→  R1: the R1-th element in the set of (
3 7

0 =4

B & i i
i i

m m
=

= =∑ ∑ A-B) 

R2: the R2-th element in the set of 4-vectors (m0,m1,m2,m3) 

satisfying
3

Bm =∑satisfying
0

Bi
i

m
=

=∑
R3: the R3-th element in the set of 4-vectors (m4,m5,m6,m7) 

7

satisfying 
7

=4
i

i

m =∑ A-B 

 



5. a.  Determine the largest integer C such that R4≥ 0, where 

R4=R2        if C=0 

C-1

  =R2-
C 1

2 2
=0

( ) (B- )
p

g p g p∑     if C>0 

b D t i th l t i t D h th t R ≥ 0 hb. Determine the largest integer D such that R5≥ 0,where

R5=R3        if D=0 

  = R3-
D-1

2 2
=0

( ) (A-B- )
p

g p g p∑    if D>0 

     →  m0+m1 = C & m4+m5 = D 

R4: the R4-th element in the set of 4-vectors (m0 m1 m2 m3)R4: the R4-th element in the set of 4-vectors (m0,m1,m2,m3) 

satisfying m0+m1 = C & m2+m3 = B-C 

R : the R3-th element in the set of 4-vectors (m4 m m6 m )R5: the R3-th element in the set of 4-vectors (m4,m5,m6,m7) 
satisfying m4+m5 = D & m6+m7 = A-B-D 



cost
a. Determine the integers:

E=R4 modulo g2(C), where 
6. A

B
C D

F=(R4-E)/ g2(C) 
b. Determine the integers:

G R d l (C) h

C D

E th F th G th H thG=R5 modulo g2(C) , where 
H=(R5-G)/ g2(D)

→ E: the E-th element in the set of 2-vectors (m0 m1) satisfying

E-th F-th G-th H-th

→ E: the E-th element in the set of 2-vectors (m0,m1) satisfying     
m0+m1=C
F: the F-th element in the set of 2-vectors (m2,m3) satisfying ( , ) y g
m2+m3=B-C
G: the G-th element in the set of 2-vectors (m4,m5) satisfying 
m4+m5=D
H: the H-th element in the set of 2-vectors (m6,m7) satisfying  
m6+m7=A-B-D



(m0, m1, m2, m3, m4, m5, m6, m7) are determined 

0 1 0if C < , then E & C
if C h 1 E & C

M m m m
M M

= = −⎧ ⎫
⎨ ⎬
⎩ ⎭

from the integers A,B,C,D,E,F,G,H as follow:

0 1 0if C , then 1 E & CM m M m m⎨ ⎬≥ = − − = −⎩ ⎭

2 3 2if B-C < , then F & B C
if B C h 1 F & B C

M m m m
M M

= = − −⎧ ⎫
⎨ ⎬≥⎩ ⎭

4 5 4if D < , then G & D
if D th 1 G & D

M m m m
M M

= = −⎧ ⎫
⎨ ⎬≥⎩ ⎭

2 3 2if B-C , then 1 F & B CM m M m m⎨ ⎬≥ = − − = − −⎩ ⎭

6 7 6if A-B-D < , then H & A B D
if A B D then 1 H & A B D

M m m m
M m M m m

= = − − −⎧ ⎫
⎨ ⎬≥ = =⎩ ⎭

4 5 4if D , then 1 G & DM m M m m⎨ ⎬≥ = − − = −⎩ ⎭

6 7 6if A-B-D , then 1 H & A B DM m M m m≥ = − − = − − −⎩ ⎭
Two schemes used in shell mapper:

1. given R-th element in cost C
→ get the cost of a left half C1 &      -th element in (C1+C2
= C)

2 given -th element in (C +C )

R′

R′2. given      -th element in (C1+C2)
→ get R1-th in C1 & R2-th in C2

R



Shell Mapper:Shell Mapper:

1. given (R0-Z8(A))-th in A

t B & R th i (B+(A B))→ get B & R1-th in (B+(A-B))

2. given R1-th in (B+(A-B))

→ get R2-th in B & R3-th in (A-B)

3. given R2-th in B

→ get C & R4-th in (C+(B-C))

given R3-th in (A-B)

→ get D & R5-th in (D+(A-B-D))

4. given R4-th in (C+(B-C))

→ get E-th in C & F-th in (B-C)

given R5-th in (D+(A-B-D))g 5 ( ( ))

