/ \ Lecture 3: Turbo Codes. \
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/ NSC and RSCI \

* A nonsystematic convolutional code (NSC) can be converted into
recursive systematic convolutional code (RSC) without changing its
distance property.

~Consider a rate 1/2 nonsystematic convolutional code with memory
size v and generator sequence g, = (910,911, 912, * *, g1,) &and

Gs = (920,921, 922, - , g2u,) TESPECtively.

«Let d represent the input sequence and X, Y represent the two output
sequences. We have
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X = gridi_i
i=0

Yi = Z 92idK—;

1=0
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/Example 1: Letv =2,g7 = (111), g2 = (101).

xThe NSC encoder Is

dy

Xk = gr0dr + g11dkx—1 + g12dk—2
Yi = g20di + g21di—1 + goodi—2

G(D)=[1+ D+ D?*,1+ D?]




ﬁThe RSC encoder is

— dy
= §200k + g21Qk—1 + G22Qk_2

= di + g110k—1 + g120%—2

1 + D?
G(D)_[1’1+D+D2]

[




/'fgl() — 1, then

Xi =dir = g10ak + g110k—1 + 9120k _2

In general, let

X = dg
Y, = ZQZiak—i
1=0
Where ay, is the input to the shift register.
Then,
ar =dig + D g1i0k—;
1=1
|f gio = 1, then

Xy =dp =) griap—;
i=0




ﬁThe RSC encoder is \

*The distance properties of NSC and RSC are identical. However, the
relationship between input and output is different.
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Turbo Encoder' \

dk
= X,
—™ RSC code 1 i
I1
- RSC code 2 > 2k

I1 :aninterleaver

* Let R; and Ry be code rates of RSC code 1 and RSC code 2

respectively. Suppose R1 = Ry = % The overall code rate will be

R=1.

* By punctuating RSC code 1 and RSC code 2, we can have
Ri =Ry = % and the overall code rate is R = %

&Nonuniform Interleaving is preferred. Size of interleaver M is critical./
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\ lterative Decoder.
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/ \ Soft-in/Soft-out DecodeEI \

Lizi) L, @)
™ Soft-in/Soft-out -
- decoder -

L.y L)

L(u) : a priori values for all information bits.
L.y, : channel values for all information bits.

L. (@) : extrinsic values for all information bits.
L(u) : a posteriori values for all information bits.

* For a systematic code, the soft output for an information bit « will be
P(u = +1|y)

P(u = —1|y)

= Leyr + L(u) + Le(a)

- .
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L(a) = L(uly) = log




Then, we have

L(u;) =

/Let T = (211,12, ", Tin, " ", TL1, ", TLn) D€ & codeword of L \
branches, where ;1 = u; and x;», - - -, x;,, are parity bits.

Letg — (y117y127 Ty

Yin, "> YL1,YL2, "+, YLn) DE the received vector.

p(u; = +1[y)
P(u; = —1|y)
P(y11,- -, yrnlu; = +1)
P(yi1,- -, Yonlu; = —1)

P(y — {yin }u; = +1)
P(g — {ya Hu; = —1)
Leyin + Le(;) + L(u;)

L(u;|y) = log

log

L.y;1 + log
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‘ Iterative Decoding' \

L) =0 L, () L (i)
. Soft-in/Soft-out ™| Soft-in/Soft-out >
o decoder for o~ | ol decoder for ¢!
n ‘!"' .
Ly L () i @
L) at the
final iteration
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/Procedure ;

(1)i = 1. Set L(u) = 0.
(2) For the ith iteration, use L(u) and L.y to calculate L~ (). Then,
calculate the extrinsic information.

Lg (@) = L™ (@) — [Leyr + L(u)]
(3) Use L (4) and L.y to calculate L!(@). Then, calculate
Ly(a) = LI(@) — [Leyy + Lg ()]

4)Ifi<I,theni— (¢ +1). Let L(u) = LL(u) and goto (2). If i = I,
then stop. Note that

L(i) = Ley + L (@) + LL(a)
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/ \ BER Performance: Turbo Codes vs Conv. Code‘ \

v.-tuﬁIITﬁ_tt"li—l
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/

BER Performance vs Interleaver Size (V) I
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/ \ Reduction of Error Coefficients. \

~ Let P(m;) represent a code path of C'; encoded from message m;
and let P '(m;) represent the code path of C'; encoded from message

m;.
* Suppose that P(my), P(ms),---, P(my) are nearest neighbors of the
all zero path P(0).
pimy  plmy) pimeg)
/XN /N
- - P(0)
M

* Since in RSC a weight 1 message will generate an infinite-weight
sequence, hence the weight of m; Is more than 1.

\_ .
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KAfter the interleaving operation, the more than 1 nonzero bits in m; \
will be likely to be separated in a wide range. Hence, it is likely that
P'(mq),P'(ms), -, P'(my) will have large weights.

