
'

&

$

%

Lecture 3: Turbo Codes

�

�

�

�
References

• 16.1-16.5 of Lin’s book: Shu Lin and Daniel J. Costello, “Error
Control Coding,” 2nd edition, Prentice Hall, 2004.

• Ch4 and Ch6 of Vucetic’s book: B. Vucetic and J. Yuan, “Turbo
Codes: Principles and Applications,” Kluwer Academic Publishers,
2000.

• J. P. Woodward and L. Hanzo, “Comparative study of turbo
decoding algorithms: An overview,” IEEE Tran. Vehicular Technology,
vol. 2, no. 5, pp.2208-2233, Nov. 2000.

1



'

&

$

%

NSC and RSC

? A nonsystematic convolutional code (NSC) can be converted into
recursive systematic convolutional code (RSC) without changing its
distance property.

?Consider a rate 1/2 nonsystematic convolutional code with memory
size ν and generator sequence g1 = (g10, g11, g12, · · · , g1ν) and
g2 = (g20, g21, g22, · · · , g2ν) respectively.

?Let ~d represent the input sequence and ~X, ~Y represent the two output
sequences. We have

2



'

&

$

%

Xk =
ν

∑

i=0

g1idk−i

Yk =
ν

∑

i=0

g2idk−i

3



'

&

$

%

Example 1: Let ν = 2, g1 = (111), g2 = (101).

?The NSC encoder is

Xk = g10dk + g11dk−1 + g12dk−2

Yk = g20dk + g21dk−1 + g22dk−2

G(D) = [1 + D + D2, 1 + D2]

4



'

&

$

%

?The RSC encoder is

Xk = dk

Yk = g20ak + g21ak−1 + g22ak−2

ak = dk + g11ak−1 + g12ak−2

G(D) = [1,
1 + D2

1 + D + D2
]

5



'

&

$

%

If g10 = 1, then

Xk = dk = g10ak + g11ak−1 + g12ak−2

In general, let

Xk = dk

Yk =
ν

∑

i=0

g2iak−i

Where ak is the input to the shift register.
Then,

ak = dk +
ν
∑

i=1

g1iak−i

If g10 = 1, then

Xk = dk =
ν

∑

i=0

g1iak−i

6



'

&

$

%

?The RSC encoder is

?The distance properties of NSC and RSC are identical. However, the
relationship between input and output is different.

7



'

&

$

%

Turbo Encoder

? Let R1 and R2 be code rates of RSC code 1 and RSC code 2

respectively. Suppose R1 = R2 = 1
2 . The overall code rate will be

R = 1
3 .

? By punctuating RSC code 1 and RSC code 2, we can have
R1 = R2 = 2

3 and the overall code rate is R = 1
2 .

? Nonuniform interleaving is preferred. Size of interleaver M is critical.

8



'

&

$

%

Iterative Decoder

9



'

&

$

%

Soft-in/Soft-out Decoder

L(u) : a priori values for all information bits.
Lcy1 : channel values for all information bits.
Le(û) : extrinsic values for all information bits.
L(û) : a posteriori values for all information bits.

? For a systematic code, the soft output for an information bit u will be

L(û) = L(u|ȳ) = log
P (u = +1|ȳ)

P (u = −1|ȳ)

= Lcy1 + L(u) + Le(û)

10



'

&

$

%

Let x̄ = (x11, x12, · · · , x1n, · · · , xL1, · · · , xLn) be a codeword of L

branches, where xi1 = ui and xi2, · · · , xin are parity bits.

Let ȳ = (y11, y12, · · · , y1n, · · · , yL1, yL2, · · · , yLn) be the received vector.
Then, we have

L(ûi) = L(ui|ȳ) = log
p(ui = +1|ȳ)

P (ui = −1|ȳ)

= log
P (y11, · · · , yLn|ui = +1)

P (y11, · · · , yLn|ui = −1)
+ log

P (ui = +1)

P (ui = −1)

= Lcyi1 + log
P (ȳ − {yi1}|ui = +1)

P (ȳ − {yi1}|ui = −1)
+ L(ui)

= Lcyi1 + Le(ûi) + L(ui)

11



'

&

$

%

Iterative Decoding

12



'

&

$

%

Procedure :
(1) i = 1. Set L(u) = 0.
(2) For the ith iteration, use L(u) and Lcy to calculate L−(û). Then,
calculate the extrinsic information.