→ get G-th in D & H-th in (A-B-D)



For example: 

Consider M=4Consider M 4

then  g2(0) = 1  g4(0) = 1 g8(0) = 1 Z8(1) = 1 

g2(1) = 2  g4(1) = 4 g8(1) = 8 Z8(2) = 9 

g2(2) = 3  g4(2) = 10 g8(2) = 36 Z8(3) = 45 

g2(3) = 4  g4(3) = 20 g8(3) = 120 Z8(4) = 165 

g2(4) = 3    M   M    M   M    M   M  

g2(5) = 2    M   M    M   M    M   M  

 g2(6) = 1  M M  M M   M M

Input: R0=87 



Input: R0=87
1

8

0

1

4R2=2

1×2

2×1
R4=0 E=0

F=0
1

0+1

1+0

Input: R0=87

8
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1
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4

4

4

C =1          E=0 mod 2 
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=0

F=0 / 2
=0

=0
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10×4 2+1
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1×3

2×2
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1+1

2
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4

20×1 3+0
4

4
R5=2

D =1         G=2 mod 2 

3×1

1+1

2+0
2

G=0 } H=1

M R5=5-3
=2

H=2 / 2
=0

=1A=3
B=1
R1=87-45-20
=22

R2=22 mod 4
=2

R3=(22-2) / 4
=5



Decoder for shell mapper 

input:  (m0, m1, m2, m3, m4, m5, m6, m7) 

output: R0 

1. According to (m0, m1, ..., m7), the values of A,B,C,D,E,F,G and H 
can be obtained. 

2. R0 = Z8(A)+
B 1

4 4
0

( ) (A )
p

g p g p
−

=

−∑ +R3g4(B)+R2, where  
p

 
“total cost  < A＂ “total cost = A 

f f f
“total cost = A cost 

f f
“total cost =A cost of left     

 
cost of left half  

< B＂
of left halt = B index 
of right half < R3＂

half = B index of right half = 
R3 index of left half < R2＂

C 1

2 2 2 2
0

R ( ) (B ) F (C) E
p

g p g p g
−

=

= − + ⋅ +∑  

D 1

3 2 2 2
0

R ( ) (A B ) H (D) G
p

g p g p g
−

=

= − − + ⋅ +∑  



Reference: 

R. Laroia, N. Farvardin and S.A. Tretter,” On optimal shaping of 
multidimensional constellations, “ IEEE Tran. Inform. Theory, 

1044 10 6 l 1994 ( l i h 2 i 1048 1049)pp.1044-1056, July 1994 (algorithm 2 in p.1048,1049)

There are differences between V.34 and paper. When the cost of the left 
half is the same paper compares the index of the left half while V34half is the same, paper compares the index of the left half while V.34 
compares the index of the right half. 

V 34 R R (B) R+⎧ ⎫1 3 4 2

1 2 4 3

V.34:     R R (B) R
paper :    R R (A-B) R

g
g

= ⋅ +⎧ ⎫
⎨ ⎬= ⋅ +⎩ ⎭
⎧ ⎫4 2

4 2

V.34:     R F (C) E
paper :    R E (B-C) F

g
g

= ⋅ +⎧ ⎫
⎨ ⎬= ⋅ +⎩ ⎭

1 2

1 2

V.34:     R H (D) G
paper :    R G (A-B-D) H

g
g

= ⋅ +⎧ ⎫
⎨ ⎬= ⋅ +⎩ ⎭1 2p p ( )g⎩ ⎭



ISI Coder



All previous voice modems, such as V.32 (14.4K bits/sec), use adaptive 
linear equalizers in the receiver to combat ISI. In these modems, the 
transmission band is confined to a sweet spot of 2400 Hz or less in 
which it is known a priori that channel attenuation will not be too severe.

In contrast, in V.34 every effort is made to make use of all available 
bandwidth, including frequencies near the band edges where there can be 
tt ti f h 10 20 db I h it ti it i ll kattenuation of as much as 10-20 db. In such a situation, it is well known 

that linear equalizers cause significant noise enhancement.

It is also well known that a decision-feedback equalizer (DFE) is well 
suited to such channels. However, it is not possible to combine coding 
with a DFE straightforwardly The solution to this problem involveswith a DFE straightforwardly. The solution to this problem involves 
precoding: putting the feedback part of the DFE into the transmitter.