* Let % be the error coefficient, where M iIs the number of nearest
neighbors of the all zero codeword of the turbo code.

* Using larger interleaver size can achieve lower coefficient.

+ Low error coefficient will result in low error rate.
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/

=

* We denote the generator matrix for a rate 1/2 RSC code as follows:

* Observe that, for recursive encoder, the code word will be of finite
weight if and only if the input word is divisible by ¢, (D).

Corollary 1. A weight-one input word will produce an infinite weight

Corollary 2. For any non-trivial g1 (D), there exists a family of

‘ Recursive Systematic Convolutional Encoder' \

GD)=[1 =0 ] @

g1(D)

output word.

weight-two input words of the form D’ (1 + D?~1), 5 > 0, which
produce finite weight output words. When g, (D) is a primitive
polynomial of degree m, then ¢ = 2™.

/
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/ ‘Asymptotic Performance for Turbo Codes' \

* The asymptotic performance of a rate R Turbo code in the additive
white Gaussian noise (AWGN) channels with one side power spectrum
density Ny is described as follows.

* Using the standard union bounding technique, the bit error rate
(BER) of the Turbo code with maximume-likelihood (ML) decoding can
be upper-bounded by

oN _1q
w; QREb
P, < — d; , 2

where w; is the weight of the i*" message word and d; is the weight of
the i** code word. Please see pp. 532-534 of Lin’s book for the
derivation of each term in the above equation.

- .
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ﬁ The above equation can be rewritten as \

N ol
LD 3) BpL WL} €

w=1 j53=1

where C is the binomial coefficient and d,,; is the weight of the ;"
code word produced by a weight-w message word.

* Consider the first few terms in the outer summation of equation (3).

w=1: ¢From Corollary 1, weight-one message words will produce
large weight code words at both constituent encoders. Thus, each
dy; Is significantly greater than the minimum code words so that
the w=1 terms in equation (3) will be negligible.

w=2: 1. Of the C¥¥ weight-two message words, only a fraction will be
divisible by g1 (D) and, of these, only certain one will yield the
smallest weight, dgf;;m at a constituent encoder output (here,

C'C denotes "constituent code”).
\ 2. With the interleaver present, if an input u(D) of weight-two /

20




yields a weight-d$'¢ ‘min cOde word at the first encoder’s output, n\
IS unlikely that the permuted input, v’(D), seen by the second
encoder will also correspond to a weight-d$¢ . code word.

2,min
. However, we can be sure that there will be some
minimum-weight turbo code words produced by weight-two
message words, and that this minimum weight can be
lower-bounded by

d2 , TN > 2d2 ,min 2= dfﬁff’ (4)

where d; . ¢ s IS the effective free distance of the Turbo code .

. The exact value of d1¢ min (here, T'C' denotes "Turbo code”) is
Interleaver dependent. We may denote the number of
weight-two message words which produce weight-d% ¢ min
code words by n, so that, for w = 2, the inner sum In

turbo

/
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/ equation (3) can be approximated as \

CN
L 2 2RE} 219 2RE
> ()b R 22z, 2R g

j=1

w=3: 1. Following an argument similar to the w = 2 case, we can
approximate the inner sum in equation (3) for w = 3 as

C3'
3 ORE, _3ns . [n-c 2RE,
> o a0 = B g Jarg,, 2R, @

g=1

where n; and dZ¢ . are obviously defined.

3,min
2. While ns is clearly dependent on the interleaver, we can make
some comments on its size relative to n, for a randomly
generated” interleaver.
(a) We can expect the number of weight-three terms divisible by
g1 (D) to be of the order of the number of weight-two terms

K divisible by g; (D). Thus, most of the C¥' term in equation (3)/
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(d)

can be removed from consideration for this reason. \
Moreover, given a weight-three encoder input (D) divisible
by g1 (D), it becomes unlikely that the permuted input «'(D)
will also be divisible by ¢, (D).

For example, suppose u(D) = g;(D) = 1+ D + D?. Then the
interleaver output will be a multiple of ¢, (D) if the three input
1's become the j, (7 + 1), and (j + 2)*" bits out of the
Interleaver, for some ;.

If the interleaver acts in a purely random fashion so that the
probability that one of the 1’s lands a given position is 1/N,
the interleaver output will be D7 g, (D) with probability 3!/N*.
For comparison, for w = 2 inputs, a given interleaver output
pattern occurs with probability 2!/N?2. Thus, we can expect
the number of weight-three information sequence, ns,
resulting in remergent paths in both encoders to be much

less than n,
ns < na, (7)/
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/ with the result being that the inner sum in equation (3) for \
w = 3 is negligible relative to that for w = 2 provided that NV is
sufficient large.

w > 4: Using the similar argument, we can show that n,, < ny for
w > 4.