L−
e (û) = L−(û) − [Lcy1 + L(u)]

(3) Use L−
e (û) and Lcy to calculate L|(û). Then, calculate

L|
e(û) = L|(û) − [Lcy1 + L−

e (û)]

(4) If i < I, then i → (i + 1). Let L(u) = L
|
e(u) and go to (2). If i = I,

then stop. Note that

L(û) = Lcy + L−
e (û) + L|

e(û)

13



'

&

$

%

BER Performance: Turbo Codes vs Conv. Codes

14



'

&

$

%

BER Performance vs Interleaver Size (N )

15



'

&

$

%

Reduction of Error Coefficients

? Let P (mi) represent a code path of C1 encoded from message mi

and let P ′(mi) represent the code path of C2 encoded from message
mi.

? Suppose that P (m1), P (m2), · · · , P (m`) are nearest neighbors of the
all zero path P (0).

? Since in RSC a weight 1 message will generate an infinite-weight
sequence, hence the weight of mi is more than 1.

16



'

&

$

%

? After the interleaving operation, the more than 1 nonzero bits in mi

will be likely to be separated in a wide range. Hence, it is likely that
P ′(m1), P

′(m2), · · · , P
′(m`) will have large weights.

? Let M
N

be the error coefficient, where M is the number of nearest
neighbors of the all zero codeword of the turbo code.

? Using larger interleaver size can achieve lower coefficient.

? Low error coefficient will result in low error rate.

17



'

&

$

%

Recursive Systematic Convolutional Encoders

? We denote the generator matrix for a rate 1/2 RSC code as follows:

G(D) =
[

1 g2(D)
g1(D)

]

(1)

? Observe that, for recursive encoder, the code word will be of finite
weight if and only if the input word is divisible by g1(D).

Corollary 1. A weight-one input word will produce an infinite weight
output word.

Corollary 2. For any non-trivial g1(D), there exists a family of
weight-two input words of the form Dj(1 + Dq−1), j ≥ 0, which
produce finite weight output words. When g1(D) is a primitive
polynomial of degree m, then q = 2m.

18



'

&

$

%

Asymptotic Performance for Turbo Codes

? The asymptotic performance of a rate R Turbo code in the additive
white Gaussian noise (AWGN) channels with one side power spectrum
density N0 is described as follows.

? Using the standard union bounding technique, the bit error rate
(BER) of the Turbo code with maximum-likelihood (ML) decoding can
be upper-bounded by

Pb ≤

2N−1
∑

i=1

wi

N
Q(

√

di

2REb

N0
), (2)

where wi is the weight of the ith message word and di is the weight of
the ith code word. Please see pp. 532-534 of Lin’s book for the
derivation of each term in the above equation.

19



'

&

$

%

? The above equation can be rewritten as

Pb ≤
N

∑

w=1

CN
w

∑

j=1

w

N
Q(

√

dwj

2REb

N0
), (3)

where CN
w is the binomial coefficient and dwj is the weight of the jth

code word produced by a weight-w message word.

? Consider the first few terms in the outer summation of equation (3).

w=1: ¿From Corollary 1, weight-one message words will produce
large weight code words at both constituent encoders. Thus, each
d1j is significantly greater than the minimum code words so that
the w=1 terms in equation (3) will be negligible.

w=2: 1. Of the CN
2 weight-two message words, only a fraction will be

divisible by g1(D) and, of these, only certain one will yield the
smallest weight, dCC

2,min, at a constituent encoder output (here,
CC denotes ”constituent code”).

2. With the interleaver present, if an input u(D) of weight-two

20



'

&

$

%

yields a weight-dCC
2,min code word at the first encoder’s output, it

is unlikely that the permuted input, u′(D), seen by the second
encoder will also correspond to a weight-dCC

2,min code word.