The simplest form of precoding is to pre-emphasize the signal before 

transmission. This, however, boosts the signal power and results in 

suboptimal use of power for channels with a constraint on the average 

transmit power. Tomlinson-Harashima (TH) precoding is a nonlinear 

technique that also pre-equalizes the signal before transmission. For 

uniformly distributed inputs, the TH precoder does not boost the transmit 

power. While the TH precoding is simple to implement and can be used 

with coded modulation to realize coding gains, it does not allow the 

realization of any shaping gain, as the precoder output tends to be y p g g , p p

uniformly distributed in a cube.



TH diTH precoding
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Fig 2 Transmission scheme using THPFig.2. Transmission scheme using THP.

• •

••

• •

•

•

••

•

•

R

••••

A
pΛ

Fig.3. Two-dimensional boundary regions of signal constellation for THP



M-point QAM signal set A =                                                               ,
M is a even square number.

)}1(,,1{)}1(,,1{ −±±×−±± MM KK

q
K: number of tap.
{a[k]}: data sequence. A
{d[k]}: predecoding sequence.                            Z2
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M2]k[d p =Λ∈{ [ ]} p g q
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The signal set A is the intersection of 2Z2 +(1 1) and the Voronoi region

10 == ii
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The signal set A is the intersection of  2Z2 +(1,1) and the Voronoi region 
R of Λp.

For log2M odd, d[k] Z2, where is the rotationR2 M∈ ⎥
⎤

⎢
⎡ −

=
11

RFor log2M odd, d[k]               Z , where                     is the rotation 
operator .
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⎣ 11

R



LTF d
1

H(z)
n n nc qa= + bn

LTF precoder

Fi 1 Bl k di f i ti t i LTF d dFig.1. Block diagram of a communication system using LTF predecoder.



an: the output of shaping and trellis    
encoder {an} is a code sequence.encoder {an} is a code sequence.

bn : an –mn: the transmitted signal 
since {a } has shaping gain thesince {an} has shaping gain, the                      
value of |mn| should be as small as    
possible.

cn = an + qn

We should let {cn} be a code sequence.

Fig 3 (a)The LTF predecoder and (b) equivalent linear circuitFig.3. (a)The LTF predecoder and (b) equivalent linear circuit



Take Fig.2. as an example.Take Fig.2. as an example.

Assume that { a } is a sequence from anAssume that { an} is a sequence from an 

Ungerboeck 4-state 2D trellis code with 

redundant 1 bits/2D generated by theredundant 1 bits/2D generated by the 

finite-state machine of Fig.2(a) and based 

on a four-way partition of the lattice o ou w y p o o e ce

translate λ = Z2+  into cosets marked 

by 〝+〞,〝 * 〞, 〝。〞, 〝×〞 in 

)
2
1,

2
1(

y , , ,

Fig.2.(b)
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Hence even {c } is different from {a }
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nn

nn
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ca oo

× × × ×× ×

× × × ×× ×

-4
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Hence, even {cn} is different from {an}
, {cn} is a code sequence!



The inverse precoder recovers an simply by quantizing bn- to the closest  
point in the same coset as cn.

Notably, mn is always contained inside the Voronoi region V of the coset
lattice . In this example, |mn| 2≤p , | n|

When the transmission rate is high, the precoding loss (|mn|) could be a 
negligible fraction of the total transmit energy. At low rates, the loss could 
be significant.



Notice that the precoding loss of the LTF precoder depends on the       

trellis code used to realize the coding gain. For the trellis code considered

above, this loss is four times the loss due to TH precoding. When a more 

powerful trellis code is used to realize a higher coding gain, the 

corresponding coset lattices have bigger Voronoi regions resulting in 

hi h l F l i t lli d b d 8higher losses. For example, using a trellis code based on an 8-way or a  

16-way partition would has a precoding loss which is eight and sixteen  

times the TH precoding loss respectivelytimes the TH precoding loss, respectively.



ISI coder 



ISI d i th bi ti f t lliISI coder is the combination of trellis 

encoder and precoder. To understand the ISI 

coder we first study an important propertycoder, we first study an important property 

of all Ungerboeck-type trellis codes as 

follows Consider any 2D trellis code withfollows. Consider any 2D trellis code with 

redundancy 1 bit/2D. In the first level of 

partitioning, the lattice translate Z2+ )1,1(partitioning, the lattice translate  Z         

is partitioned into two subsets A and B. If 

you consider the trellis diagram of such a 

)
2

,
2

(

y g

code, then all trellis states in the diagram 

can be divided into two types: transmitting 

A or transmitting B.