From our discussion above, it is easy to find interleavers such that

w = 2 term dominates the asymptotic performance of a Turbo code for
N > 1000. Hence, we will use equation (5) to estimate the asymptotic
performance of a Turbo code.
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/ ‘ Error Performance in the Error-Floor Region I \

* Let A; be the number of codewords of weight d and B, be the total
number of nonzero information bits on all weight-d path.

x For a (k = 1) convolutional code,

ORE, )
Ny,

Py, < Z BaQ(4/d

d:dfree

x Let By = f—d. For a turbo code with interleaver size N

fqdléd 2RE}

P, < d :

b_d; @ No)
—Ufree

« There is a rate 5 turbo code with N = 65536, d .. = 6, Ag = 3,
Bg = 2. The free distance asymptote is Py, = g22:Q(,/6%).

~ 65536

\*There Is a (2,1, 14) convolutional code with df,.. = 18 ,A;5 = 18, /
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/

Big = 137. The free distance asymptote is Pf,.. = 137Q)( 18%) \

* An "average” turbo code with N = 65536 has distance spectrum

d A; By
6 4.5 9
8 11 22
10 205 41
12 75 150

*x The (2,1, 14) convolutional code has distance spectrum

d Ay By
18 33 137
20 136 1034
22 835 7857
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/ Error Performance in the Water-fall Region I \

* EXIT chart is used to explain the dynamics of iterative decoding and
to predict the pinch-off signal-to-noise ratios of a turbo code.

* Extrinsic information transfer chart, or EXIT chart: Relate a
parameter of the input to a constituent decoder to a parameter of the
decoder output.

* The parameter can be

1. Input: The signal-to-noise ratio (SNR) of the a prior: L-value
La(ul).

2. Output: The SNR of the a posteriori extrinsic L-value L. (u;).

3. Input: Mutual information between an information bit «; and its a
priori L-value L, (u;).

4. Output: Mutual information between an information bit «; and its a

\ posteriori extrinsic L-value L (u;). /
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/ \ EXIT charts based on mutual information I \

* We model the a prior: L-value inputs to a constituent decoder as
independent Gaussian random variables (r.v.) with variance o2 and

1e = 02 /2, where the sign of u, depends on the transmitted value of
u, based on the following facts.

1. The input channel L-values to a constituent decoder are
independent Gaussian r.v. with variance 2L. and mean +L..

2. Extensive simulations of the a posteriori extrinsic L-value L.(u;)
for a constituent decoder with very large block lengths support this
assumption.

* The mutual information I, [u;; L, (u;)] between u; and L, (u;) is

. o0 2Py, (§|ur)
> > / Pr, (§lui) logy P @u=—1)+ P @u=tD)"

uy=—1,+1" —X

Kwhere x can be either a or e. /
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/

1.

Mutual information I \

Mutual information is a measure of the amount of information that
one random variable contains about another random variable. It is
the reduction in the uncertainty of one random variable due to the
knowledge of the other.

The mutual information 7(X;Y) between two random variables
with joint density f(z,y) is defined as

I(X;Y) = //f:vylog )f())d:cdy

_ //fx\y y) log ((|))d:z:dy

20



/ Mutual information I

Let f(z) = Pp,(€), dz = d¢
f(y) = Py, (w) = 56(u +1) + 56(uy — 1)
= I Jug; Ly (w)]
= [ J P, (§lun)[36(u + 1) + $6(w — 1)]log, e dedu,
= 5 [ Pr,(§lu = +1) log, PLmz(ag:(lSH)dﬁJr

5 | Pr,(&lur = —1)log, PLxl(fJféé‘:)_l)dg

Pr,(§) = Zul:+1,_1 Pr, (8 ur)
— Zul:—f—l,—l Pr, (f|ul)Puz (ul)
= 3[Pr, (€lug = +1) + Pp, (&g = —1)]

20



/*For a constituent decoder, P, (£|u;) is assumed to be Gaussian and\
Pr_ (&|uy) is determined by simulating the BCJR algorithm with
independent Gaussian-distributed a prior: L-value input for a particular
constituent code and a large block length.

* Steps for generating decoder input-output transfer curves:

1. Fix a channel signal-to-noise ratio.

2. For afixed I,[u;; L,(u;)], run the BCJR algorithm and calculate the
associated I.[u;; Ly (u)].
3. Repeat Step. 2 for different I, |u;; L,(u;)] and plot the resulting
values of I.|u;; Le(ug)].
* Steps for obtaining EXIT chart:

1. Generate and plot decoder input(X-axis)-output(Y -axis) transfer
curves for RSC1.

2. Generate and plot decoder input(Y -axis)-output(X-axis) transfer

\ curves for RSC2. /
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Decoder /O transfer curves: Various Ej, /N,
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/‘ Decoder I/O transfer curves: Various Component Code'\
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/ \EXIT Charts: Pinch-Off SNR limits I \
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Encoding:

\ Serial Concatenated Turbo Cods
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éxample 2.
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/Decoding:
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