3. However, we can be sure that there will be some
minimum-weight turbo code words produced by weight-two
message words, and that this minimum weight can be
lower-bounded by

dTC
2,min ≥ 2dCC

2,min − 2 ≡ df,eff , (4)

where df,eff is the effective free distance of the Turbo code .

4. The exact value of dTC
2,min (here, TC denotes ”Turbo code”) is

interleaver dependent. We may denote the number of
weight-two message words which produce weight-dTC

2,min turbo
code words by n2 so that, for w = 2, the inner sum in

21



'

&

$

%

equation (3) can be approximated as

CN
2

∑

j=1

2

N
Q(

√

d2j

2REb

N0
) ≈

2n2

N
Q(

√

dTC
2,min

2REb

N0
). (5)

w=3: 1. Following an argument similar to the w = 2 case, we can
approximate the inner sum in equation (3) for w = 3 as

CN
3

∑

j=1

3

N
Q(

√

d3j

2REb

N0
) ≈

3n3

N
Q(

√

dTC
3,min

2REb

N0
), (6)

where n3 and dTC
3,min are obviously defined.

2. While n3 is clearly dependent on the interleaver, we can make
some comments on its size relative to n2 for a ”randomly
generated” interleaver.

(a) We can expect the number of weight-three terms divisible by
g1(D) to be of the order of the number of weight-two terms
divisible by g1(D). Thus, most of the CN

3 term in equation (3)

22



'

&

$

%

can be removed from consideration for this reason.
(b) Moreover, given a weight-three encoder input u(D) divisible

by g1(D), it becomes unlikely that the permuted input u′(D)

will also be divisible by g1(D).
(c) For example, suppose u(D) = g1(D) = 1 + D + D2. Then the

interleaver output will be a multiple of g1(D) if the three input
1’s become the jth, (j + 1)th, and (j + 2)th bits out of the
interleaver, for some j.

(d) If the interleaver acts in a purely random fashion so that the
probability that one of the 1’s lands a given position is 1/N ,
the interleaver output will be Djg1(D) with probability 3!/N3.
For comparison, for w = 2 inputs, a given interleaver output
pattern occurs with probability 2!/N2. Thus, we can expect
the number of weight-three information sequence, n3,
resulting in remergent paths in both encoders to be much
less than n2

n3 � n2, (7)

23



'

&

$

%

with the result being that the inner sum in equation (3) for
w = 3 is negligible relative to that for w = 2 provided that N is
sufficient large.

w ≥ 4: Using the similar argument, we can show that nw � n2 for
w ≥ 4.

From our discussion above, it is easy to find interleavers such that
w = 2 term dominates the asymptotic performance of a Turbo code for
N ≥ 1000. Hence, we will use equation (5) to estimate the asymptotic
performance of a Turbo code.

24



'

&

$

%

Error Performance in the Error-Floor Region

? Let Ad be the number of codewords of weight d and Bd be the total
number of nonzero information bits on all weight-d path.

? For a (k = 1) convolutional code,

Pb ≤
∑

d=dfree

BdQ(

√

d
2REb

N0
).

? Let B̃d = Bd

Ad
. For a turbo code with interleaver size N

Pb ≤
∑

d=dfree

AdB̃d

N
Q(

√

d
2REb

N0
).

? There is a rate 1
2 turbo code with N = 65536, dfree = 6, A6 = 3,

B̃6 = 2. The free distance asymptote is Pdfree
= 3×2

65536Q(
√

6 Eb

N0

).

? There is a (2, 1, 14) convolutional code with dfree = 18 ,A18 = 18,

25



'

&

$

%

B18 = 137. The free distance asymptote is Pfree = 137Q(
√

18 Eb

N0

)

? An ”average” turbo code with N = 65536 has distance spectrum

d Ad Bd

6 4.5 9

8 11 22

10 20.5 41

12 75 150

? The (2, 1, 14) convolutional code has distance spectrum

d Ad Bd

18 33 137

20 136 1034

22 835 7857

26



'

&

$

%

Error Performance in the Water-fall Region

? EXIT chart is used to explain the dynamics of iterative decoding and
to predict the pinch-off signal-to-noise ratios of a turbo code.

? Extrinsic information transfer chart, or EXIT chart: Relate a
parameter of the input to a constituent decoder to a parameter of the
decoder output.