At time n, according to cn-1 and     A∈na g n 1

previous state Sn-1, the new state Sn can    

be obtained. According toSn,transmitting

n

× ××

× ××× 1

2

A               or B               can be judged.

If let Y =0; if let Y =1A∈c B∈c

A)( ∈nc B)( ∈nc
× ××

-2 2-1 10

If , let Yn=0; if , let Yn=1.

If Yn=0, the ISI coder performs the  
modulo RZ2 function on the input f

A∈nc B∈nc × ××

× ××

× -1

-2

modulo RZ function on the input  fn. 2"R "�

If Yn=1, the ISI coder performs the modulo RZ2 +(1,0) function.

A!∈+= nnn qac

B!∈+= nnn qac
Note that  an can be recovered by the ISI decoder which simply quantizes bn

t th t i t i th b t Ato the nearest point in the subset A.

For the ISI coder, mn is always contained inside the Voronoi region      of the   

RZ2 lattice (| |≦1)

V′

RZ2 lattice. (|mn|≦1)



Modify ISI coder 

A rotated by 90°→ BA rotated by 90 B

B rotated by 90°→A 

MOD Z2

if qn RZ2,Wn=0
if qn RZ2 +(1,0),Wn=1

∈
∈

The output of trellis encoder Y is the
⎩
⎨
⎧

′↔=

′↔=
subsetdifferent   ,1
subset same   the,0

nnn

nnn

acW
acW ×× ××

× ××2

3

The output of trellis encoder Yn is the  

same as the Yn in the ISI encoder.
× ××

×× ××

1 2 3

1

-1-2-3

×× ××

×× ××

× ××

-3

-2

-1

3



Modified ISI coder 

if Yn=0, we need cn A
if Y =1 we need c B

∈
∈if Yn 1, we need cn B

if Yn=0, Wn=0, let         A

∈

∈′nan n

if Yn=0, Wn=1, let         B

if Yn=1, Wn=0, let         B

n

∈′na

∈′na

if Yn=1, Wn=0, let         A

∴Let 

∈′na

nnn WYU ⊕=

if Un=0, rotate 0° (do nothing) →             A∈′= nn aa

if Un=1, rotate 90° (do nothing) →         B∈′na



Since mn is contained in the Voronoi region       of the Z2 lattice, in the “ISI  

d d ” b b i d i l b i i b h l i i

V ′′

′decoder”,      can be obtained simply by quantizing bn to the closest point in 

Z2+            . If         A, then              ; else if          B, then      is obtained by 

t ti b 90°

na′

)
2
1,

2
1( ∈′na naan ′= ∈′na na

a′rotating       by - 90 .

The precoding loss of the modified ISI coder is now equal to the loss due to TH

na

The precoding loss of the modified ISI coder is now equal to the loss due to TH  

precoding. The modified ISI coder is believed to result in the smallest possible      

precoding loss of any precoding scheme and hence completes the evolution of theprecoding loss of any precoding scheme and hence completes the evolution of the   

precoder.



Generalization to higher dimensional codes

We consider here 2k-dimensional codes with redundancy     bits per 2D. The first level of  

lattice partitioning divides the (translate of Z2k) lattice into two subsets A and B The input to
k
1

lattice partitioning divides the (translate of Z )  lattice into two subsets A and B. The input to    

the (modified) ISI coder consists of a sequence of uncoded symbols in A. The first k-1 QAM   

symbols of a trellis-code symbol use a fixed modulo Z2 operation in the (modified) ISI coder. 

Depending on the k-1 channel output QAM symbols produced by these, for the ISI coder, the  

k-th QAM symbol uses one of mod RZ2 or mod RZ2 +(1.0); for the modified ISI coder, the 

k h b l i d b 0° 90° h h h l i i h d i d b (Ak-th symbol is rotated by 0° or 90°, to ensure that the channel output is in the desired subset (A  

or B).

The V.34 standard provides for a simple three-tap precoding filter (representing the feedback      

filter in a DFE) whose coefficients are determined during initial training by the receiver and   

sent to the transmitter. The feedforward filter in the DFE is realized as an adaptive linear    

equalizer in the receiver and continues to adapt during data transmission.
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