? The parameter can be

1. Input: The signal-to-noise ratio (SNR) of the a priori L-value
La(ul).

2. Output: The SNR of the a posteriori extrinsic L-value Le(ul).

3. Input: Mutual information between an information bit ul and its a

priori L-value La(ul).

4. Output: Mutual information between an information bit ul and its a

posteriori extrinsic L-value Le(ul).

27



'

&

$

%

EXIT charts based on mutual information

? We model the a priori L-value inputs to a constituent decoder as
independent Gaussian random variables (r.v.) with variance σ2

a and
µa = ±σ2

a/2, where the sign of µa depends on the transmitted value of
ua based on the following facts.

1. The input channel L-values to a constituent decoder are
independent Gaussian r.v. with variance 2Lc and mean ±Lc.

2. Extensive simulations of the a posteriori extrinsic L-value Le(ul)

for a constituent decoder with very large block lengths support this
assumption.

? The mutual information Ix[ul; Lx(ul)] between ul and Lx(ul) is

1

2

∑

ul=−1,+1

∫ +∞

−∞

PLx
(ξ|ul) log2

2PLx
(ξ|ul)

PLx
(ξ|ul = −1) + PLx

(ξ|ul = +1)
dξ

, where x can be either a or e.

28



'

&

$

%

Mutual information

1. Mutual information is a measure of the amount of information that
one random variable contains about another random variable. It is
the reduction in the uncertainty of one random variable due to the
knowledge of the other.

2. The mutual information I(X ; Y ) between two random variables
with joint density f(x, y) is defined as

I(X ; Y ) =

∫ ∫

f(x, y) log
f(x, y)

f(x)f(y)
dxdy

=

∫ ∫

f(x|y)f(y) log
f(x|y)

f(x)
dxdy

29



'

&

$

%

Mutual information

Let f(x) = PLx
(ξ), dx = dξ,

f(y) = Pul
(ul) = 1

2δ(ul + 1) + 1
2δ(ul − 1)

⇒ Ix[ul; Lx(ul)]

=
∫ ∫

PLx
(ξ|ul)[

1
2δ(ul + 1) + 1

2δ(ul − 1)] log2
PLx (ξ|ul)

PLx (ξ) dξdul

= 1
2

∫

PLx
(ξ|ul = +1) log2

PLx (ξ|ul=+1)
PLx (ξ) dξ+

1
2

∫

PLx
(ξ|ul = −1) log2

PLx (ξ|ul=−1)
PLx (ξ) dξ

PLx
(ξ) =

∑

ul=+1,−1 PLx,ul
(ξ, ul)

=
∑

ul=+1,−1 PLx
(ξ|ul)Pul

(ul)

= 1
2 [PLx

(ξ|ul = +1) + PLx
(ξ|ul = −1)]

30



'

&

$

%

? For a constituent decoder, PLa
(ξ|ul) is assumed to be Gaussian and

PLe
(ξ|ul) is determined by simulating the BCJR algorithm with

independent Gaussian-distributed a priori L-value input for a particular
constituent code and a large block length.

? Steps for generating decoder input-output transfer curves:

1. Fix a channel signal-to-noise ratio.

2. For a fixed Ia[ul; La(ul)], run the BCJR algorithm and calculate the
associated Ie[ul; La(ul)].

3. Repeat Step. 2 for different Ia[ul; La(ul)] and plot the resulting
values of Ie[ul; Le(ul)].

? Steps for obtaining EXIT chart:

1. Generate and plot decoder input(X-axis)-output(Y -axis) transfer
curves for RSC1.

2. Generate and plot decoder input(Y -axis)-output(X-axis) transfer
curves for RSC2.

31



'

&

$

%

Decoder I/O transfer curves: VariousEb/No

32



'

&

$

%

Decoder I/O transfer curves: Various Component Codes

33



'

&

$

%

EXIT Charts: Pinch-Off SNR limits

34



'

&

$

%

Serial Concatenated Turbo Code

Encoding:

35



'

&

$

%

Example 2:

36



'

&

$

%

Decoding:

SISO: soft in soft out

37


